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Abstract

In this paper, we propose a neural architec-
ture and a set of training methods for order-
ing events by predicting temporal relations.
Our proposed models receive a pair of events
within a span of text as input and they iden-
tify temporal relations (Before, After, Equal,
Vague) between them. Given that a key chal-
lenge with this task is the scarcity of annotated
data, our models rely on either pretrained rep-
resentations (i.e. RoBERTa, BERT or ELMo),
transfer and multi-task learning (by leverag-
ing complementary datasets), and self-training
techniques. Experiments on the MATRES
dataset of English documents establish a new
state-of-the-art on this task.

1 Introduction

The task of temporal ordering of events involves
predicting the temporal relation between a pair of
input events in a span of text (Figure 1). This task
is challenging as it requires deep understanding of
temporal aspects of language and the amount of
annotated data is scarce.

Albright (e1, came) to the State Department to
(e2, offer) condolences.

Figure 1: Example from the MATRES dataset. The
relation between (e1, came) and (e2, offer) is Before.
Note that for the same span there may be other relation
pairs.

The MATRES dataset (Ning et al., 2018) has
become a de facto standard for temporal order-
ing of events.1 It contains 13,577 pairs of events
annotated with a temporal relation (Before, After,
Equal, Vague) within 256 English documents (and

∗Kathleen McKeown is an Amazon Scholar and a Pro-
fessor at Columbia University.

1https://github.com/qiangning/MATRES

20 more for evaluation) from TimeBank2 (Puste-
jovsky et al., 2003), AQUAINT3 (Graff, 2002) and
Platinum (UzZaman et al., 2013).

In this paper, we present a set of neural archi-
tectures for temporal ordering of events. Our main
model (Section 2) is similar to the temporal order-
ing models designed by Goyal and Durrett (2019),
Liu et al. (2019a) and Ning et al. (2019).

Our main contributions are: (1) a neural archi-
tecture that can flexibly adapt different encoders
and pretrained word embedders to form a contex-
tual pairwise argument representation. Given the
scarcity of training data, (2) we explore the ap-
plication of an existing framework for Scheduled
Multitask-Learning (henceforth SMTL) (Kiper-
wasser and Ballesteros, 2018) by leveraging com-
plementary (temporal and non temporal) informa-
tion to our models; this imitates pretraining and
finetuning. This consumes timex information in a
different way than Goyal and Durrett (2019). (3)
A self-training method that incorporates the pre-
dictions of our model and learns from them; we
test it jointly with the SMTL method.

Our baseline model that uses RoBERTa (Liu
et al., 2019b) already surpasses the state-of-the-art
by 2 F1 points. Applying SMTL techniques af-
fords further improvements with at least one of our
auxiliary tasks. Finally, our self-training experi-
ments, explored via SMTL as well, establishes yet
another state-of-the-art yielding a total improve-
ment of almost 4 F1 points over results from past
work.

2 Our Baseline Model

Our pairwise temporal ordering model re-
ceives as input a sequence X[0,n) of n tokens

2https://catalog.ldc.upenn.edu/
LDC2006T08

3https://catalog.ldc.upenn.edu/
LDC2002T31

https://github.com/qiangning/MATRES
https://catalog.ldc.upenn.edu/LDC2006T08
https://catalog.ldc.upenn.edu/LDC2006T08
https://catalog.ldc.upenn.edu/LDC2002T31
https://catalog.ldc.upenn.edu/LDC2002T31
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(or subword units for BERT-like models) i.e.
{x0, x1, ..., xn−1}, representing the input text.
A subsequence spani is defined by starti,
endi ∈ [0, n). Subsequences span1 and span2
represent the input pair of argument events e1
and e2 respectively. The goal of the model is to
predict the temporal relation between e1 and e2.

First, the model embeds the input sequence
into a vector representation using either static
wang2vec representations (Ling et al., 2015), or
contextualized representations from ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019), or
RoBERTa (Liu et al., 2019b). These embedded
sequences are then optionally encoded with ei-
ther LSTMs or Transformers. When BERT or
RoBERTa is used to embed the input, we do not
use any sequence encoders. The final sequence
representation H[0,n) comprises of individual to-
ken representations i.e. {h0, h1, ..., hn−1}.

While the goal is to predict the temporal relation
between span1 and span2, the context around these
two spans also has linguistic signals that connect
the two arguments. To use this contextual infor-
mation, we extract five constituent subsequences
from the sequence representation H[0,n): (1) S1,
the subsequence before span1 i.e., H[0,start1),
(2) S2, the subsequence corresponding to span1
i.e., H[start1,end1)

, (3) S3, the subsequence be-
tween span1 and span2 i.e, H[end1,start2), (4)
S4, the subsequence corresponding to span2 i.e.,
H[start2,end2)

and (5) S5, the subsequence after
span2, i.e. H[end2,n)

. Each of these subsequences
Si has a variable number of tokens which are
pooled to yield a fixed size representation si:

si = pool(Si) ∀i ∈ {1, ..., 5} (1)

where pool is the result of concatenating the out-
put of an attention mechanism (we use the word
attention pooling method (Yang et al., 2016) for
all tokens in a given span) and mean pooling.

The final contextual pair representation c is
formed by concatenating4 the five span represen-
tations si with a sequence representation r. For
models with BERT and RoBERTa, r is the CLS
and <s> token representation respectively while
for other models r = pool(H[0,n)).

c = s1 � s2 � s3 � s4 � s5 � r (2)

This final contextual pair representation c is then
projected with a fully connected layer followed by

4� is used to denote concatenation

a softmax function to get a distribution over the
output classes. The entire model is trained end-to-
end using the cross entropy loss.

3 Multi-task Learning

While the model described in the previous section
can be directly trained using labeled training data,
the amount of annotated training data for this task
(in the MATRES dataset) is limited. We enrich our
model with useful information from other comple-
mentary tasks via SMTL.

3.1 Method

We adapt the framework of Kiperwasser and
Ballesteros (2018), where three schedulers are
used. They follow either a constant, sigmoid or
exponential curve p(t), where p(t) is the probabil-
ity of picking a batch from the main task, t is the
amount of data visited so far throughout the train-
ing process and α is a hyperparameter. The con-
stant scheduler splits the batches randomly; at any
time step, the model will be trained with sentences
belonging to either the main task or the auxiliary
task (pconst(t) = α, 0 ≤ α ≤ 1) . The sigmoid
scheduler allows the model to visit batches from
both the auxiliary task and the main task at the be-
ginning while the latest updates are always with
batches consisting of batches from the main task
(psig(t) = 1

1+e−αt ). The exponential scheduler
starts by visiting only the batches from the auxil-
iary task while the latest updates are always from
the main task (pexp(t) = 1− e−αt).

Following past work, we prepend a trained task
vector to the encoder to help the model to differ-
entiate between the main and the auxiliary tasks
(Ammar et al., 2016; Johnson et al., 2017; Kiper-
wasser and Ballesteros, 2018, inter alia).

3.2 Auxiliary Datasets

We use three different auxiliary datasets in our
SMTL setup. The first two have a different tax-
onomy and label set than MATRES, but have gold
annotations. The last one is a silver dataset with
predicted labels and same taxonomy as MATRES.

Our first dataset is the ACE relation extrac-
tion task.5 We hypothesize that this task can add
knowledge of different domains and of the con-
cept of linking two spans in text given a taxonomy

5https://www.ldc.upenn.edu/
sites/www.ldc.upenn.edu/files/
english-relations-guidelines-v6.2.pdf

https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf
https://www.ldc.upenn.edu/sites/www.ldc.upenn.edu/files/english-relations-guidelines-v6.2.pdf
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Robert F. Angelo, who (event, left) Phoenix at
(timex, the beginning of October).

Figure 2: Example of an event-timex annotation
from the Timex annotations. The relation between
(event, left) and (timex, the beginning of October)
is Is included.

of relations. While this is not directly related to
events and our farthest task in terms of similarity,
the pairwise span classification is the reason we
include this.

We also use a closer and complementary tem-
poral annotation dataset, i.e. the Timebank
and Aquaint annotations involving timex re-
lations (timex-event, event-timex, timex-timex)
(Ning et al., 2018; Goyal and Durrett, 2019).6 We
expect the model to greatly benefit from being ex-
posed to the timex relations in an MTL framework
by learning about temporality in general and by
adding specificity of the event-event temporal re-
lations from the MATRES annotations. Figure 2
shows an example of the data annotated with an
event-timex relation.

We use self-training (Scudder, 1965) to gener-
ate our third dataset: a silver dataset. This re-
quires an unlabeled text, a tagger to extract events
from this text, and a classifier to predict temporal
relations for pairs of extracted events. As our unla-
beled text, we use 6,000 random documents from
the CNN / Daily Mail dataset which is a collec-
tion of news articles collected between 2007 and
2015 (Hermann et al., 2015). We picked 85K seg-
ments of text within these documents that contain
between 10 and 40 tokens after tokenization. We
train a RoBERTa-based named entity tagger and
use it to tag events in these segments.7 This results
in about 65K events. We consider all 285K pairs of
events that lie within a segment as candidates for
temporal ordering. Finally, we use our baseline
RoBERTa temporal model to classify the tempo-
ral relation between these candidate pairs and use
the top 2

3
rd most confident classifications based on

softmax scores to get about 190K instances of sil-
ver relations.

6http://www.timeml.org/publications/
timeMLdocs/timeml_1.2.1.html.

7The tagger is simply a dense layer on top of RoBERTa
representation. We evaluate the tagger by using it to tag
events in the MATRES validation set. The tagger reaches
a F1 score of 89.5 on the MATRES development set.

4 Experiments and Results

The MATRES dataset is our primary dataset for
training and validation. As in previous work, we
use TimeBank and AQUAINT (256 articles) for
training, 25 articles of which are selected at ran-
dom for validation and Platinum (20 articles) as
a held-out test set (Ning et al., 2018; Goyal and
Durrett, 2019; Ning et al., 2019). Articles from
TimeBank and AQUAINT at full length are about
400 tokens long on average. We believe that the
document in its entirety is not required to infer the
temporality between a given pair of events. More-
over, BERT style models are also often pre-trained
for shorter inputs than this. For these reasons, we
truncate our input text to a window of sentences8

starting with one sentence before the first event ar-
gument up to and including one sentence after the
second event argument.

We use one set of hyperparameters for all
LSTM models and another set for all the Trans-
former models (both with and without ELMo em-
bedder).9 BERT and/or RoBERTa are loaded as
a replacement of the Transformer parameters and
they are therefore used both as embedders and en-
coders. We run our SMTL and self training exper-
iments with our best baseline model on the devel-
opment data: the RoBERTa model.

For the SMTL experiments, we explore the α
hyperparameter, and we pick the one that produces
the highest scores in our development data.

Finally, we picked our best SMTL model on the
development data (see Table, this is the constant
scheduler with silver data) parameters and con-
tinue training on the gold data only; we reduce the
learning rate to 10−6. This is because the model
trained in the first step is already in a good state
and we want to avoid distorting it with aggressive
updates.

We compare our results (Table 1) with other top
performing systems. First, we observe that among
models without contextualized representations,
the LSTM encoder is 2.5 F1 points better than
the Transformer encoder. We observe that replac-
ing static word representations with ELMo rep-
resentations leads to significantly worse F1 with

8We use spacy (Honnibal and Montani, 2017) for sentence
segmentation of the articles

9LSTM models use 2 hidden layers with 256 hidden units
each, and a batch size of 64. Transformer models use 1 hid-
den layer with 128 hidden units, and a batch size of 24. All
models are trained using Adam (Kingma and Ba, 2014) with
a learning rate of 10−5 on an NVIDIA V100 16GB GPU.

http://www.timeml.org/publications/timeMLdocs/timeml_1.2.1.html
http://www.timeml.org/publications/timeMLdocs/timeml_1.2.1.html
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Experiment Acc F1

LSTM 64.4 ± 0.36 69.1 ± 0.39

+ Elmo 60.0 ± 2.89 64.8 ± 3.00

Transformer 61.9 ± 0.93 66.4 ± 0.99

+ Elmo 62.2 ± 1.3 66.9 ± 1.35

BERT base 71.5 ± 0.63 77.2 ± 0.74

RoBERTa base 73.5 ± 1.03 78.9 ± 1.16

+ SMTL (ACE) constant (0.6) 72.5 ± 0.69 78.5 ± 0.84

+ SMTL (ACE) exponent (0.5) 71.5 ± 1.81 77.4 ± 1.19

+ SMTL (ACE) sigmoid (0.5) 70.0 ± 1.81 76.4 ± 0.89

+ SMTL (Timex) constant (0.9) 73.4 ± 1.81 79.3 ± 0.64

+ SMTL (Timex) exponent (0.7) 73.7 ± 0.74 79.4 ± -0.46

+ SMTL (Timex) sigmoid (0.8) 74.2 ± 0.74 79.8 ± 0.70

+ SMTL (silver data) constant (0.05) 73.8 ± 0.74 80.3 ± 0.51

+ SMTL (silver data) sigmoid (0.2) 74.0 ± 0.73 80.1 ± 0.72

+ SMTL (silver data) exponent (0.1) 73.9 ± 0.64 79.6 ± 0.52

Self-training: fine-tune on gold 75.5 ± 0.39 81.6 ± 0.26

Ning et al. (2018) 61.6 66.6
Goyal and Durrett (2019)10 68.6 74.2
Ning et al. (2019) 71.7 76.7

Table 1: Results, including comparison with the best
systems on the MATRES test set (Platinum). Results
highlighted in bold are the best in each metric. We re-
port average (and standard deviation) of accuracy and
F1 over 5 runs with different random seeds. Given that
it does not carry temporal information, we treat the re-
lation VAGUE as a no relation for the F1 results as in
Ning et al. (2019). For the SMTL experiments, the se-
lected α value is shown between parentheses.

the LSTM encoder, but marginally improves upon
the F1 of the Transformer encoder. We attribute
this difference to the non-complementary nature
of LSTM and ELMo representations, as ELMo
is also LSTM-based, and thus the ELMo+LSTM
combination might need more training data in or-
der to extract meaningful signals.

Importantly, however, our base model that uses
pretrained RoBERTa surpasses the previous state-
of-the-art (Ning et al., 2019) which uses BERT.
Our BERT models yield very similar results to
them. The main differences are that they do
not finetune BERT along with the updates to the
model, while we do and also, we model the con-
text around the argument spans explicitly as part
of S1, S3 and S5. The reason why RoBERTa is
better than BERT in this case is likely due to the
fact that it has been trained longer, over more data,
and over longer sequences. This matters because
our temporal ordering model usually takes into ac-
count a long span in which both events occur.

The SMTL experiments show that the auxil-
iary task with timex annotations provides non-
negligible improvements of almost 1 F1 point on

top of our RoBERTa model. Learning from the
timex annotations makes our model more aware of
time relations and thus, better at ordering events in
time. The sigmoid and exponent schedulers per-
form better than the constant scheduler, suggest-
ing that the model needs to first learn about tem-
porality, and then learn to be more specialized on
predicting temporal ordering relations later. We
believe this timex multi-tasking setup to be an im-
plicit yet effective way to teach our model about
timexes in general without timex embeddings used
in (Goyal and Durrett, 2019). When we use the
ACE relation extraction dataset as an auxiliary
task, none of the schedulers produce improve-
ments while the sigmoid and exponent scheduler
fare significantly worse. This result suggests that
if the tasks differ too much, SMTL might not be a
helpful strategy.

The self-training experiments (including SMTL
with silver data) show that the silver data helps to
reach better performance with constant being the
best scheduler. Furthermore, fine-tuning of the
best model (according to development set score,
which in this case it is the same as test set score)
on the gold data gives us another boost in perfor-
mance establishing a new state of the art in the
task that is 2.7 F1 points better than our RoBERTa
baseline, and almost 4 points better than the previ-
ous published results.

5 Conclusions and Future Work

This paper presents neural architectures for order-
ing events in time. It establishes a new state-of-
the-art on the task through pretraining, leverag-
ing complementary tasks through SMTL and self-
training techniques.

For the future, instead of using the RoBERTa
baseline model for the self-training experiments,
we could run several iterations by retraining on the
data produced by our best self-trained model(s);
this could be a good avenue for further improve-
ments. In addition we plan to extend our work
by moving to other languages beyond English (we
currently have not tried this due to lack of data)
using cross-lingual models, (Subburathinam et al.,
2019), applying other architectures like CNNs
(Nguyen and Grishman, 2015), incorporating tree
structure in our models (Miwa and Bansal, 2016)
and/or by handling jointly performing event recog-
nition and temporal ordering (Li and Ji, 2014;
Katiyar and Cardie, 2017).
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