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Abstract

Creating a descriptive grammar of a language
is an indispensable step for language docu-
mentation and preservation. However, at the
same time it is a tedious, time-consuming
task. In this paper, we take steps towards
automating this process by devising an auto-
mated framework for extracting a first-pass
grammatical specification from raw text in a
concise, human- and machine-readable format.
We focus on extracting rules describing agree-
ment, a morphosyntactic phenomenon at the
core of the grammars of many of the world’s
languages. We apply our framework to all
languages included in the Universal Depen-
dencies project, with promising results. Us-
ing cross-lingual transfer, even with no expert
annotations in the language of interest, our
framework extracts a grammatical specifica-
tion which is nearly equivalent to those cre-
ated with large amounts of gold-standard an-
notated data. We confirm this finding with hu-
man expert evaluations of the rules that our
framework produces, which have an average
accuracy of 78%. We release an interface
demonstrating the extracted rules at https:
//neulab.github.io/lase/. The code is
publicly available here.1

1 Introduction

While the languages of the world are amazingly
diverse, one thing they share in common is their ad-
herence to grammars — sets of morpho-syntactic
rules specifying how to create sentences in the lan-
guage. Hence, an important step in the understand-
ing and documentation of languages is the creation
of a grammar sketch, a concise and human-readable
description of the unique characteristics of that par-
ticular language (e.g. Huddleston (2002) for En-

1https://github.com/Aditi138/
LASE-Agreement
†: Work done at Carnegie Mellon University.

glish, or Brown and Ogilvie (2010) for the world’s
languages).

One aspect of morphosyntax that is widely de-
scribed in such grammatical specifications is agree-
ment, the process wherein a word or morpheme
selects morphemes in correspondence with another
word or phrase in the sentence (Corbett, 2009).
Languages have varying degrees of agreement rang-
ing from none (e.g. Japanese, Malay) to a large
amount (e.g. Hindi, Russian, Chichewa). Patterns
of agreement also vary across syntactic subcate-
gories. For instance, regular verbs in English agree
with their subject in number and person but modal
verbs such as “will” show no agreement.

Having a concise description of these rules is of
obvious use not only to linguists but also language
teachers and learners. Furthermore, having such de-
scriptions in machine-readable format will further
enable applications in natural language process-
ing (NLP) such as identifying and mitigating gen-
der stereotypes in morphologically rich languages
(Zmigrod et al., 2019).

The notion of describing a language “in its own
terms” based solely on raw data has an established
tradition in descriptive linguistics (e.g. Harris
(1951)). In this work we present a framework
(outlined in Figure 1) that automatically creates
a first-pass specification of morphological agree-
ment rules for various morphological features (Gen-
der, Number, Person, etc.) from a raw text corpus
for the language in question. First, we perform
syntactic analysis, predicting part-of-speech (POS)
tags, morphological features, and dependency trees.
Using this analyzed data, we then learn an agree-
ment prediction model that contains the desired
rules. Specifically, we devise a binary classifica-
tion problem of identifying whether agreement will
be observed between a head and its dependent to-
ken on a given morphological property. We use
decision trees as our classification model because

https://neulab.github.io/lase/
https://neulab.github.io/lase/
https://github.com/Aditi138/LASE-Agreement
https://github.com/Aditi138/LASE-Agreement
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Raw Text

λιµάνι                της             Ηγουµενίτσας             συνδέεται        µε        πολλά           λιµάνια             της               Ιταλίας                  και              της                Αλβανίας
port.SG            DET            Igoumenítsa.GEN   connect.SG   with     many           port.PL            DET             Italy.GEN             and            DET             Albania.GEN

 Dependency Parsed Data

λιµάνι                   της                Ηγουµενίτσας     συνδέεται         µε          πολλά             λιµάνια              της                Ιταλίας                  και             της                 Αλβανίας
NOUN;NEUT   DET;FEM      PROPN;FEM    VERB            ADP      ADJ;NEUT    NOUN;NEUT    DET;FEM    PROPN;FEM     CCONJ     DET;FEM     PROPN;FEM

mod

det udep
comp:obj

mod det

mod
mod

det

conj

Training Data Extraction
Training Sample             Agree?
NOUN det  DET               Yes
PROPN det DET              Yes
NOUN mod ADJ              Yes
PROPN mod NOUN        No
PROPN mod PROPN      Yes

Decision Tree Learning

Leaf -1:
relation = det, head-POS = NOUN, PROPN, child-POS = *

Leaf -2: 
relation = mod, head-POS = NOUN, PROPN, child-POS = ADJ,PROPN

Labeling
Leaf-1: 
Required-Agreement

Leaf-2:
Chance-Agreement

Use/Evaluation

Linguist

Figure 1: An overview of our method’s workflow for gender agreement in Greek. The example sentence translates
to “The port of Igoumenitsa is connected to many ports in Italy and Albania.” First, we dependency parse and
morphologically analyze raw text to create training data for our binary agreement classification task. Next, we
learn a decision tree to extract the rule set governing gender agreement, and label the extracted leaves as either
representing required or chance agreement. Finally these rules are presented to a linguist for perusal.

they are easy to interpret and we can easily extract
the classification rules from the tree leaves to get an
initial set of potential agreement rules. Finally, we
perform rule labeling of the extracted rules, iden-
tifying which tree leaves correspond to probable
agreement. This is required because not all agree-
ing head/dependent token pairs are necessarily due
to some underlying rule. For instance, in Figure 1’s
example of Greek gender agreement, both the head
and its dependent token Ιταλίας→Αλβανίας have
feminine gender, but this agreement is purely by-
chance, as correctly identified by our framework.

The quality of the learnt rules depends crucially
on the quality and quantity of dependency parsed
data, which is often not readily available for low-
resource languages. Therefore, we experiment with
not only gold-standard treebanks, but also trees gen-
erated automatically using models trained using
cross-lingual transfer learning. This assesses the
applicability of the proposed method in a situation
where a linguist may want to explore the charac-
teristics of agreement in a language that does not
have a large annotated dependency treebank.

We evaluate the correctness of the extracted rules
conducting human evaluation with linguists for
Greek, Russian, and Catalan. In addition to the
manual verification, we also devise a new metric
for automatic evaluation of the rules over unseen
test data. Our contributions can be summarized to:
1. We propose a framework to automatically ex-

tract agreement rules from raw text, and release
these rules for 55 languages as part of an inter-
face2 which visualizes the rules in detail along
2https://neulab.github.io/lase/

with examples and counter-examples.
2. We design a human evaluation interface to allow

linguists to easily verify the extracted rules. Our
framework produces a decent first-pass gram-
matical specification with the extracted rules
having an average accuracy of 78%. We also de-
vise an automated metric to evaluate our frame-
work when human evaluation is infeasible.

3. We evaluate the quality of extracted rules un-
der real zero-shot conditions (on Breton, Buryat,
Faroese, Tagalog, and Welsh) as well as low-
resource conditions (with simulation experi-
ments on Spanish, Greek, Belarusian and Lithua-
nian) varying the amount of training data. Us-
ing cross-lingual transfer, rules extracted with
as few as 50 sentences with gold-standard syn-
tactic analysis are nearly equivalent to the rules
extracted when we have hundreds/thousands of
gold-standard data available.

2 Problem Formulation

For a head h and a dependent d that are in a de-
pendency relation r, we will say that they agree
on a morphological property f if they share the
same value for that particular property i.e. fh = fd.
Some agreements that we observe in parsed data
can be attributed to an underlying grammatical rule.
For example, in Figure 2 the Spanish A.1 shows
an example of where subject (enigmas) and verb
(son) need to agree on number. We will refer to
such rules as required-agreement. Such a required
agreement rule dictates that an example like A.2
is ungrammatical and would not appear in well-
formed Spanish sentences, since the subject and

https://neulab.github.io/lase/
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A.1 Los enigmas son fáciles
DET.PL riddle.PL be.PL easy.PL

�_req__�

‘The riddles are easy.’

A.2 *Los enigmas es fácil
DET.PL riddle.PL be.SG easy.SG

�wrong�

B.1 Mi hermano tiene un perro
My brother.SG has.SG ART.SG dog.SG

�_req__� �_____chance_____�

‘My brother has a dog.’

B.2 Mi hermano tiene muchos perros
My brother.SG has.SG many.PL dog.PL

�_req__� �_____correct_____�

‘My brother has many dogs.’

Figure 2: Subject-verb number agreement is required in
Spanish, as in example A.1, which renders example A.2
ungrammatical. Object-verb agreement is not required,
so both B.1 and B.2 are grammatical. The object and
the verb in B.1 only agree by chance.

the verb do not have the same number marking.
However, not all word pairs that agree do so be-
cause of some underlying rule, and we will refer
to such cases as chance-agreement. For example,
in Figure 2 the object (perro) and verb (tiene) in
B.1 only agree in number by chance, and example
B.2 (where the object of a singular verb is plural)
is perfectly acceptable.

Our goal is to extract, from textual examples, the
set of rules Rf

l that concisely describe the agree-
ment process for language l. Concretely, this will
indicate for which head-dependent pairs the lan-
guage displays required-agreement and for which
we will observe at most chance-agreement. Canon-
ically, agreement rules are defined over syntactic
features of a language as seen in Figure 2 where
we have the following rule for Spanish: “subjects
agree with their verbs on number”.3 To formalize
this notion, we define a rule to be a set of features
which are defined over the dependency relation,
head and dependent token types. In this paper, we
make the simplifying assumption that head and
dependent tokens are represented by only part-of-
speech features, as we would like our extracted
rules to be concise and easily interpretable down-
stream, although this assumption could be relaxed
in future work.

The rule discovery process consists of two major
steps: a rule extraction step followed by a rule
labeling and merging step (also see Figure 1).

3Sometimes semantic features are used for agreement for
eg. United Nations is, despite United Nations being plural, it
is treated as singular for purposes of agreement.

2.1 Rule Extraction

To create our training data for rule extraction, we
first annotate raw text with part-of-speech (POS)
tags, morphological analyses, and dependency
trees. We then base our training data on these
annotations by converting each dependency rela-
tion into a triple 〈h, d, r〉, indicating the head to-
ken, dependent/child token, and dependency re-
lation between h and d respectively. From the
whole treebank, we now have input features Xf =
{〈h1, d1, r1〉, . . . , 〈hn, dn, rn〉} and binary output
labels Y=y1, . . . , yn, where if the head and the de-
pendent token agree on feature f (such that fh=fd)
we set y = 1, otherwise y = 0. We filter out the
tuples where either of the linked tokens does not
display the morphological feature f .

We train a model for p(Y |X) using decision
trees (Quinlan, 1986) using the CART algorithm
(Breiman et al., 1984). A major advantage of deci-
sion trees is that they are easy to interpret and we
can visualize the exact features used by the deci-
sion tree to split nodes. The decision tree induces a
distribution of agreement over training samples in
each leaf, e.g. 99% agree, 1% not agree in Leaf-3
for gender agreement in Spanish (Figure 3(a)).

2.2 Rule Labeling

Now that we have constructed a decision tree where
each tree leaf corresponds to a salient partition of
the possible syntactic structures in the language, we
then label these tree leaves as required-agreement
or chance-agreement. For this we apply a threshold
on the ratio of agreeing training samples within a
leaf – if the ratio exceeds a certain number the
leaf will be judged as required-agreement. We
experiment with two types of thresholds:

Hard Threshold: We set a hard threshold on the
ratio that is identical for all leaves. In all experi-
ments, we set this threshold to 90% based on manu-
ally inspecting some resulting trees to find a thresh-
old that limited the number of non-agreeing syntac-
tic structures being labeled as required-agreement.

Statistical Threshold: Leaves with very few ex-
amples may exceed the hard threshold purely by
chance. In order to better determine whether the
agreements are indeed due to a true pattern of re-
quired agreement, we devise a thresholding strategy
based on significance testing. For all agreement-
majority leaves, we apply a chi-squared goodness
of fit test to compare the observed output distri-
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node 1

node 2

Leaf 3: not agree: 778, agree: 58076

relation = any
head-pos = any
child-pos = aux,adj,verb,pron,

propn,det,num

Leaf 1: not agree: 1462, agree: 2433

relation = conj, det
head-pos = any
child-pos = noun

Leaf 2: not agree: 268, agree: 373

relation = comp:obj
head-pos = any
child-pos = noun

child-pos= noun

child-pos= aux,adj,verb,pron,
propn,det,num

relation= det relation= comp:obj

node 1

node 2

Leaf 3: required-agreement

relation = any
head-pos = any
child-pos = aux,adj,verb,pron,

propn,det,num

Leaf 1: chance-agreement

relation = conj, det
head-pos = any
child-pos = noun

Leaf 2: chance-agreement

relation = comp:obj
head-pos = any
child-pos = noun

child-pos=

noun

child-pos= aux,adj,verb,pron,
propn,det,num

relation= det relation= comp:obj

node 1

Leaf 3: required-agreement

relation = any
head-pos = any
child-pos = aux,adj,verb,pron,

propn,det,num

Leaf 1: chance-agreement

relation = conj, det, comp:obj
head-pos = any
child-pos = noun

child-pos= aux,adj,verb,pron,
propn,det,num

child-pos=

noun

(a) Rule Extraction (b) Rule Labeling (c) Rule Merging

Figure 3: Extracting gender agreement rules in Spanish. (a) A decision tree is learned over dependency link triples,
inducing a distribution of agreement over examples in each leaf. However, simple majority voting leads to false
positives: Leaf-1 includes more agreeing data points, but in reality this agreement is purely by chance. (b) With
a statistically-inspired threshold to label the leaves, Leaf-1 gets correctly labeled as chance-agreement. (c) We
merge leaves with the same label to get a concise representation. Every dependency link triple receives the label
of the unique leaf it falls under.

bution with an expected probability distribution
specified by a null hypothesis. Our null hypothe-
sis H0 will be that any agreement we observe is
due to chance. If we reject the null hypothesis, we
will conclude from the alternate hypothesis H1 that
there exists a grammatical rule requiring agreement
for this leaf’s cases:

H0 : The leaf has chance-agreement.

H1 : The leaf has required-agreement.

If there is no rule requiring agreement, we assume
that the morphological properties of the head and
the dependent token are independent and identi-
cally distributed discrete random variables follow-
ing a categorical distribution. We compute the
probability of chance agreement based on the num-
ber of values that the specific morphological prop-
erty f can take. Since morphological feature val-
ues are not equally probable, we use a probability
proportional to the observed value counts. For
a binary number property where 90% of all ob-
served occurrences are singular and 10% are plural,
the probability of chance agreement is equal to
0.82=0.9×0.9+0.1×0.1, which gives the observed
output distribution p=[0.18, 0.82]. Using p we
compute the expected frequency count Ei = npi
where n is the total number of samples in the given
leaf, i=[0, 1] is the output class of the leaf, and
pi is the hypothesized proportion of observations
for class i. The chi-squared test calculates the test
statistic χ2 as follows:

χ2 =
∑

i∈[0,1]

(Oi − Ei)
2

Ei

where Oi is the observed frequency count in the
given leaf. The test outputs a p-value, which is the

probability of observing a sample statistic as ex-
treme as the test statistic. If the p-value is smaller
than a chosen significance level (we use 0.01) we
reject the null hypothesis and label the leaf as
required-agreement.

The chi-squared test especially helps in being
cautious with leaves with very few examples. How-
ever, for leaves with larger number of examples
statistical significance alone is insufficient, because
there are a large number of cases where there are
small but significant differences from the ratio of
agreement expected by chance.4 Therefore, in ad-
dition to comparing the p-value we also compute
the effect size which provides a quantitative mea-
sure on the magnitude of an effect (Sullivan and
Feinn, 2012). Cramér’s phi φc (Cramér, 1946) is a
commonly used method to measure the effect size:

φc =
χ2

N(k − 1)

where χ2 is the test statistic computed from the
chi-squared test, N is the total number of samples
within a leaf, and k is the degree of freedom (which
in this case is 2 since we have two output classes).
Cohen (1988) provides rules of thumb for inter-
preting these effect size. For instance, φc > 0.5
is considered to be a large effect size and a large
effect size suggests that the difference between the
two hypotheses is important. Therefore, a leaf is
labeled as required-agreement when the p-value is
less than the significance value and the effect size
is greater than 0.5. Now Leaf-1 in Figure 3(b) is
correctly identified as chance-agreement.

4One limitation of this is that rules that show agreement
sometimes get incorrectly labeled as either chance-agreement
or required-agreement. We consider this in evaluation, but
predicting sometimes agreement is relegated to future work.
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Rule Merging: Because we are aiming to have a
concise, human-readable representation of agree-
ment rules of a language, after labeling the tree
leaves we merge sibling leaves with the same label
as shown in Figure 3(c). Further, we collapse tree
nodes having all leaves with the same label thereby
reducing the apparent depth of the tree.

3 Experimental Settings and Evaluation

Our experiments aim to answer the following re-
search questions: (1) can our framework extract
linguistically plausible agreement rules across di-
verse languages? and (2) can it do so even if
gold-standard syntactic analyses are not available?
To answer the first question we evaluate rules
extracted from gold-standard syntactic analysis
(Sec. §4). For the second question we experiment
in low-resource and zero-shot scenarios using cross-
lingual transfer to obtain parsers on the languages
of interest, and evaluate the effect of noisy parsing
results on the quality of rules (Sec. §5).

3.1 Settings

Data We use the Surface-Syntactic Universal De-
pendencies (SUD) treebanks (Gerdes et al., 2018,
2019) as the gold-standard source of complete syn-
tactic analysis. The SUD treebanks are derived
from Universal Dependencies (UD) (Nivre et al.,
2016, 2018), but unlike the UD treebanks which fa-
vor content words as heads, the SUD ones express
dependency labels and links using purely syntactic
criteria, which is more conducive to our goal of
learning syntactic rules. We use the tool of Gerdes
et al. (2019) to convert UD v.2.5 (Nivre et al., 2020)
into SUD. We only use the training portion of the
treebanks for learning our rules.

Rule Learning We use sklearn’s (Pedregosa
et al., 2011) implementation of decision trees and
train a separate model for each morphological fea-
ture f for a given language. We experiment with
six morphological features (Gender, Person, Num-
ber, Mood, Case, Tense) which are most frequently
present across several languages. We perform a
grid search over the decision tree parameters (de-
tailed in Appendix A.1) and select the model per-
forming best on the validation set. We report results
with the Statistical Threshold because on manual
inspection we find the trees to be more reliable
than the ones learnt from the Hard Threshold (see
Appendix A.5 for an example).

3.2 Evaluation
We explore two approaches to evaluate the ex-
tracted rules, one based on expert annotations, and
an automated proxy evaluation.

Expert Evaluation Ideally, we would collect an-
notations for all head-relation-dependent triples in
a treebank, but this would involve annotating hun-
dreds of triples, requiring a large time commitment
from linguists in each language we wish to evalu-
ate. Instead, for each language/treebank we extract
and evaluate the top 20 most frequent “head POS,
dependency relation, dependent POS” triples for
the six morphological features amounting to 120
sets of triples to be annotated.5 We then present
these triples with 10 randomly selected illustrative
examples and ask a linguist to annotate whether
there is a rule in this language governing agreement
between the head-dependent pair for this relation.
The allowed labels are: Almost always agree if the
construction must almost always exhibit agreement
on the given feature; Sometimes agree if the linked
arguments sometimes must agree, but sometimes
do not have to; Need not agree if any agreement on
the feature is random. An example of the annota-
tion interface is shown in the Appendix A.2.

For each of the human annotated triples in
feature f , we extract the label assigned to it by the
learnt decision tree T . We find the leaf to which
the given triple t belongs and assign that leaf’s
label to the triple, referred by ltree,f,t. The human
evaluation score (HS) for each triple marking
feature f is given by:

HSf,t = 1

{
1 lhuman,f,t = ltree,f,t
0 otherwise

where lhuman,f,t is the label assigned to the triple
t by the human annotator. These scores are then
averaged across all annotated triples Tf to get the
human evaluation metric (HRM) for feature f

HRMf =

∑
t∈Tf

HSf,t

|Tf |
.

Automated Evaluation As an alternative to the
infeasible manual evaluation of all rules in every
language, we propose an automated rule metric
(ARM) that evaluates how well the rules extracted
from decision tree T fit to unseen gold-annotated
test data. For each triple t marking feature f , we

5The top 20 most frequent triples covered approximately
95% of the triples where this feature was active on average.
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Gender Case Person
−0.1

0

0.1

0.2

0.3

∆
A

R
M

� Indo-Aryan � Uralic � Slavic

� Germanic � Baltic � Semitic

Number Mood Tense
−0.1

0

0.1

0.2

0.3

∆
A

R
M

Figure 4: Difference in the ARM scores of decision
trees over gold-standard syntactic analysis with base-
line trees where all leaves predict chance-agreement.

first retrieve all examples from the test data corre-
sponding to that triple. Next, we calculate the em-
pirical agreement by counting the fraction of test
samples that exhibit agreement, referred by qf,t.
For a required-agreement leaf, we expect most test
samples satisfying that rule to show agreement.6

To account for any exceptions to the rule and/or
parsing-related errors, we use a threshold that acts
as proxy for evaluating whether the given triple
denotes required agreement. We use a threshold
of 0.95, and if qf,t > 0.95 then we assign the test
label ltest,f,t for that triple as required-agreement,
and otherwise choose chance-agreement.7 Similar
to the human evaluation, we compute a score for
each triple t marking feature f

ASt = 1

{
1 ltest,f,t = ltree,f,t
0 otherwise

then average scores across all annotated triples in
Tf to get the ARM score for each feature f :

ARMf =

∑
t∈Tf

ASt

|Tf |

4 Experiments with Gold-Standard Data

In this section, we evaluate the quality of the rules
induced by our framework, using gold-standard
syntactic analyses and learning the decision trees
over triples obtained from the training portion of
all SUD treebanks. As baseline, we compare with
trees predicting all leaves as chance-agreement.

6There are exceptions: e.g. when the head of dependent
is a multiword expression (MWE), in which case dependency
parsers might miss or pick only one of its constituents as
head/dependent, or if the MWE is syntactically idiosyncratic.

7We keep a 5% margin to account for any exceptions or
parsing errors based on the feedback given by the annotators.

Gender Case Person Tense
0

0.2

0.4

0.6

0.8

1

× × ×

A
R

M

� Hindi � Russian � North Sami � Tamil � Arabic

Figure 5: Our approach (shaded bars) outperforms
the chance-agreement baseline (solid bars) in all cases
where there exist agreement rules. Features not present
in the language are marked with ×.

The extracted rules have an 0.574 ARM score
(averaged across all treebanks and features), outper-
forming the baseline scores by 0.074 ARM points.8

Of all the 451 decision trees across all treebanks
and features, we find 78% trees outperforming the
baseline trees. In Figure 4, we show the improve-
ments over the baseline averaged across language
families/genera. In families with extensive agree-
ment systems such as Slavic and Baltic our models
clearly outperform the baseline discovering cor-
rect rules, as they do for the other Indo-European
genera, Indo-Aryan and Germanic. For mood and
tense, the chance-agreement baseline performs on
par with our method. This is not surprising be-
cause there is little agreement observed for these
features given that only verbs and auxiliary verbs
mark these features. We find that for both tense and
mood in the Indo-Aryan family, our model iden-
tifies required-agreement primarily for conjoined
verbs, which mostly need to agree only if they share
the same subject. However, subsequent analysis
revealed that in the treebanks nearly 50% of the
agreeing verbs do not share the same subject but
do agree by chance.

Agreement for Indo-European languages like
Hindi and Russian is well documented (Com-
rie, 1984; Crockett, 1976) and is reflected in our
large improvements over the baseline (Figure 5).
Similarly, Arabic exhibits extensive agreement
on noun phrases including determiners and adjec-
tives (Aoun et al., 1994). We find that for Arabic
gender the lower ARM scores of our method are
an artifact of the small test data.

North Sami is an interesting test bed: as a
Uralic language, case agreement would be some-
what unexpected and indeed our model’s predic-
tions are not better than the baseline. Nevertheless,
with our interface we find patterns of rare posi-
tive paratactic constructions with required agree-

8Individual scores for each treebank are in Appendix A.5.
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Figure 6: Correlation between size of the decision trees
constructed by our framework and morphological com-
plexity of languages.

ment where demonstrative pronouns overwhelm-
ingly agree with their heads.9 The case decision
tree also uncovers interesting patterns of 100%
agreement on Tamil constructions with nominal-
ized verbs (Gerunds) where the markings propagate
to the whole phrase.

Conciseness of Extracted Rules We further an-
alyze the decision trees learnt by our framework
for conciseness and find that the trees grow more
complex with increasing morphological complexity
of languages as seen in Figure 6. To compute the
morphological complexity of a language, we use
the word entropy measure proposed by Bentz et al.
(2016) which measures the average information
content of words and is computed as follows:

H(D) = −
∑
i∈V

p(wi) log p(wi)

where V is the vocabulary, D is the monolingual
text extracted from the training portion of the re-
spective treebank, p(wi) is the word type frequency
normalized by the total tokens. Since this entropy
doesn’t account for unseen word types, Bentz et al.
(2016) use the James-Stein shrinkage estimator
(Hausser and Strimmer, 2009) to calculate p(wi):

p(wi) = λptarget(wi) + (1− λ)pML(wi)

where λ∈[0, 1], ptarget denotes the maximum en-
tropy case given by the uniform distribution 1

V and
pML is the maximum likelihood estimator which
is given by the normalized word type frequency.
Languages with a larger word entropy are consid-
ered to be morphologically rich as they pack more
information into the words. In Figure 6 we plot the

9Leaf 3 here: https://bit.ly/34mHTeG

morphological richness with the average number
of leaves across all features and find these to be
highly correlated.

Manual Evaluation Results We conduct an ex-
pert evaluation for Greek (el), Russian (ru) and
Catalan (ca) as described in Section §3.2. For a
strict setting, we consider both Sometimes agree
and Need not agree as chance-agreement and report
the human evaluation metric (HRM) in Figure 7.
Overall, our method extracts first-pass grammar
rules achieving 89% accuracy for Greek, 78% for
Russian and 66% for Catalan.

In most error cases, like person in Russian, our
model produces required-agreement labels, which
we can attribute to skewed data statistics in the
treebanks. In Russian and Greek, for instance,
conjoined verbs only need to agree in person and
number if they share the same subject (in which
case they implicitly agree because they both must
agree with the same subject phrase). In the tree-
banks, though, only 15% of the agreeing verbs do
indeed share the same subject – the rest agree by
chance. In a reverse example from Catalan, the
overwhelming majority (92%) of 8650 tokens are
in the third-person, causing our model to label all
leaves as chance agreement despite the fact that
person/number agreement is required in such cases.
Similarly for tense in Catalan, our framework pre-
dicts chance-agreement for auxiliary verbs with
verbs as their dependent because of overwhelming
majority of disagreeing examples. We believe this
is because of both annotation artifact and the way
past tense is realized.

To demonstrate how well the automated eval-
uation correlates with the human evaluation pro-
tocol, we compute the Pearson’s correlation (r)
between the ARM and HRM for each language
under four model settings: simulate-50, simulate-
100, baseline and gold. simulate-x is a simulated
low-resource setting where the model is trained us-
ing x gold-standard syntactically analysed data.10

The baseline setting is the one where all leaves pre-
dict chance-agrement and under the gold setting
we train using the entire gold-standard data. We
compute the ARM and HRM scores for the rules
learnt under each of the four settings and report the
Pearson’s correlation, averaged across all features.
Overall, we observe a moderate correlation for all
three languages, with r = 0.59 for Greek, r=0.41
for Russian and r=0.38 for Catalan. The correla-

10More details on the experimental setup in § 5.1.

https://bit.ly/34mHTeG
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Figure 7: Annotation accuracy for Greek, Russian and
Catalan per each morphological feature.

tions are very strong for some features such as Gen-
der (rel=0.97, rru=0.82, rca=0.98) and Number
(rel=0.97, rru=0.69, rca=0.96) where we expect
to see extensive agreement.

5 Low-Resource Experiments

5.1 Simulated Zero-/Few-Shot Experiments

It is not always possible to have access to gold-
standard syntactic analyses. Therefore, in order to
investigate how the quality of rules are affected by
the quality of syntactic analysis, we conduct simu-
lation experiments by varying the amount of gold-
standard syntactically analysed training data. For
each language, we sample x fully parsed sentences
from the its treebank out of L training sentences
available. For the remaining L− x sentences, we
use silver syntactic analysis i.e., we train a syn-
tactic analysis model on x sentences and use the
model predictions for the L− x sentences.

Data and Setup: We experiment with Spanish,
Greek, Belarusian and Lithuanian. For trans-
fer learning, we use Portuguese, Ancient Greek,
Ukrainian and Latvian treebanks respectively. The
data statistics and details are in Appendix A.2.

We train Udify (Kondratyuk and Straka, 2019),
a parser that jointly predict POS tags, morphologi-
cal features, and dependency trees, using the x gold-
standard sentences as our training data. We gener-
ate model predictions on the remaining L− x sen-
tences. Finally, we concatenate the x gold data with
the L − x automatically parsed data from which
we extract the training data for learning the deci-
sion tree. We experiment with x = [50, 100, 500]
gold-standard sentences. To account of sampling
randomness, we repeat the process 5 times and
report averages across runs.

To further improve the quality of the automat-
ically obtained syntactic analysis, we use cross-
lingual transfer learning where we train the Udify
model by concatenating x sentences of the target
language with the entire treebank of the related
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Figure 8: Comparing the (avg.) ARM score for
Number agreement with and without cross-lingual
transfer learning (transfer language in parenthesis). x-
axis in log space. The higher the ARM the better.

[Relation, Head, Dependent] correct label gold zero-shot

det, NOUN, DET. almost always required required
mod, NOUN, ADJ almost always required required

flat, PROPN, PROPN almost always required chance
mod, PROPN, PROPN almost always required chance

appos, PROPN, PROPN sometimes required chance
comp:aux@pass, AUX, VERB need not chance required

conj, PROPN, PROPN need not required chance
ARM score over the test set: 0.644 0.632

Table 1: The Spanish gender rules extracted in a zero-
shot setting are generally similar to the ones extracted
from the gold data (93%). We highlight the few mis-
takes that the zero-shot tree makes.

language. We also conduct zero-shot experiments
under this setting where we directly use the Udify
model trained only on the related language and get
the model predictions on L sentences. As before,
we train five decision trees for each x setting and
report the average ARM over the test data.

Results We report the results for Number agree-
ment in Figure 8. Similar plots for other languages
and features can be found in the Appendix A.5. We
observe that using cross-lingual transfer learning
(CLTL) already leads to high scores across all lan-
guages even in zero-shot settings where we do not
use any data from the gold-standard treebank. Tak-
ing Spanish gender as an example, 93% of the rule-
triples extracted from the gold-standard tree (which
are overwhelmingly correct) are also extracted by
the zero-shot tree. The zero-shot tree only makes
a few mistakes (shown in Table 1 and reflected
in its overall ARM score) on certain proper noun
and auxiliary verb constructions. Interestingly,
using CLTL, training with just 50 gold-standard
target language sentences is almost equivalent to
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training with 100 or 500 gold-standard sentences.
This opens new avenues for language documen-
tation: with as few as 50 expertly-annotated syn-
tactic analysis of a new language and CLTL our
framework can produce decent first-pass agreement
rules. Needless to say, in most cases the extracted
rules improve as we increase the number of gold-
standard sentences and CLTL further helps bridge
the data availability gap for low-resource settings.

5.2 Real Zero-Shot Experiments

Some languages like Breton, Buryat, Faroese, Taga-
log and Welsh have test data only; there is no gold-
standard training data available, which presents a
true zero-shot setting. In such cases, we can still
extract grammar rules with our framework using
zero-shot dependency parsing.

Data and Setup: We collect raw text for the
above languages from the Leipzig corpora (Gold-
hahn et al., 2012). Data statistics are listed in Ap-
pendix A.2. We parse these sentences using the
“universal" Udify model that has been pre-trained
on all of the UD treebanks, as released by (Kon-
dratyuk and Straka, 2019). As before, we use these
automatically parsed syntactic analyses to extract
the rules which we evaluate with ARM over the
gold standard test data of the corresponding SUD
treebanks.

Results: We report the ARM scores in Figure 9.
Averaged over all rules, our approach obtains a
ARM of 0.566, while the naive all-chance baseline
only achieves 0.506. The difference appears to be
small, but we still consider it significant, because
these languages do not actually require agreement
for many grammatical features. Tagalog and Buryat
are the most distant languages that we test on (no
Philippine and Mongolic language is present in our
training data) and yet we observe our method being
at par with the baseline and even outperforming in
case of Tagalog. Breton and Welsh, on the other
hand, are an interesting test bed: Celtic languages
are to some degree outliers among Indo-European
languages (Borsley and Roberts, 2005), and we sus-
pect that as a result the parser performs generally
worse. Despite that, our approach has an ARM of
0.730 for Welsh gender agreement, as opposed to
the mere 0.615 that the baseline achieves.

Breton Buryat Faroese Tagalog Welsh
0

0.2

0.4

0.6

0.8

1

××× ×
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� Gender � Person � Number � Mood, � Tense

Figure 9: In most cases our framework (shaded bars)
extracts a good first-pass specification for true zero-
shot settings. Solid bars indicate the baseline.

6 Related Work

Bender et al. (2014) use interlinear glossed text
(IGT) to extract lexical entities and morphological
rules for an endangered language. They experiment
with different systems which individually extract
lemmas, lexical rules, word order and the case sys-
tem, some of which use hand-specified rules. How-
ell et al. (2017) extend this to work to predict case
system on additional languages. Zamaraeva (2016)
also infer morphotactics from IGT using k-means
clustering. To the best of our knowledge, our work
is the first to propose a framework to extract first-
pass grammatical agreement rules directly from
raw text in a statistically-informed objective way.
A parallel line of work (Hellan, 2010) extracts a
construction profile of a language by having tem-
plates that define how sentences are constructed.

7 Future Work

While we have demonstrated that our approach
is effective in extracting a first-pass set of agree-
ment rules directly from raw text, it focuses only
on agreement between a pair of words and hence
might fail to capture more complex phenomena
that require broader context or operate at the phrase
level. Consider this simple English example: “John
and Mary love their dog”. Under both UD and SUD
formalisms, the coordinating conjunction “and" is
a dependent, hence the verb will not agree with
either of the (singular) nouns (“John" or “Mary").
Also, deciding agreement based on only POS tags
is insufficient to capture all phenomena that may in-
fluence agreement for e.g. mass nouns such as ‘rice’
do not follow the standard number agreement rules
in English. We leave a more expressive model and
evaluation on more languages as future work. We
also plan to expand our methodology for extract-
ing grammar rules from raw text to other aspects
of morphosyntax, such as argument structure and
word order phenomena.
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A Appendix

A.1 Decision Tree Hyperparameters
We perform a grid search over the following hyper-
parameters of the decision tree:

• criterion = [gini, entropy]

• max depth = [6,15]

• min impurity decrease = 1e−3

The best parameters are selected based on the vali-
dation set performance. For some treebanks which
have no validation set we use the default cross-
validation provided by sklearn (Buitinck et al.,
2013). Average model runtime for a treebanks is
5-10mins depending on the size of the treebank.

A.2 Dataset Statistics
For the true low-resource experiments, the dataset
details are in Table 2.

LANGUAGE TRAIN / TEST

Breton-KEB 30000 / 888
Buryat-BXR 10000 / 908
Faroese-OFT 50000/ 1208
Tagalog-TRG 30000 / 55
Welsh-CCG 30000 / 956

Table 2: Dataset statistics. Training data is obtained by
parsing the Liepzig corpora (Goldhahn et al., 2012) and
test data is obtained from the respective treebank. Each
cell denotes the number of sentences in train/test.

A.3 Evaluation
A.4 Annotation Interface for Expert

Evaluation
In Figure 10, we show the annotation interface used
for verifying Gender agreement rules in Catalan.
For each triple, we display 10 randomly selected
examples from the training portion of the treebank.

A.5 Low-resource Experiment Results
For the simulation experiments, the dataset details
are in Table 3.

A.5.1 Udify (Kondratyuk and Straka, 2019)
Model Details

We used the Udify model for automatically an-
notating the raw text with part-of-speech (POS),
dependency links and morphological features. For
each of the simulation experiment we report the
udify parsing performance on the test data in

Table 4. We used the same hyperparameters for
training with a related languages as specified by
the authors.11. In the configuration file, we only
change the parameters warmup steps= 100
and start-step= 100, as recommended by the
authors for low-resource languages.

A.5.2 Results and Discussion
For each language and feature, we plot the ARM
score with and without transfer learning in Fig-
ure 12-14. Similar to our findings for Gender in
Figure 5, we find that cross-lingual transfer leads
to a better score across all languages in the zero-
shot setting. As we increase the number of gold-
standard sentences, the quality of extracted rules
improve. Although, for Belarusian we observe the
opposite trend for Person agreement. On closer
inspection we find that it is because person ap-
plies only to non-past finite verb forms (VERB and
AUX) as an inflectional feature and to pronouns
(PRON) as a lexical feature which means that in
many cases person is not explicitly marked, even
though it implicitly exists 12.

A.6 Experiments with Gold-Standard Data

We present the ARM scores for all treebanks and
features in Tables 5-11. We also report the valida-
tion results in the same tables for our best setting
which uses the Statistical Threshold. In Section
2.2, we proposed using two types of thresholds for
retaining the high probability agreement rules. In
order to compare which threshold is the best for all
treebanks, we manually inspect some of the learnt
decision trees. We find that for the trees learnt from
the hard threshold often over-fit on the training
data causing to produce leaves with very few exam-
ples. In Figure 15 we compare the trees constructed
for number agreement with the two thresholds for
Marathi. One reason why Statistical-Threshold per-
forms better for low-resource languages is because
there are more leaves with fewer samples overall
causing the Hard Threshold to have more false pos-
itives. Whereas the Statistical Threshold uses effect
size with the significance test which takes into ac-
count the sample size within a leaf leading to better
leaves. Therefore, we choose to use Statistical-
Threshold for all our simulation experiments.

In Figure 11, we report that (avg.) number of
leaves in the decision trees grouped by language

11https://github.com/Hyperparticle/
udify

12https://universaldependencies.org/be/

https://github.com/Hyperparticle/udify
https://github.com/Hyperparticle/udify
https://universaldependencies.org/be/
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Figure 10: Annotation interface for evaluating Gender agreement in Catalan.

LANGUAGE TRAIN/DEV/TEST TRANSFER LANGUAGE

Spanish-GSD 14187 / 1400/ 426 Portuguese-Bosque
Greek-GDT 1662 / 403 / 456 Ancient Greek-PROIEL
Belarusian-HSE 319 / 65/ 253 Ukrainian-IU
Lithuanian-ALKSNIS 2341 / 617 / 684 Latvian-LVTB

Table 3: Dataset statistics. Train/Dev/Test denote the number of sentences in the respective treebank used for the
target language.

family. Overall, Gender and Case tend to have
more complex trees. For Case, it is probably be-
cause languages have more number of cases mak-
ing it harder for the decision tree to model them.

A.7 SUD treebanks
Figure 16 presents a comparison of UD and SUD-
style trees for the German sentence, “Ich werde
lange Bücher lesen.". The SUD tree has the func-
tion word ‘werde’ as the syntactic head to the con-
tent word ‘lesen’.
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LANGUAGE #TRAINING SETTING
W/O TRANSFER +TRANSFER

Greek 0 - upos:0.661, ufeats:0.392, uas:0.632, las :0.465
50 upos:0.507, ufeats:0.330, uas:0.309, las:0.203 upos:0.877, ufeats:0.631, uas:0.724, las:0.653
100 upos:0.915, ufeats:0.664, uas: 0.755, las: 0.691 upos: 0.906, ufeats: 0.719, uas: 0.758, las: 0.703
500 upos: 0.970, ufeats: 0.891, uas: 0.891, las: 0.866 upos: 0.954, ufeats: 0.860, uas: 0.849, las: 0.817

Spanish 0 - upos: 0.922, ufeats: 0.764, uas: 0.855, las: 0.776
50 upos: 0.529, ufeats: 0.463, uas: 0.289, las: 0.152 upos: 0.913, ufeats: 0.792, , uas: 0.844, las: 0.767
100 upos: 0.920, ufeats: 0.832, uas: 0.755, las: 0.690 upos: 0.916, ufeats: 0.840, uas: 0.849, las: 0.784
500 upos: 0.952, ufeats: 0.919, uas: 0.860, las: 0.820 upos: 0.949, ufeats: 0.889, uas: 0.859, las: 0.822

Belarusian 0 - upos: 0.941, ufeats: 0.520, uas: 0.863, las: 0.797
50 upos: 0.570, ufeats: 0.323, uas: 0.217, las: 0.141 upos: 0.952, ufeats: 0.726, uas: 0.763, las: 0.727
100 upos: 0.919, ufeats: 0.446, uas: 0.521, las: 0.482 upos: 0.961, ufeats: 0.777, uas: 0.854, las: 0.800

Lithuanian 0 - upos: 0.869, ufeats: 0.528, uas: 0.752, las: 0.610
50 upos: 0.566, ufeats: 0.371, uas: 0.346, las: 0.211 upos: 0.874, ufeats: 0.5841, uas: 0.757, las: 0.623
100 upos: 0.813, ufeats: 0.453, uas: 0.551, las: 0.421 upos: 0.883, ufeats: 0.637, uas: 0.761, las: 0.659
500 upos: 0.925, ufeats: 0.744, uas: 0.757, las: 0.697 upos: 0.912, ufeats: 0.747, uas: 0.779, las: 0.714

Table 4: udify model performance on the test data for each low-resource setting. The scores are averaged across
five runs of each setting.
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Figure 12: Comparing the (avg.) ARM score for Gender agreement with and without cross-lingual transfer
learning (transfer language in parenthesis). Note: the higher the ARM the better.
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Figure 13: Comparing the (avg.) ARM score for Person agreement with and without cross-lingual transfer
learning (transfer language in parenthesis). Note: the higher the ARM the better.
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Figure 14: Comparing the (avg.) ARM score for Case agreement with and without cross-lingual transfer learning
(transfer language in parenthesis). Note: the higher the ARM the better. For Spanish, there was < 10 data points
with Case annotated hence we do not report results for it.
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Figure 15: Comparing the learnt trees for Number agreement extracted using (a) Hard Threshold and (b) Statistical
Threshold. Hard Threshold overfits on the training data resulting in leaves with very few samples.
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(a) (b)

Figure 16: Comparing the UD (a) tree with the SUD (b) tree for the German sentence “Ich werde lange Bücher
lesen.".
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TREEBANK FEATURE STATISTICAL HARD BASELINE DEV

ru-gsd Gender 0.678 - 0.51 0.623
ru-gsd Person 0.125 0.875 0.125 0.286
ru-gsd Number 0.628 0.512 0.384 0.62
ru-gsd Tense 0.667 0.667 0.667 0.571
ru-gsd Mood 0.0 1.0 0.0 0.1
ru-gsd Case 0.649 0.614 0.395 0.537
id-gsd Number 0.047 0.961 0.047 0.045
it-isdt Gender 0.816 0.816 0.289 0.738
it-isdt Person 0.304 0.87 0.304 0.619
it-isdt Number 0.615 0.603 0.41 0.588
it-isdt Tense 0.765 0.765 0.647 0.611
it-isdt Mood 0.25 0.75 0.25 0.273
la-proiel Gender 0.538 0.568 0.636 0.496
la-proiel Person 0.56 0.6 0.54 0.653
la-proiel Number 0.648 0.574 0.452 0.553
la-proiel Tense 0.818 0.879 0.879 0.824
la-proiel Mood 0.6 0.52 0.44 0.667
la-proiel Case 0.759 0.782 0.466 0.691
ro-nonstandard Gender 0.64 0.57 0.407 0.75
ro-nonstandard Person 0.636 0.606 0.606 0.683
ro-nonstandard Number 0.626 0.626 0.586 0.693
ro-nonstandard Tense 0.452 0.839 0.645 0.467
ro-nonstandard Mood 0.676 0.765 0.676 0.4
ro-nonstandard Case 0.694 0.702 0.636 0.704
he-htb Gender 0.747 0.747 0.663 0.629
he-htb Person 0.737 0.789 0.789 0.769
he-htb Number 0.585 0.585 0.415 0.505
he-htb Tense 0.3 0.3 0.1 0.545
he-htb Case 0.5 0.5 0.0 0.5
no-bokmaal Gender 0.477 0.568 0.545 0.675
no-bokmaal Person 1.0 1.0 0.5 1.0
no-bokmaal Number 0.655 0.673 0.364 0.733
no-bokmaal Tense 0.55 0.55 0.55 0.55
no-bokmaal Mood 0.0 1.0 0.0 0.1
no-bokmaal Case 0.0 0.333 0.0 0.0
no-nynorsk Gender 0.464 0.536 0.536 0.514
no-nynorsk Person 0.0 0.0 0.0 0.667
no-nynorsk Number 0.702 0.702 0.511 0.596
no-nynorsk Tense 0.368 0.368 0.684 0.429
no-nynorsk Mood 0.0 1.0 0.0 0.048
fi-tdt Person 0.387 0.677 0.677 0.607
fi-tdt Number 0.502 0.493 0.511 0.559
fi-tdt Tense 0.474 0.368 0.474 0.5
fi-tdt Mood 0.75 0.75 0.75 0.471
fi-tdt Case 0.786 0.828 0.821 0.781
pl-lfg Gender 0.646 0.646 0.463 0.641
pl-lfg Person 0.688 0.688 0.562 0.714
pl-lfg Number 0.691 0.68 0.412 0.624
pl-lfg Tense 0.556 0.667 0.667 0.6
pl-lfg Mood 0.333 0.667 0.333 0.4
pl-lfg Case 0.744 0.667 0.41 0.617
grc-perseus Gender 0.62 0.718 0.563 0.699
grc-perseus Person 0.8 0.8 0.7 0.636
grc-perseus Number 0.531 0.63 0.605 0.537
grc-perseus Tense 0.889 1.0 1.0 0.778
grc-perseus Mood 0.833 0.833 0.667 0.429
grc-perseus Case 0.708 0.792 0.556 0.712
fi-ftb Person 0.56 0.76 0.6 0.63
fi-ftb Number 0.524 0.441 0.524 0.54
fi-ftb Tense 0.846 0.769 0.308 0.538
fi-ftb Mood 0.429 0.5 0.429 0.529
fi-ftb Case 0.724 0.848 0.781 0.748
wo-wtb Gender 0.5 0.5 0.5 0.0
wo-wtb Person 0.55 0.45 0.4 0.609
wo-wtb Number 0.486 0.6 0.6 0.632
wo-wtb Tense 0.5 0.625 0.375 0.625
wo-wtb Mood 0.143 0.143 0.143 0.364
en-partut Person 0.5 0.5 0.417 0.857
en-partut Number 0.559 0.559 0.441 0.676
en-partut Tense 0.667 0.733 0.667 0.583
en-partut Mood 0.091 0.818 0.091 0.1

Table 5: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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TREEBANK FEATURE STATISTICAL HARD BASELINE DEV

fr-ftb Gender 0.631 0.631 0.477 0.621
fr-ftb Person 0.14 0.86 0.14 0.171
fr-ftb Number 0.635 0.635 0.502 0.634
fr-ftb Tense 0.714 0.857 0.857 0.833
fr-ftb Mood 0.409 0.591 0.409 0.6
lv-lvtb Gender 0.727 0.734 0.461 0.677
lv-lvtb Person 0.5 0.632 0.579 0.583
lv-lvtb Number 0.688 0.688 0.429 0.706
lv-lvtb Tense 0.667 0.815 0.889 0.741
lv-lvtb Mood 0.476 0.619 0.476 0.333
lv-lvtb Case 0.719 0.734 0.489 0.772
ro-rrt Gender 0.583 0.583 0.51 0.591
ro-rrt Person 0.327 0.755 0.347 0.304
ro-rrt Number 0.535 0.585 0.528 0.56
ro-rrt Tense 0.421 0.684 0.789 0.526
ro-rrt Mood 0.931 1.0 0.448 0.867
ro-rrt Case 0.862 0.788 0.588 0.854
it-vit Gender 0.672 0.672 0.375 0.678
it-vit Person 0.625 0.625 0.792 0.667
it-vit Number 0.712 0.728 0.528 0.61
it-vit Tense 0.773 0.955 0.955 0.75
it-vit Mood 0.4 0.6 0.4 0.231
fr-partut Gender 0.579 0.632 0.421 0.615
fr-partut Person 0.818 0.727 0.273 0.75
fr-partut Number 0.771 0.542 0.292 0.542
fr-partut Tense 0.857 0.857 0.714 0.6
fr-partut Mood 0.333 0.667 0.333 0.167
en-ewt Person 0.812 0.812 0.25 0.85
en-ewt Number 0.357 0.643 0.357 0.304
en-ewt Tense 0.591 0.773 0.773 0.593
en-ewt Mood 0.4 0.733 0.4 0.333
ru-syntagrus Gender 0.697 0.747 0.624 0.673
ru-syntagrus Person 0.625 0.667 0.667 0.72
ru-syntagrus Number 0.591 0.661 0.562 0.576
ru-syntagrus Tense 0.727 0.818 0.818 0.667
ru-syntagrus Mood 0.4 0.8 0.44 0.407
ru-syntagrus Case 0.649 0.707 0.575 0.681
sv-talbanken Gender 0.719 0.719 0.438 0.643
sv-talbanken Number 0.659 0.634 0.463 0.571
sv-talbanken Tense 0.559 0.588 0.5 0.607
sv-talbanken Mood 0.048 0.952 0.048 0.056
sv-talbanken Case 0.189 0.623 0.189 0.143
olo-kkpp Person 0.286 0.571 0.286 -
olo-kkpp Number 0.667 0.692 0.667 -
olo-kkpp Tense 0.75 0.75 0.75 -
olo-kkpp Mood 0.0 0.75 0.0 -
olo-kkpp Case 0.7 0.7 0.7 -
cs-cac Gender 0.663 0.673 0.602 0.678
cs-cac Person 0.562 0.562 0.5 0.583
cs-cac Number 0.636 0.531 0.469 0.575
cs-cac Tense 0.467 0.667 0.6 0.333
cs-cac Mood 0.2 0.4 0.2 0.111
cs-cac Case 0.81 0.84 0.46 0.833
ur-udtb Gender 0.567 0.567 0.536 0.576
ur-udtb Person 0.152 0.946 0.065 0.195
ur-udtb Number 0.485 0.583 0.485 0.496
ur-udtb Tense 0.333 0.5 0.5 0.667
ur-udtb Mood 0.714 0.714 0.143 0.714
ur-udtb Case 0.685 0.696 0.696 0.7
et-ewt Person 0.609 0.696 0.609 -
et-ewt Number 0.551 0.551 0.48 -
et-ewt Tense 0.409 0.682 0.636 -
et-ewt Mood 0.533 0.4 0.533 -
et-ewt Case 0.7 0.754 0.657 -
fro-srcmf Tense 0.5 1.0 0.5 1.0
es-gsd Gender 0.718 0.718 0.366 0.736
es-gsd Person 0.591 0.545 0.591 0.355
es-gsd Number 0.644 0.644 0.424 0.567
es-gsd Tense 0.529 0.824 0.824 0.409
es-gsd Mood 0.533 0.467 0.533 0.474
es-gsd Case 0.0 1.0 0.0 0.0

Table 6: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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TREEBANK FEATURE STATISTICAL HARD BASELINE DEV

sl-ssj Gender 0.818 0.8 0.527 0.772
sl-ssj Person 0.667 0.722 0.722 0.706
sl-ssj Number 0.683 0.683 0.564 0.712
sl-ssj Tense 0.333 0.583 0.333 0.364
sl-ssj Mood 0.5 0.75 0.5 0.667
sl-ssj Case 0.607 0.721 0.557 0.61
cs-pdt Gender 0.564 0.788 0.75 0.58
cs-pdt Person 0.591 0.705 0.614 0.541
cs-pdt Number 0.477 0.64 0.629 0.481
cs-pdt Tense 0.667 0.786 0.786 0.658
cs-pdt Mood 0.538 0.538 0.538 0.48
cs-pdt Case 0.646 0.675 0.545 0.633
hsb-ufal Gender 0.857 0.714 0.786 -
hsb-ufal Number 0.692 0.538 0.692 -
hsb-ufal Tense 0.667 0.667 0.667 -
hsb-ufal Case 1.0 0.846 0.462 -
ga-idt Gender 0.64 0.76 0.78 0.647
ga-idt Person 0.625 0.875 0.5 1.0
ga-idt Number 0.468 0.571 0.468 0.446
ga-idt Tense 0.714 0.571 0.429 0.5
ga-idt Mood 0.833 0.833 0.667 0.714
ga-idt Case 0.69 0.724 0.724 0.667
gl-treegal Gender 0.722 0.685 0.333 -
gl-treegal Person 0.522 0.565 0.522 -
gl-treegal Number 0.68 0.546 0.361 -
gl-treegal Tense 0.462 0.538 0.692 -
gl-treegal Mood 0.462 0.692 0.462 -
fa-seraji Person 0.667 0.667 0.381 0.842
fa-seraji Number 0.514 0.514 0.514 0.556
fa-seraji Tense 0.455 0.545 0.636 0.545
fa-seraji Mood 0.333 0.667 0.333 0.0
et-edt Person 0.613 0.613 0.71 0.714
et-edt Number 0.648 0.644 0.539 0.676
et-edt Tense 0.579 0.632 0.763 0.537
et-edt Mood 0.524 0.571 0.571 0.667
et-edt Case 0.565 0.756 0.786 0.614
la-perseus Gender 0.692 0.585 0.538 -
la-perseus Person 0.5 0.667 0.833 -
la-perseus Number 0.544 0.662 0.603 -
la-perseus Tense 0.75 1.0 1.0 -
la-perseus Mood 0.667 0.667 0.833 -
la-perseus Case 0.717 0.66 0.528 -
ug-udt Person 0.526 0.526 0.579 0.611
ug-udt Number 0.767 0.6 0.533 0.697
ug-udt Tense 0.625 0.75 0.5 0.778
ug-udt Mood 0.692 0.923 0.769 0.833
ug-udt Case 0.683 0.683 0.683 0.671
es-ancora Gender 0.754 0.754 0.431 0.759
es-ancora Person 0.429 0.429 0.429 0.526
es-ancora Number 0.664 0.664 0.539 0.651
es-ancora Tense 0.625 0.833 0.833 0.63
es-ancora Mood 0.652 0.348 0.652 0.5
de-hdt Gender 0.541 0.607 0.607 0.603
de-hdt Person 0.071 0.929 0.071 0.085
de-hdt Number 0.561 0.595 0.59 0.533
de-hdt Tense 0.8 0.88 0.88 0.692
de-hdt Mood 0.0 1.0 0.0 0.077
de-hdt Case 0.738 0.836 0.574 0.7
kk-ktb Person 0.636 0.545 0.636 -
kk-ktb Number 0.538 0.615 0.538 -
kk-ktb Mood 1.0 1.0 0.6 -
de-gsd Gender 0.699 0.781 0.397 0.641
de-gsd Person 0.567 0.433 0.567 0.667
de-gsd Number 0.638 0.638 0.35 0.619
de-gsd Tense 0.455 0.636 0.591 0.526
de-gsd Mood 0.5 0.455 0.455 0.421
de-gsd Case 0.55 0.588 0.362 0.603
nl-alpino Gender 0.667 0.8 0.8 0.562
nl-alpino Number 0.548 0.548 0.565 0.625
nl-alpino Tense 0.562 0.5 0.375 0.529
af-afribooms Number 0.6 0.667 0.533 0.667
af-afribooms Tense 0.842 0.842 0.842 0.588
af-afribooms Case 0.0 1.0 0.0 0.0

Table 7: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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TREEBANK FEATURE STATISTICAL HARD BASELINE DEV

uk-iu Gender 0.701 0.693 0.559 0.771
uk-iu Person 0.7 0.5 0.35 0.9
uk-iu Number 0.647 0.659 0.479 0.656
uk-iu Tense 0.476 0.476 0.571 0.615
uk-iu Mood 0.318 0.409 0.318 0.357
uk-iu Case 0.741 0.741 0.504 0.732
cs-cltt Gender 0.857 0.929 0.75 0.806
cs-cltt Number 0.646 0.688 0.479 0.576
cs-cltt Tense 0.167 0.5 0.167 0.143
cs-cltt Mood 0.0 1.0 0.0 0.0
cs-cltt Case 0.697 0.758 0.636 0.658
cop-scriptorium Gender 0.714 0.857 0.143 0.8
cop-scriptorium Number 0.4 0.6 0.2 0.714
ru-taiga Gender 0.648 0.724 0.638 0.667
ru-taiga Person 0.667 0.75 0.583 0.786
ru-taiga Number 0.662 0.601 0.459 0.646
ru-taiga Tense 0.538 0.615 0.615 0.583
ru-taiga Mood 0.611 0.667 0.611 0.5
ru-taiga Case 0.557 0.696 0.633 0.593
hu-szeged Person 0.444 0.556 0.444 0.138
hu-szeged Number 0.396 0.64 0.396 0.434
hu-szeged Tense 0.6 0.8 0.8 0.769
hu-szeged Mood 0.714 0.714 0.714 0.5
sr-set Gender 0.803 0.817 0.479 0.622
sr-set Person 0.35 0.75 0.35 0.4
sr-set Number 0.64 0.64 0.509 0.615
sr-set Tense 0.474 0.684 0.684 0.444
sr-set Mood 0.286 0.714 0.286 0.2
sr-set Case 0.704 0.765 0.531 0.651
en-lines Person 0.625 0.688 0.562 0.789
en-lines Number 0.319 0.783 0.319 0.325
en-lines Tense 0.704 0.778 0.704 0.636
en-lines Mood 0.211 0.789 0.211 0.207
en-lines Case 0.778 0.778 0.444 0.833
sk-snk Gender 0.692 0.776 0.533 0.638
sk-snk Person 0.778 0.333 0.222 0.625
sk-snk Number 0.558 0.558 0.5 0.571
sk-snk Tense 0.667 0.556 0.444 0.8
sk-snk Mood 1.0 1.0 0.25 0.857
sk-snk Case 0.731 0.756 0.526 0.833
pl-pdb Gender 0.645 0.779 0.529 0.661
pl-pdb Person 0.556 0.778 0.704 0.72
pl-pdb Number 0.637 0.613 0.481 0.644
pl-pdb Tense 0.5 0.6 0.7 0.6
pl-pdb Mood 0.25 0.75 0.25 0.05
pl-pdb Case 0.72 0.748 0.514 0.679
la-ittb Gender 0.735 0.725 0.48 0.805
la-ittb Person 0.19 0.81 0.19 0.273
la-ittb Number 0.579 0.579 0.386 0.562
la-ittb Tense 0.5 0.6 0.6 0.414
la-ittb Mood 0.476 0.476 0.571 0.591
la-ittb Case 0.757 0.796 0.495 0.792

Table 8: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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TREEBANK FEATURE STATISTICAL HARD BASELINE DEV

da-ddt Gender 0.818 0.818 0.364 0.889
da-ddt Number 0.667 0.667 0.286 0.725
da-ddt Tense 0.737 0.737 0.842 0.562
da-ddt Mood 0.2 0.8 0.2 0.077
it-postwita Gender 0.702 0.702 0.362 0.674
it-postwita Person 0.595 0.676 0.73 0.595
it-postwita Number 0.744 0.744 0.558 0.642
it-postwita Tense 0.481 0.704 0.704 0.607
it-postwita Mood 0.792 0.792 0.792 0.556
eu-bdt Number 0.508 0.6 0.415 0.473
eu-bdt Mood 0.421 0.737 0.421 0.529
eu-bdt Case 0.795 0.803 0.726 0.776
sl-sst Gender 0.724 0.618 0.513 -
sl-sst Person 0.688 0.812 0.719 -
sl-sst Number 0.678 0.672 0.483 -
sl-sst Tense 0.48 0.76 0.48 -
sl-sst Mood 0.56 0.6 0.56 -
sl-sst Case 0.615 0.637 0.549 -
be-hse Gender 0.596 0.553 0.404 0.692
be-hse Person 0.5 0.5 0.0 0.75
be-hse Number 0.646 0.646 0.431 0.596
be-hse Tense 0.429 0.429 0.571 0.333
be-hse Mood 0.286 0.286 0.286 0.2
be-hse Case 0.725 0.55 0.45 0.733
fr-sequoia Gender 0.8 0.771 0.371 0.647
fr-sequoia Person 0.667 0.667 0.4 0.857
fr-sequoia Number 0.56 0.62 0.45 0.68
fr-sequoia Tense 0.529 0.765 0.765 0.684
fr-sequoia Mood 0.286 0.714 0.286 0.077
sme-giella Number 0.653 0.653 0.561 -
sme-giella Tense 0.455 0.545 0.455 -
sme-giella Mood 0.214 0.571 0.214 -
sme-giella Case 0.741 0.704 0.667 -
el-gdt Gender 0.638 0.745 0.447 0.744
el-gdt Person 0.667 0.667 0.458 0.667
el-gdt Number 0.627 0.7 0.427 0.615
el-gdt Tense 0.6 1.0 1.0 0.462
el-gdt Mood 0.0 1.0 0.0 0.0
el-gdt Case 0.809 0.809 0.319 0.814
orv-torot Gender 0.655 0.669 0.547 0.679
orv-torot Person 0.6 0.6 0.6 0.594
orv-torot Number 0.621 0.621 0.581 0.618
orv-torot Tense 0.731 0.731 0.769 0.72
orv-torot Mood 0.316 0.789 0.421 0.176
orv-torot Case 0.709 0.775 0.609 0.691
sv-lines Gender 0.538 0.538 0.308 0.64
sv-lines Number 0.643 0.643 0.452 0.529
sv-lines Tense 0.429 0.476 0.429 0.655
sv-lines Mood 0.231 0.769 0.231 0.161
sv-lines Case 0.583 0.583 0.25 0.51
ta-ttb Gender 0.682 0.682 0.659 0.5
ta-ttb Person 0.091 0.955 0.091 0.167
ta-ttb Number 0.523 0.591 0.545 0.533
ta-ttb Tense 0.625 0.5 0.625 0.667
ta-ttb Mood 0.5 1.0 0.5 0.5
ta-ttb Case 0.846 0.846 0.692 1.0
it-partut Gender 0.786 0.786 0.25 0.846
it-partut Person 0.833 0.917 0.25 0.615
it-partut Number 0.714 0.508 0.286 0.576
it-partut Tense 0.9 0.9 0.6 0.583
it-partut Mood 0.2 0.4 0.2 0.167
ar-padt Gender 0.592 0.592 0.549 0.712
ar-padt Person 0.0 0.833 0.0 0.263
ar-padt Number 0.512 0.643 0.512 0.593
ar-padt Mood 0.571 0.571 0.571 0.6
ar-padt Case 0.871 0.871 0.753 0.824
bg-btb Gender 0.638 0.66 0.404 0.585
bg-btb Person 0.625 0.625 0.625 0.625
bg-btb Number 0.639 0.631 0.533 0.679
bg-btb Tense 0.6 0.6 0.6 0.579
bg-btb Mood 0.056 0.944 0.056 0.176

Table 9: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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pt-bosque Gender 0.656 0.721 0.41 0.792
pt-bosque Person 0.25 0.75 0.25 0.455
pt-bosque Number 0.669 0.669 0.378 0.698
pt-bosque Tense 0.5 0.438 0.438 0.692
pt-bosque Mood 0.375 0.5 0.375 0.429
lt-alksnis Gender 0.711 0.711 - 0.671
lt-alksnis Person 0.667 0.8 0.667 0.571
lt-alksnis Number 0.625 0.625 0.531 0.595
lt-alksnis Tense 0.667 0.667 0.667 0.6
lt-alksnis Mood 0.667 0.333 0.667 0.375
lt-alksnis Case 0.826 0.826 0.496 0.798
ar-nyuad Gender 0.606 0.718 0.718 0.536
ar-nyuad Person 0.469 0.562 0.469 0.343
ar-nyuad Number 0.502 0.554 0.502 0.468
ar-nyuad Mood 0.438 0.562 0.438 0.5
ar-nyuad Case 0.627 0.747 0.747 0.551
ca-ancora Gender 0.804 0.786 0.464 0.77
ca-ancora Person 0.389 0.611 0.389 0.219
ca-ancora Number 0.652 0.652 0.511 0.616
ca-ancora Tense 0.5 0.731 0.692 0.56
ca-ancora Mood 0.32 0.68 0.32 0.348
grc-proiel Gender 0.605 0.516 0.535 0.588
grc-proiel Person 0.543 0.543 0.6 0.737
grc-proiel Number 0.533 0.61 0.538 0.585
grc-proiel Tense 0.643 0.786 0.786 0.774
grc-proiel Mood 0.529 0.529 0.529 0.65
grc-proiel Case 0.809 0.854 0.51 0.813
it-twittiro Gender 0.808 0.808 0.385 0.65
it-twittiro Person 0.591 0.318 0.682 0.579
it-twittiro Number 0.568 0.568 0.419 0.634
it-twittiro Tense 0.25 0.75 0.75 0.462
it-twittiro Mood 0.5 0.5 0.5 0.364
mr-ufal Gender 0.609 0.652 0.565 0.52
mr-ufal Person 0.727 0.727 0.364 0.889
mr-ufal Number 0.394 0.794 0.242 0.514
mr-ufal Case 0.583 0.583 0.417 0.857
tr-imst Person 0.359 0.818 0.359 0.342
tr-imst Number 0.47 0.536 0.47 0.485
tr-imst Tense 0.762 0.762 0.81 0.68
tr-imst Mood 0.714 0.714 0.714 0.68
tr-imst Case 0.717 0.804 0.804 0.678
bxr-bdt Case 0.818 0.545 0.818 -
hi-hdtb Gender 0.586 0.617 0.5 0.631
hi-hdtb Person 0.045 0.955 0.045 0.052
hi-hdtb Number 0.416 0.615 0.416 0.455
hi-hdtb Tense 0.333 0.333 0.333 0.2
hi-hdtb Mood 1.0 1.0 0.333 0.667
hi-hdtb Case 0.654 0.709 0.63 0.62
hr-set Gender 0.725 0.717 0.525 0.643
hr-set Person 0.769 0.769 0.577 0.692
hr-set Number 0.675 0.675 0.51 0.658
hr-set Tense 0.429 0.714 0.714 0.542
hr-set Mood 0.412 0.588 0.412 0.158
hr-set Case 0.669 0.725 0.577 0.659
kmr-mg Gender 1.0 0.818 1.0 -
kmr-mg Number 0.783 0.739 0.783 -
kmr-mg Case 0.909 0.727 0.909 -
nl-lassysmall Gender 0.85 0.85 0.9 0.81
nl-lassysmall Number 0.646 0.646 0.523 0.646
nl-lassysmall Tense 0.6 0.6 0.4 0.364
fr-gsd Gender 0.727 0.727 0.485 0.807
fr-gsd Person 0.375 0.719 0.375 0.312
fr-gsd Number 0.624 0.624 0.441 0.593
fr-gsd Tense 0.706 0.706 0.765 0.81
fr-gsd Mood 0.273 0.727 0.273 0.25

Table 10: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.
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got-proiel Gender 0.559 0.595 0.559 0.658
got-proiel Person 0.571 0.771 0.657 0.614
got-proiel Number 0.64 0.68 0.503 0.591
got-proiel Tense 0.714 0.714 0.714 0.586
got-proiel Mood 0.722 0.722 0.611 0.682
got-proiel Case 0.82 0.784 0.505 0.803
en-gum Person 0.167 0.917 0.167 0.176
en-gum Number 0.397 0.767 0.397 0.259
en-gum Tense 0.579 0.684 0.579 0.625
en-gum Mood 0.176 0.824 0.176 0.05
lzh-kyoto Mood 0.0 1.0 0.0 0.0
lzh-kyoto Case 0.0 1.0 0.0 0.125
cs-fictree Gender 0.717 0.683 0.4 0.691
cs-fictree Person 0.667 0.905 0.81 0.625
cs-fictree Number 0.649 0.649 0.364 0.673
cs-fictree Tense 0.833 0.889 0.778 0.565
cs-fictree Mood 0.455 0.455 0.545 0.643
cs-fictree Case 0.697 0.652 0.461 0.738
hy-armtdp Person 0.444 0.593 0.593 0.692
hy-armtdp Number 0.592 0.612 0.561 0.676
hy-armtdp Tense 0.824 0.765 0.529 0.733
hy-armtdp Mood 0.789 0.789 0.737 0.8
hy-armtdp Case 0.857 0.857 0.821 0.772
gd-arcosg Gender 0.615 0.615 0.615 0.609
gd-arcosg Person 0.6 0.8 0.6 0.75
gd-arcosg Number 0.562 0.562 0.562 0.588
gd-arcosg Tense 0.833 0.333 0.5 0.8
gd-arcosg Mood 0.667 0.667 0.333 0.714
gd-arcosg Case 0.85 0.85 0.5 0.833
lt-hse Gender 0.658 0.553 0.474 0.6
lt-hse Person 0.778 0.444 0.444 0.8
lt-hse Number 0.642 0.597 0.478 0.667
lt-hse Tense 0.714 0.857 0.857 0.889
lt-hse Mood 0.2 0.6 0.2 0.429
lt-hse Case 0.564 0.615 0.641 0.816
no-nynorsklia Gender 0.727 0.697 0.455 0.667
no-nynorsklia Person 1.0 1.0 0.0 1.0
no-nynorsklia Number 0.743 0.743 0.343 0.649
no-nynorsklia Tense 0.435 0.826 0.783 0.435
no-nynorsklia Mood 0.0 1.0 0.0 0.043
no-nynorsklia Case 0.5 1.0 0.5 0.0
cu-proiel Gender 0.61 0.66 0.54 0.706
cu-proiel Person 0.667 0.667 0.528 0.579
cu-proiel Number 0.672 0.579 0.503 0.641
cu-proiel Tense 0.567 0.533 0.6 0.655
cu-proiel Mood 0.348 0.652 0.348 0.364
cu-proiel Case 0.818 0.818 0.473 0.793

Table 11: Comparing the ARM scores for SUD treebanks across both Statistical and Hard thresholding.


