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Abstract

We present COD3S, a novel method for gen-
erating semantically diverse sentences using
neural sequence-to-sequence (seq2seq) mod-
els. Conditioned on an input, seq2seq mod-
els typically produce semantically and syntac-
tically homogeneous sets of sentences and thus
perform poorly on one-to-many sequence gen-
eration tasks. Our two-stage approach im-
proves output diversity by conditioning gen-
eration on locality-sensitive hash (LSH)-based
semantic sentence codes whose Hamming dis-
tances highly correlate with human judgments
of semantic textual similarity. Though it is gen-
erally applicable, we apply COD3S to causal
generation, the task of predicting a proposi-
tion’s plausible causes or effects. We demon-
strate through automatic and human evalua-
tion that responses produced using our method
exhibit improved diversity without degrading
task performance.

1 Introduction
Open-ended sequence generation problems such

as dialog, story generation, image captioning, or
causal generation pose a practical challenge to neu-
ral sequence-to-sequence (seq2seq) models, as they
necessitate a diverse set of predicted outputs. The
typical sampling method for seq2seq decoding is
beam search, which produces a set of candidate se-
quences that generally have high syntactic, lexical,
and semantic overlap.

Recent methods for improved diversity genera-
tion make slight modifications to the neural archi-
tecture or beam search algorithm (Xu et al., 2018;
Li et al., 2016b), or impose lexical constraints
during decoding (Post and Vilar, 2018; Hu et al.,
2019a). Shu et al. (2019) propose the use of sen-
tence codes, a technique in which generation is
conditioned on a discrete code that aims to induce
diversity in syntax or semantics. While their ap-
proach is effective for syntactic codes, it is less so
for semantics.

Figure 1: Overview of the COD3S method. In training
(a), the target side is prefixed with a discrete signature
computed using locality-sensitive hashing (LSH) of the
target’s SBERT embedding. At inference (b), a beam
search is conditioned on each of k decoded signatures.

In this work, we introduce an improved method
for diverse generation conditioned on inferred sen-
tence codes that explicitly capture meaningful se-
mantic differences. We use the contextual sen-
tence embeddings from Sentence-BERT (SBERT;
Reimers and Gurevych, 2019), the cosine distances
between which correlate highly with human scalar
judgments of semantic textual similarity (STS). We
construct discrete codes from these embeddings us-
ing locality-sensitive hashing (Indyk and Motwani,
1998; Charikar, 2002), producing short binary sig-
natures whose Hamming distances well-preserves
the cosine distances between inputs.

Our method induces a bitwise hierarchy of se-
mantic bins whose similarities in signature imply
similarities in semantics. Conditioning generation
on a signature as a target-side prefix indicates the
bin into which the generated sequence falls. We
implement a two-stage decoding process that (1) in-
fers the most relevant signatures and (2) decodes se-
quences via separate prefix-conditioned beams. We
term our method COD3S: COnstrained Decoding
with Semantic Sentence Signatures.
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We demonstrate the effectiveness of COD3S in
the context of causal sequence generation (Li et al.,
2020) through BLEU- and cosine-based diversity
measures as well as human evaluation.

2 Related Work

We draw inspiration from recent work in multi-
lingual machine translation (MT) (Ha et al., 2016)
and domain adaptation (Chu and Dabre, 2019) in
which a language code (e.g. en, de) is prepended
to the target to guide generation. Our method for
encoding sentence diversity is closely related to
MT work by Shu et al. (2019), who condition gen-
eration on prefixed sentence codes. They improve
the syntactic diversity of sampled translations us-
ing codes produced from improved semantic hash-
ing (Kaiser and Bengio, 2018) with a TreeLSTM-
based autoencoder. Their experiments with seman-
tic coding via clustering of BERT (Devlin et al.,
2019) and FastText (Bojanowski et al., 2017) em-
beddings lead to negligible or negative effects. Out-
side of MT, Keskar et al. (2019) in a similar vein
condition on manually categorized “control codes”
that specify style and content, and Mallinson and
Lapata (2019) condition on annotated syntactic or
lexical change markers that can be learnt from data.
We refer readers to Ippolito et al. (2019) for an
overview of diverse decoding methods. Few to
our knowledge explicitly and effectively encode
open-domain semantic diversity.

Text-based causal knowledge acquisition is a
well-studied challenge in NLP (Radinsky et al.,
2012). Recent efforts have investigated open ended
causal generation using neural models (Bosselut
et al., 2019; Li et al., 2020). The latter train a con-
ditional generation model to propose cause or ef-
fect statements for a given proposition. The model
is trained on the co-released corpus CausalBank,
which comprises causal statements harvested from
English Common Crawl (Buck et al., 2014).

Applications of LSH (Indyk and Motwani, 1998;
Charikar, 2002) in NLP began with Ravichandran
et al. (2005) who demonstrated its use in fast lexical
similarity comparison; later, Van Durme and Lall
(2010) showed such hashing could be performed
online. More similar to our use case, Petrović et al.
(2010) binned tweets via LSH to enable fast first
story detection. Most related to ours is work by
Guu et al. (2018), who describe a generative sen-
tence model that edits a ‘prototype’ sentence using
lexically similar ones retrieved via LSH.

3 COD3S Approach

Our signature construction method, depicted in
Figure 1(a), produces a sequence of bits that collec-
tively imply a highly specific bin of sentences with
similar semantic meaning. This is accomplished by
encoding sentences into high-dimensional vectors
that encode degrees of semantic difference and then
discretizing the vectors in a way that approximately
preserves the difference.

Semantic Embedding Model We embed a sen-
tence using the contextual encoder Sentence-BERT
(SBERT; Reimers and Gurevych, 2019), a siamese
network trained to produce embeddings whose co-
sine similarity approximates the semantic textual
similarity (STS) of the underlying sentences. We
select this single sentence encoder over other pop-
ular encoders, e.g. BERT, which best encode con-
catenations of pairs of sentences and therefore do
not produce individual embeddings that encode
semantic difference retrievable under vector simi-
larity metrics (Reimers and Gurevych, 2019; Shu
et al., 2019). The cosine similarity of embeddings
from SRoBERTa-L, the instance of SBERT that we
use as our COD3S encoder, has a Spearman ρ cor-
relation of .863 with human STS judgements from
STSbenchmark (Cer et al., 2017).1 We provide a
list of cosine/STS correlations using other models
in Appendix E.2

Discretization via LSH Locality-sensitive hash-
ing (LSH; Indyk and Motwani, 1998) maps high-
dimensional vectors into low-dimensional sketches
for quick and accurate similarity comparison un-
der measures such as cosine or Euclidean dis-
tance. We use the popular variant by Charikar
(2002), which computes a discrete b-bit signature
LSH(~v) = [LSH1(~v), . . .LSHb(~v)]. Appendix A pro-
vides an overview of this approach. The Hamming
distance between two LSH signatures approximates
the cosine distance of the underyling vectors:

cos(~u,~v) =
~u ·~v
|~u||~v|

≈ cos
(

π

b

b

∑
i=1
1{LSHi(~u) 6= LSHi(~v)}

)

This approximation degrades with coarser-grained
signatures, as shown by the drop in STS correlation
in Table 1 (right columns) for LSH with fewer bits.

1We use the released SRoBERTa instance that was fine-tuned
on natural language inference (NLI) and then STS.

2We refer readers to Reimers and Gurevych (2019) (Sec.4) for
a comprehensive overview using other STS datasets.

https://github.com/UKPLab/sentence-transformers
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Cosine b-Bit LSH Hamming Distance

1024D 256b 128b 32b 16b 8b

STS ρ .863 .845 .828 .742 .652 .549

Table 1: Correlation of SRoBERTa-L embedding co-
sine distance and LSH Hamming distance with STS
judgements from STSBenchmark.

A Hierarchy of Signatures Using LSH on
SBERT embeddings whose cosine similarity cor-
relates highly with STS induces a hierarchy of se-
mantic bins; the i+1th bit partitions each of a set
of i-bit bins in two. Bins whose signatures differ by
few bits have higher semantic overlap, and as the
bitwise distance between two signatures increases,
so does the difference in meaning of the underly-
ing sentences. Sentences that hash to the same
bin—particularly for longer signatures—have very
high SBERT cosine similarity and are thus likely
semantically homogeneous.

Diverse Decoding Using Signatures Given
source and target sentences x,y, we compute the
b-bit signature sy = LSH(SBERT(y)). We then train
a model to decode the concatenated sequence [sy y],
with the sy treated as a b-length sequence of in-
dividual 0/1 tokens. At inference time, we de-
compose the typical conditional decision problem
ŷ = argmaxy{log p(y | x)} into two steps:

ŝ = argmax
s
{log p(s | x)}; ŷ = argmax

y
{log p(y | x, ŝ)}

As previous work associates the strength of a causal
relationship with pointwise mutual information
(PMI) (Gordon et al., 2012), we modify our ob-
jective to maximize the MI between x and each of
s and y; we adapt the MMI-bidi objective from Li
et al. (2016a):

ŝ = argmax
s
{log p(s | x)+λs log p(x | s)} (1)

ŷ = argmax
y
{log p(y | x, ŝ)+λy log p(x | y)} (2)

As shown in Figure 1(b), we first decode the k-best
distinct sentence codes ŝ1, . . . ŝk as in Eq. 1. We
then perform k conditional inferences in Eq. 2;
we take the 1-best sentence from each to produce
ŷ1, . . . ŷk. For both signature and sentence decoding,
we follow Li et al. and sample an n-best list from
the forward score log p(s | x) (resp. log p(y | x, ŝ))
before re-ranking with the added λ-weighted back-
ward score.3 We approximate the forward scores
3We find effective values λs = 1000,λy = 0.3 for 16-bit

COD3S using qualitative examination of predictions.

using length-normalized beam search with beam
size 100 for signatures and 40 for sentences. While
log p(s | x) and log p(y | x,s) can be scored using a
single forward model, we find it beneficial to train
two, so that the first only learns to score signatures.

Hamming Distance Threshold As sentences
whose signatures differ by few bits show to have
highly similar semantics, we impose a thresh-
old heuristic for decoded signatures ŝ1, . . . , ŝk:
mini 6= j D(ŝi, ŝ j) > t, where D(·) is Hamming dis-
tance.4 We enforce this using a greedy algorithm
that considers higher-scoring signatures first, keep-
ing those that satisfy the threshold given the cur-
rently kept set and removing those that violate it.

Taken as a whole, our decoding approach aims
to generate the single highest-scoring applicable
response that falls in each of the N-best inferred
sufficiently different semantic bins. The threshold
parameter thus provides a way to effectively tune
the model to a desired level of semantic diversity.

4 Experiments
We apply COD3S to the task of open-ended

causal generation for free-form textual inputs as
considered by Li et al. (2020). Given an input state-
ment, the model must suggest a diverse set of possi-
ble causes or effects. We train models on sentence
pairs from Li et al.’s released dataset, CausalBank,
which is scraped from Common Crawl using tem-
platic causal patterns. Following their work, we use
10 million sentence pairs that match the patterns
“X, so Y” to train cause-to-effect models and “X
because Y” for effect-to-cause models.

We experiment with 16-bit LSH signatures of
SBERT embeddings.5 After prepending target-
side bit signatures, pairs are encoded with byte-
pair encoding (BPE; Sennrich et al., 2016) using
a vocabulary size of 10K. We train Transformer
models (Vaswani et al., 2017) using the FAIRSEQ

library (Ott et al., 2019). Appendix B provides
details for reproducibility.6

Evaluation We show that COD3S induces sensi-
ble inference of diverse but relevant semantic bins
and causal statements. Examples of generation
are shown in Table 3 and additionally Appendix C.
We quantitatively compare COD3S against the out-
4We find the threshold t = 2 best for 16-bit COD3S.
5Statistics describing the distribution of the 10M training tar-
gets into signature bins are given in Appendix E.

6Our code and pretrained models are available at https://
github.com/nweir127/COD3S

https://github.com/nweir127/COD3S
https://github.com/nweir127/COD3S
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COPA C→ E E→ C
3-Sets BL-1 / BL-2 / SB BL-1 / BL-2 / SB

Baselines
S2S 50.9 / 61.2 / .397 58.1 / 71.4 / .464
S2S + Sigs 46.7 / 58.5 / .323 50.7 / 65.3 / .326

Other Decoding Methods
DPC (Li et al.) 49.2 / 58.1 / .389 57.4 / 67.0 / .425
S2S-RS (Li et al.) 78.2 / 90.3 / .635 75.4 / 89.7 / .632
S2S-RS 83.6 / 95.7 / .735 78.5 / 91.3 / .639

Two-Step COD3S Inferences
Sig Sent
Beam Beam 79.1 / 93.2 / .618 70.6 / 84.8 / .625
Beam MMI 77.0 / 91.9 / .634 72.2 / 85.0 / .613
MMI MMI 73.6 / 87.9 / .608 72.0 / 85.3 / .586
MMI MMI-RS 84.2 / 97.1 / .657 76.6 / 89.4 / .617
− Ham Heur 81.1 / 93.9 / .620 70.4 / 84.2 / .508

Cos Threshold: 0 .1 .25 .5 .75

S2S 10.0 6.40 4.52 2.85 1.70
S2S + RS 10.0 9.99 9.86 7.93 3.47
COD3S +MMI +RS 10.0 9.89 9.44 6.55 2.54

Table 2: (Upper) Diversity metrics (BLEU-1 / BLEU-
2 / SBERT) over 3-best decoded outputs. (Lower)
Count of semantically distinct effect outputs out of 10,
with duplicates ruled out using SBERT cosine.

puts of regular seq2seq beam search, as well as of
lexically constrained decoding with disjunctive pos-
itive constraints (DPC) and random sample decod-
ing (S2S-RS) provided by Li et al.7 We included
in the comparison instances of COD3S with and
without MMI reranking, as well as with random
sampling in place of beam search.

Automatic Diversity Metrics We use the for-
mula of Shu et al. (2019), which takes the pairwise
average of dissimilarity score ∆ over output set Y .

Diversity(Y ) =
1

|Y |(|Y |−1) ∑
y,y′∈Y ; y 6=y′

∆(y,y′)

To measure lexical diversity, we set ∆(y,y′) to be
the sentences’ inverse (100 minus) BLEU-1 and
-2 scores.8 To measure semantic diversity, we set
∆ to be the cosine distance between their SBERT
embeddings. Higher scores imply greater diversity.
Following Li et al., we evaluate on 100 examples
from an out-of-distribution dev split of the Choice
of Plausible Alternatives dataset (COPA; Gordon
et al., 2012), with results shown in Table 2.9 In both
cases, COD3S outperforms all other methods except

7We also compare against our own S2S-RS using the same
FAIRSEQ model as the COD3S methods.

8Implemented using the SacreBLEU toolkit (Post, 2018).
9Results over 10 outputs and over a within-distribution train
split from CausalBank are shown in Appendix Table 4.

Figure 2: Results of human evaluation of plausibility.
Ratings are shown in comparison to the gold answer
and less plausible alternative from COPA. Mean/max
ratings per input are presented for 1,3-best outputs
ranked by forward score (PPL). To demonstrate that
COD3S produces plausible response from many seman-
tic bins, we also show max ratings from top-10 outputs.

random sampling, the addition of which also im-
proves the diversity of COD3S itself.10 We also use
the SBERT diversity score to count semantically
diverse outputs by marking as duplicates those for
which the embedding of the completed phrase (“X
. . . Y”) falls below some distance threshold from
that of an earlier candidate. Table 2 (lower) shows
that both the best COD3S model as well as random
sampling produce far more semantically distinct
statements than the beam search baseline.

Human Evaluation Our automatic metrics quan-
tify diversity without tracking task effectiveness,
which we evaluate by collecing judgments on Ama-
zon Mechanical Turk. We ask workers to judge the
plausibility of responses as causal completions (on
a 0-5 Likert scale). For all methods except COD3S,
we use the exact outputs evaluated in Li et al. (2020)
and provided to us by the authors. The response
sets for these models contain the top 3 decoded sen-
tences under perplexity (PPL). We compare these
to the top 3 as well as the top 10 sentences decoded
by COD3S with and without MMI re-ranking (sig-
nature and sentence, no random sampling) ordered
by PPL of the signature tokens. This discrepancy in
per-model outputs reflects that we seek to evaluate
COD3S, which is specifically crafted to produce a
large set of distinct viable candidates, as directly

10We verified the significance of numerical results using
Wilcoxon two-sided signed-rank tests implemented via
SciPy with p=.05.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
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Cause Input: my favorite song came on the radio

Bin Medoid I will try this version for sure I was quite excited to finally experience it

Ranked Predictions I decided to listen to it I was excited to hear it again
I decided to hear it I was pleasantly surprised to hear it
I figured I’d try it I’m glad to see it here

Effect Input: the executive decided not to hire the applicant

Bin Medoid I knew that they expected it they are what earn you cash

Ranked Predictions they knew she was not qualified they could not afford the payments
they knew it would be a mistake it would cost them money
she knew she had to she was paid

Table 3: Examples of generation conditioned on semantic bins. Predictions are ranked according to maximum
mutual information (MMI) and shown aside the given bin’s representative medoid.

as possible against the Li et al. (2020) responses
from models that are not necessarily crafted with
the identical aim. Naturally occurring propositions
have far more than 10 plausible and distinct causes
and effects, and so we would hope that the 10th out-
put of our one-to-many model would have similar
quality to the 1st of the other models.

Results are shown in Figure 2.11 We observe
that top 1 and 3 COD3S responses according to
PPL (blue) are comparable albeit slightly lower
on average than those of the other models.12 This
may partially be attributed to the difficulty of the
signature inference step, in which the differences
in the top 100 predicted binary sequence PPLs are
typically small. A COD3S ‘oracle’ that conditions
generation on the gold answer’s signature (which
often has low predicted likelihood) performs more
competitively (green).

We find that at least 1 of the top 3 signatures
predicted by COD3S yields a competitively plausi-
ble sentence; when we take the highest plausibility
score from the top 3 of each model under their re-
spective PPL orderings (red), COD3S and baseline
S2S to be interchangeable. If we expand to the
larger set of 10 outputs for COD3S models, we find
that the mean of the 3 highest plausibility scores
(faded purple) for the MMI model is comparable
to the 1 best of the base seq2seq (red) and better
than the mean of the top 3 PPL (faded blue) for any
model. This indicates that the 10 output set, which
shows under automatic metrics to contain higher
numbers of semantically diverse statements, also
contains at worst a set of 3 outputs that are better
than the 3 from models not designed for one-to-
many diverse prediction.

11A tabular form of the results is given in Appendix Table 5.
12DPC and S2S-RS output PPLs were not provided by Li

et al., so they are omitted from top-1 comparison.

Qualitative Analysis Table 3 shows examples of
models predicting and re-ranking sentences within
inferred signature bins. Candidate predictions
listed in order of MMI score reflect the ability
of MMI-based reranking to select the candidates
within a bin that are most relevant to the input. Out-
puts are shown beneath a representative bin medoid,
i.e. the sentence with minimized embedding cosine
distance from all other training sentences that fall
in the bin. The two-step inference process depicted
here allows for a level of interpretability on the sig-
nature level, as sampling training sentences from
the inferred semantic bin gives a snapshot of an in-
ferred semantic space that can be more informative
than individual sentences alone.

Future work might explore alternative methods
for signature inference. The bit sequence likeli-
hoods predicted by COD3S are often clumped to-
gether and/or biased towards signatures that in-
tuitively do not apply to an input but are over-
represented in the training set. We also observe
that although MMI decoding discourages bland
context insensitive statements, there is still a model
tendency towards a small set of generic predicates,
e.g. ‘having,’ ‘knowing,’ or ‘being able to.’

5 Conclusion
We have outlined COD3S, a method for produc-

ing semantically diverse statements in open-ended
generation tasks. We design sentence LSH signa-
tures that encode bitwise the semantic similarity of
underlying statements; conditioning generation on
different signatures yields outputs that are semanti-
cally heterogeneous. COD3S leads to more diverse
outputs in a multi-target generation task in a con-
trollable and interpretable manner, suggesting the
potential of semantically guided diverse decoding
for a variety of text generation tasks in the future.



5204

Acknowledgments
We thank the reviewers for their insightful com-

ments. We additionally thank Elizabeth Salesky,
Huda Khayrallah, Rachel Wicks and Patrick Xia
for their discussions, feedback and compute. This
work was supported in part by DARPA KAIROS
(FA8750-19-2-0034). The views and conclusions
contained in this work are those of the authors and
should not be interpreted as representing official
policies or endorsements by DARPA or the U.S.
Government.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. COMET: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762–4779,
Florence, Italy. Association for Computational Lin-
guistics.

Christian Buck, Kenneth Heafield, and Bas van Ooyen.
2014. N-gram counts and language models from
the common crawl. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC-2014), pages 3579–3584, Reyk-
javik, Iceland. European Languages Resources As-
sociation (ELRA).

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
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Saša Petrović, Miles Osborne, and Victor Lavrenko.
2010. Streaming first story detection with applica-
tion to twitter. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 181–189, Los Angeles, California.
Association for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Kira Radinsky, Sagie Davidovich, and Shaul
Markovitch. 2012. Learning causality for news
events prediction. In Proceedings of the 21st
international conference on World Wide Web, pages
909–918.

Deepak Ravichandran, Patrick Pantel, and Eduard
Hovy. 2005. Randomized algorithms and NLP: Us-
ing locality sensitive hash functions for high speed
noun clustering. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 622–629, Ann Arbor,
Michigan. Association for Computational Linguis-
tics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
bert: Sentence embeddings using siamese bert-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Raphael Shu, Hideki Nakayama, and Kyunghyun Cho.
2019. Generating diverse translations with sentence
codes. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 1823–1827, Florence, Italy. Association
for Computational Linguistics.

Benjamin Van Durme and Ashwin Lall. 2010. Online
generation of locality sensitive hash signatures. In
Proceedings of the ACL 2010 Conference Short Pa-
pers, pages 231–235, Uppsala, Sweden. Association
for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Qiongkai Xu, Juyan Zhang, Lizhen Qu, Lexing Xie,
and Richard Nock. 2018. D-page: Diverse para-
phrase generation. ArXiv, abs/1808.04364.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/N16-1014
https://doi.org/10.18653/v1/N16-1014
https://www.aclweb.org/anthology/N10-1021
https://www.aclweb.org/anthology/N10-1021
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.3115/1219840.1219917
https://doi.org/10.3115/1219840.1219917
https://doi.org/10.3115/1219840.1219917
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P19-1177
https://doi.org/10.18653/v1/P19-1177
https://www.aclweb.org/anthology/P10-2043
https://www.aclweb.org/anthology/P10-2043


5206

A Random Hyperplane LSH Details
The popular LSH variant introduced by Charikar

(2002) leverages random hyperplane projections
to compute discrete b-length bit signatures. Each
individual bit is determined from the sign of the dot
product between a given embedding and one of a
set of b pre-computed random normal vectors. One
geometric intuition is that the hyperplane implied
by each random normal vector partitions the full
embedding space in half, and the sign of the dot
product designates the partition into which the in-
put embedding falls. This is illustrated in Figure 3
using a simplified case with a 2-D vector v and
three random vectors r1,r2,r3 indicating partitions
of the Cartesian plane.13

Figure 3: Computation of a 2D vector v’s LSH bit sig-
nature as the signs of the dot products with d random
normal vectors r1, . . . ,rb.

Formally, given a set of high-dimensional vec-
tors in RD, we randomly sample b� D random
vectors ~r1, . . .~rd from the D−dimensional Gaus-
sian distribution. Then, given a high-dimensional
embedding ~v, we construct the b-bit signature
LSH(v) = [LSH1(v), . . .LSHd(v)] using the hash
functions

LSHi(v) =

{
1 if~ri ·~v≥ 0
0 if~ri ·~v < 0

The number of matching bits in the signatures
of two vectors u,v provides an estimate of their
hash collision probability, i.e. the likelihood that
they fall in the same partition of any random hyper-
plane. This probability is provably14 monotonically
increasing with the vectors’ inner product. Goe-
mans and Williamson (1995) similarly prove that
the Hamming distance between signatures is pro-
portional to the angle between the vectors, which
correlates highly with cosine distance barring high
discrepancies in vector norms.
13Figure adapted from slides of Van Durme and Lall (2010)

with permission of the authors.
14Charikar (2002); Li et al. (2013)

B Training Details

fairseq-train
--adam-betas "(0.9, 0.98)"
--arch transformer_iwslt_de_en
--criterion

label_smoothed_cross_entropy
--label-smoothing 0.1
--dropout 0.1 --weight-decay 0
--bpe sentencepiece
--optimizer adam --clip-norm 0.1
--lr 5e-4 --lr-scheduler inverse_sqrt
--warmup-updates 4000
--max-epoch 10
--share-all-embeddings

We train models with FAIRSEQ using the
transformer iwslt de en architecture. We use
6 encoder and decoder layers with 512-dimensional
hidden states and shared embedding layers (a total
of 36.6M trainable parameters). Signature tokens
are assigned special tokens during BPE encoding.
We train models for 10 epochs with an early stop-
ping patience of 2 validations. We use the Adam op-
timizer (Kingma and Ba, 2015) with 0.1-smoothed
cross entropy loss, a 5e−4 learning rate with in-
verser square root scheduling, 0.1 dropout and 0.1
norm clipping. All other training parameters were
the FAIRSEQ defaults at the time of submission. We
observe performance drops when 1) norm clipping
threshold is not sufficiently low, 2) BPE vocabulary
size is 32K instead of 10K, and 3) weight decay is
set to .001. Training takes roughly 12 hours on two
Titan 24GB RTX GPUs for each of four models
(two forward, two backward for MMI reranking).

Backwards scoring models for MMI-bidi are
trained with the opposite dataset as their corre-
sponding forward models; we find training most
effective when the data’s syntactic direction (“X
. . . Y”) matches the direction of inference (X→ Y).
In other words, all C→ E models are trained on
“X, so Y” data regardless of their use as forward
or backward scoring models. We used the “X be-
cause Y” training split from Li et al. (2020). We
constructed the 10M “X so Y” examples ourselves:
we took a 20M random sample of all such exam-
ples in the dataset, filtered to remove sentences a)
containing numerical and special characters or b)
containing either a source or target with greater
than 12 tokens, and then downsampled the remain-
ing set to a 10M/4K/4K train/dev/test split.

http://cs.jhu.edu/~vandurme/papers/VanDurmeLallACL10-slides.pdf
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Causalbank C→ E E→ C
3-Sets BL-1 / BL-2 / SB BL-1 / BL-2 / SB

Baselines
S2S 54.2 / 62.9 / .348 59.8 / 71.4 / .428
S2S + Sigs 47.5 / 56.6 / .248 56.2 / 70.3 / .302

Other Decoding Methods
DPC (Li et al.) 41.8 / 49.4 / .293 47.4 / 55.3 / .319
S2S-RS (Li et al.) 77.5 / 89.3 / .567 82.6 / 94.1 / .622
S2S-RS 87.0 / 96.8 / .676 82.1 / 92.1 / .626

Two-Step COD3S Inferences
Sig Sent
Beam Beam 84.0 / 94.2 / .603 77.1 / 89.6 / .558
Beam MMI 80.0 / 90.9 / .571 74.0 / 86.3 / .542
MMI MMI 75.1 / 86.6 / .554 70.7 / 83.9 / .543
MMI MMI-RS 85.9 / 95.4 / .620 78.1 / 90.9 / .563
− Ham Heur 80.4 / 90.8 / .521 74.0 / 87.8 / .501

COPA C→ E E→ C
10-Sets BL-1 / BL-2 / SB BL-1 / BL-2 / SB

Baselines
S2S 59.9 / 71.5 / .466 62.5 / 76.7 / .509
S2S + Sigs 52.4 / 64.8 / .360 55.3 / 70.0 / .397
S2S-RS 84.7 / 96.9 / .746 83.8 / 95.1 / .693

Two-Step COD3S Inferences
Sig Sent
Beam Beam 81.7 / 95.5 / .658 75.8 / 89.6 / .660
Beam MMI 78.5 / 93.1 / .653 75.1 / 89.2 / .639
MMI MMI 75.8 / 90.6 / .633 74.3 / 88.2 / .612
MMI MMI-RS 82.6 / 96.1 / .676 78.2 / 91.8 / .647
− Ham Heur 80.5 / 93.8 / .619 72.5 / 86.2 / .544

Table 4: Automatic diversity metrics (1-BLEU / 2-
BLEU / SBERT) evaluated over the outputs of 16-bit
COD3S and other decoding methods. Results are shown
for 3-best outputs over 100 in-distribution CausalBank
examples and 10-best over out-of-distribution COPA.
Following Li et al. (2020), the same 100 “X because Y”
pairs were used to evaluate models of both inference
directions.

C Decoding According to Semantic Bins

We experimented with bit lengths of 8, 16, and
32, and found the middle value to best balance
specificity with accuracy. We also explored a vari-
ant that merged signatures into a single token rather
than treating them as token-per-bit, but found the
model to perform qualitatively worse. We exper-
imented with Hamming distance heuristic thresh-
olds of 0 through 6 and found the best value (2) for
16-bit COD3S using qualitative analysis of side-by-
side predictions. The MMI-bidi λs,λy values were
found using simple grid search, comparison of au-
tomatic metrics, and side-by-side analysis. The
nature of the output set is sensitive to only large
changes (orders of magnitude) in λs values, as the
likelihoods of signature sequences are rather close
in value; however, smaller, 0.1-increment changes

C→ E / E→ C Gold: 4.2 / 4.6 Pl Alt: 2.2 / 2.3

Top PPL Max Score

Method T1 T3 T1 T3 (/ 10)

S2S 2.7 / 2.5 2.7 / 2.4 3.3 / 3.2
DPC — 3.1 / 3.1 3.7 / 3.8
S2S-RS — 2.6 / 2.9 3.2 / 3.6

COD3S

Beam 2.3 / 2.0 2.3 / 2.0 3.1 / 3.0
(Oracle) 2.5 / 2.3
(10 Outputs) 3.7 / 3.9 3.0 / 3.0
MMI 2.4 / 1.9 2.5 / 2.1 3.2 / 3.1
(Oracle) 2.5 / 2.7
(10 Outputs) 3.8 / 4.0 3.3 / 3.3

Table 5: Tabular form of human evaluation results dis-
played in Figure 2.

to the sentence weight λy showed to have a greater
effect on the relevance and specificity of output
causes/effects. This comports with results from
previous applications of MMI-bidi decoding for
sentences (Li et al., 2016a).

Table 7 shows side-by-side outputs of models
with and without MMI re-ranking conditioned on
the same n-best inferred signatures. Table 4 shows
results of automatic diversity evaluation on the in-
distribution training sample from CausalBank fol-
lowing Li et al. (2020). Table 5 provides a tabular
version of the human plausibility scores depicted
in Figure 2.

D Counting Semantically Distinct
Outputs using SBERT

We construct a method for automatically count-
ing the number of semantically diverse sentences
in a candidate cause/effect set. We encode each
prediction with the context of the input by taking
the SBERT embedding of the completed sentence
”X {because, so} Y.” We then rule out all sentences
whose embedding cosine distance from that of a
higher-ranked candidate is lower than some thresh-
old. We use a simple grid search over various
threshold values and find that a value of .1 yields a
sensitivity to paraphrastic cause/effect predictions
similar to that of a human reader. As other tasks
might merit different such thresholds, we provide
multiple such counts in Table 2. Table 6 shows
example cases of duplicate detection among gener-
ated candidate sets.
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Cause: the tenant misplaced his keys to his apartment Effect: the man threw out the bread

1 he couldn’t leave the house 1 he didn’t want to eat it
2 he couldn’t get out of the house Dupl. of 1 (.01) 2 he didn’t like it
3 he had to get a new one 3 he didn’t like the taste Dupl. of 2 (.05)
4 he had to go back to the hotel 4 it was too much for him to handle
5 he had to find a new one Dupl. of 3 (.02) 5 he didn’t want to cook it Dupl. of 1 (.07)
6 he couldn’t get into the house Dupl. of 1 (.06) 6 he didn’t know how to cook it
7 he had to go back to the house 7 it wasn’t good for him Dupl. of 1 (.07)
8 he couldn’t leave the building Dupl. of 1 (.02) 8 he didn’t like how it tasted Dupl. of 2 (.05)
9 he had to go to the police station 9 he couldn’t eat it Dupl. of 1 (.06)
10 he had to go back to his apartment Dupl. of 7 (.07) 10 it was overcooked

Table 6: Detection of duplicate causes and effects using a threshold SBERT embedding cosine distance of 0.1. We
embed the full “X . . . Y” statements so as to provide context to the paraphrase detection. Model outputs are those
of a regular seq2seq.

E Cosine/LSH Hamming Correlations
with STS and Bin Statistics

Table 8 shows the Spearman ρ coefficient with
STSbenchmark judgments for cosine and approxi-
mate LSH Hamming distances of embeddings for
BERT, SBERT (and larger variant SRoBERTa),
and pBERT (Hu et al., 2019b), a BERT model
fine-tuned to predict paraphrastic similarity, albiet
not via angular similarity of embeddings. Table 9
provides details regarding the distributions of sen-
tences into LSH bins of differing levels of granu-
larity using SRoBERTa-L embeddings.

F Human Evaluation of Plausibility
We showed 200 COPA input statements (100

each for cause-to-effect and effect-to-cause) to
Amazon Mechanical Turk workers and asked them
to judge the plausibility of model predictions,
specifically as completions of a causal statement
of the form “X because Y” or “Y, so X.” The order
of the examples were randomized. Four annotators
rated each input/prediction pair. We required an-
notators to have at least a 97% approval rating, be
located in the US, and have completed at least 500
HITs. Annotators were given an hour to complete
each HIT. The median completion time for the task
was 5 minutes, and workers were paid $0.50 per
HIT. We included at least two attention checks.
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W/O MMI Reranking W/ MMI Reranking Conditioned Bin Medoid

Cause: I was confused by the professor’s lecture
Gold Effect: I asked the professor questions

I asked him about it I asked a few questions I need some feedback from you (Gold bin)
I decided to try it I decided to look it up I will try this version
I thought I’d ask here I decided to ask the teacher I might change them at some point
I decided to open it up I opened it up and started reading you can check it out
I did my own research I did a quick math lesson it is easy to get everything aligned

Cause: several witnesses of the crime testified against the suspect
Gold Effect: the suspect was convicted

he’s got that going for him the case was taken to court we did it this way (Gold bin)
he knew what to do the case was resolved this is a simple solution that makes sense
the jury is still out the jury was left to investigate everyone will know what it is
they didn’t have to deal with it there was no need for an attorney I guess I won’t have to think about this
it was easy to follow the police proceeded to investigate this recipe is ready to go

Cause: the papers were disorganized
Gold Effect: I put them into alphabetical order

I had to enter them I had to print them out the opening sequence was there (Gold bin)
that’s out of the question I gave up on it I won’t use it in anything anymore
I decided to skip it I decided not to publish them I opted not to do any
I got a new one I had to edit them we came at a good time
we had to start all over again I had to start all over again it should be open by then

Effect: the woman hired a lawyer
Gold Cause: she decided to sue her employer

she wanted to she wanted a lawyer they want to crack down on it (Gold bin)
she thought she could win she wanted to be in charge of her case it can be an ideal method for you to succeed
she had a plan she felt she had enough evidence it was what we had and it turned out fine
she trusted him she wanted to help people I did trust and respect the person
she wanted to be a mother she wanted to protect her family all ages enjoy them

Effect: I avoided giving a straight answer to the question
Gold Cause: the question made me uncomfortable

I didn’t want to offend anyone I didn’t want to offend anyone I didn’t like to speak (Gold bin)
I didn’t understand it I didnt know what I was talking about I didn’t understand them
there was no one to talk to I didn’t want to talk about it I’m not allowed to talk to them about anything
the answer was obvious I thought the answer would be obvious everyone’s familiar with it
I was so embarrassed I thought I was stupid it looked ridiculously saturated

Effect: I learned how to play the board game
Gold Cause: my friend explained the rules to me

I learned a lot about the game I wanted to learn to play the game it offers some good information (Gold bin)
i felt like it i felt i had to I feel it to be so
it was so easy it was easy to play it is done nicely and realistically
it worked i knew i was going to play it they have now got it right
I love to play online I wanted to play online the online wants anyone spreading the phrase

Table 7: Example COD3S output responses with and without MMI-bidi sentence re-ranking. Predictions are shown
alongside their conditioned bin’s representative medoid sentence. “Bin oracle” predictions conditioned on the
signature of gold sequence (Gold bin) are shown for comparison.
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bits 4 8 16 32 64 128 256 full

BERT-B 0.01 0.08 0.11 0.12 0.09 0.14 0.15 0.13
pBERT-B 0.05 0.09 0.09 0.11 0.13 0.14 0.15 0.14
SBERT-B 0.41 0.51 0.61 0.69 0.76 0.80 0.82 0.85
SBERT-L 0.42 0.51 0.64 0.72 0.77 0.80 0.82 0.85
SRoBERTa-B 0.38 0.51 0.61 0.71 0.77 0.81 0.83 0.85
SRoBERTa-L 0.42 0.55 0.65 0.74 0.80 0.83 0.85 0.86

Table 8: Spearman ρ correlation of LSH Hamming-based cosine approximations with human STS judgements on
STSBenchmark (as well as cosine similarity of the full 768/1024-dimension embeddings)

LSH Bits 4 8 12 16 20 24 28 32

Distinct Sentences /
Populated Bin

5.55e5 3.47e4 2166.97 135.85 10.75 2.47 1.33 1.10
± 1.91e5 ± 2.37e4 ± 2671.91 ± 225.40 ± 22.32 ± 4.62 ± 1.51 ± 0.72

Distinct Unigrams /
Populated Bin

1.28e5 2.15e4 3191.00 415.27 54.42 15.71 9.24 7.87
± 2.24e4 ± 8446.11 ± 2378.42 ± 430.38 ± 73.41 ± 19.10 ± 6.63 ± 3.64

% Buckets Populated 100 100 100 99.69 78.73 21.45 2.49 0.19
STS ρ 0.42 0.55 0.61 0.65 0.69 0.71 0.73 0.74

Table 9: Analysis of bin clusters using the effects of 10 million CausalBank ”X because Y” pairs.
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Figure 4: Interface shown to Amazon Mechanical Turk workers during collection of plausibility judgments.


