
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 5186–5198,
November 16–20, 2020. c©2020 Association for Computational Linguistics

5186

Blank Language Models

Tianxiao Shen∗ Victor Quach∗ Regina Barzilay Tommi Jaakkola
MIT CSAIL

{tianxiao, quach, regina, tommi}@csail.mit.edu

Abstract
We propose Blank Language Model (BLM),
a model that generates sequences by dynami-
cally creating and filling in blanks. The blanks
control which part of the sequence to expand,
making BLM ideal for a variety of text editing
and rewriting tasks. The model can start from
a single blank or partially completed text with
blanks at specified locations. It iteratively de-
termines which word to place in a blank and
whether to insert new blanks, and stops gen-
erating when no blanks are left to fill. BLM
can be efficiently trained using a lower bound
of the marginal data likelihood. On the task
of filling missing text snippets, BLM signifi-
cantly outperforms all other baselines in terms
of both accuracy and fluency. Experiments on
style transfer and damaged ancient text restora-
tion demonstrate the potential of this frame-
work for a wide range of applications.1

1 Introduction

Neural language models have shown impressive
performance across many applications such as ma-
chine translation and summarization where the text
is generated from scratch (Bahdanau et al., 2014;
Rush et al., 2015). However, a broader set of text
generation tasks — including text editing, informa-
tion fusion, and ancient text restoration — requires
the model to start with partially specified text and
generate the missing fragments. In the general
setup, the input document may have any number
of missing spans, and each span may have an un-
known number of missing tokens. To perform this
text infilling task (Zhu et al., 2019), a model should:
(1) provide fine-grained control over the generation
location, (2) accommodate a variable number of
missing tokens, and (3) respect both the preceding
and following context.

∗Equal contribution
1Our code is available at https://github.com/

Varal7/blank_language_model

They also have which .
They also have ice cream which is really good .

Figure 1: BLM fills in blanks of arbitrary length.

Existing approaches focus on adapting left-to-
right language models for text infilling. Intricate
inference algorithms leveraging dynamic program-
ming or gradient search are proposed to find the
filling content that has a high likelihood within the
surrounding context (Sun et al., 2017; Liu et al.,
2019a; Zaidi et al., 2020). These methods make
simplified Markov assumptions, require high de-
coding time complexity, and cannot adapt to vari-
able infilling length. Alternatively, Donahue et al.
(2020) predict the concatenation of the infilling
content, but do not guarantee that the output will
match the number of missing spans in the input.

In this work, we introduce the Blank Language
Model (BLM), which uses a special “ ” symbol
to control where tokens can be placed. The gener-
ation of BLM follows the grammar of replacing a
blank with a word and possibly adjoining blanks.
By jointly modeling context and missing content,
BLM supports the control of generation location
and produces consistent infilling of variable length.

Our model can start from a single blank or par-
tial text with blanks in specified locations. It maps
the entire input into a sequence of vector represen-
tations, and further processes the representations in
blank positions to determine the generation action.
Generation actions are performed iteratively until
there are no blanks. Since multiple trajectories of
BLM actions can produce the same final text, we
train the model by maximizing a lower bound of
the log-likelihood marginalized over trajectories.
At test time, we can use simple greedy decoding or
beam search to fill in the blanks in the input text.

BLM shows superior performance in text infill-
ing (Zhu et al., 2019), ancient text restoration (As-

https://github.com/Varal7/blank_language_model
https://github.com/Varal7/blank_language_model

5187

Canvas c Action a
Step t Location b Word w (Left l, Right r)

0. #1 #1 is Y Y
1. #1 is #2 #1 customer N Y
2. customer #1 is #2 #2 awesome N N
3. customer #1 is awesome #1 service N N
4. customer service is awesome -End-

Figure 2: An example trajectory that generates the sentence “customer service is awesome”. Each action is a tuple
(b, w, l, r), indicating the blank location b selected for expansion, the word w to fill in, whether to create a left
blank l, and whether to create a right blank r.

sael et al., 2019) and style transfer (Shen et al.,
2017), demonstrating its flexibility to generate text
in diverse conditions. Our model achieves 92.5%
accuracy and BLEU score of 23.1 on the Amazon
dataset for sentiment transfer. On the task of restor-
ing ancient text that lost half of the characters, we
reduce the error rate by 3.3 points compared to
previous methods.

2 Related Work

Recent work has explored various sequence mod-
els for non-autoregressive machine translation (Gu
et al., 2017). The Insertion Transformer supports
dynamic canvas with word insertion (Stern et al.,
2019), but does not allow users to specify where to
insert. The model is unaware of which parts of the
canvas are contiguous text spans that should remain
intact, and which (potentially scattered) parts need
to be filled in. Directly forcing the Insertion Trans-
former to perform text infilling can therefore lead
to suboptimal solutions. The Levenshtein Trans-
former combines insertion and deletion through
complex policy learning (Gu et al., 2019b). Its in-
sertion mechanism is a two-stage process in which
placeholders are first predicted and then filled-in in
a masked language model (MLM) manner. In text
infilling where the blanks/placeholders are given,
it reduces to an MLM.

MLMs are commonly used in representation
learning (Devlin et al., 2018; Joshi et al., 2020). To
use them in rewriting tasks, one needs to specify the
insertion length in advance and heuristically deter-
mine the generation order among the masks (Fedus
et al., 2018; Wang and Cho, 2019; Ghazvininejad
et al., 2019). Similarly, XL-Net requires absolute
positional embedding and thus does not support
unknown-length text infilling (Yang et al., 2019;
Shih et al., 2019). BLM provides a natural formula-
tion for generative modeling that can dynamically

accommodate insertions of various length.
Another line of work focuses on finding an op-

timal language generation order, such as syntax-
based generation (Dyer et al., 2016) and learning
adaptive generation order (Gu et al., 2019a). These
approaches are tailored to generation from scratch
in a specific order. Our model instead is attuned for
text rewriting, where the missing parts can be lo-
cated anywhere in the input text, and the algorithm
must flexibly complete them.

3 Blank Language Models

A blank language model (BLM) generates se-
quences by creating and filling in blanks. Gen-
eration starts with a single blank and ends when
there is no blank. In each step, the model selects a
blank “ ”, predicts a word w, and fills the blank
with “w”, “ w”, “w ”, or “ w ”. This way,
a blank can be expanded to any number of words.

We define a canvas as a sequence of words in-
terspersed with special “ ” tokens. The subse-
quent action is conditioned on this intermediate
stage of generation. Suppose the current canvas is
c = (c1, · · · , cn) with blanks located at indices
b1, · · · , bk (i.e. cbi = “ ”, for i = 1, . . . , k).
BLM maps this canvas to a distribution over ac-
tions specifying how the canvas is to be revised:

p(b, w, l, r|c; θ) = BLM(c) (1)

where b ∈ {b1, · · · , bk} is a blank location; w is
a word in the vocabulary V ; l, r ∈ {0, 1} denote
whether or not to create a blank to the left and right
of w; and θ are the model parameters. The action,
defined as the tuple (b, w, l, r) uniquely specifies
the next state of canvas (see Fig. 2 for illustration).

Alternatively, we can view the actions in BLM
as production rules in a grammar. Each blank rep-
resents a nonterminal symbol or the start symbol,

5188

alsoThey have ____ which ____

Transformer

.

Linear & Softmax
1) Choose a blank 2) Predict a word

3) Create new blanks

Linear &
Softmax

really

MLP

Fill and repeat

really

really

really____

really

✓

Figure 3: Architecture of the BLM. In the first stage, an index is chosen among all current blank positions. For that
location, a word is selected in the second stage. In the final stage, the blank representation is concatenated with the
chosen word’s embedding and fed into an MLP to determine the creation of the following blanks.

and the terminal symbols come from the vocabu-
lary V . The production rules are restricted to be
of the form “ ”→ “ ?w ?” for w ∈ V , where
“?” indicates that the preceding symbol is optional.
In contrast to context-free grammars, the probabil-
ity distribution over production rules in BLM is
conditioned on the entire canvas generated so far.

Model Architecture We encode the canvas c
into a sequence of representations (z1, · · · , zn),
and take representations Z = (zb1 , · · · , zbk) where
the blanks are located. Let d denote the dimen-
sion of z’s. We factorize the joint distribution
p(b, w, l, r|c; θ) into three parts (shown in Fig. 3):

1. Choose a blank:

p(bi|c; θ) = Softmax(uTZ) (2)

where u ∈ Rd is a parameter vector to project
z’s into one-dimensional logits.

2. Predict a word for the selected blank:

p(w|c, bi; θ) = Softmax(Wzbi) (3)

where W ∈ R|V |×d is a parameter matrix to
project zbi into the vocabulary.

3. Decide whether or not to create blanks to the
left and right of the predicted word:

p(l, r|c, bi, w; θ) = MLP(zbi , vw) (4)

where vw is the word vector of w, and MLP is
a multilayer perceptron with 4 output classes:
Left.Yes/No × Right.Yes/No.

Likelihood Now let us consider the probability
p(x; θ) of generating a sentence/paragraph x =
(x1, · · · , xn) under the BLM. We call the generat-
ing process from an initial blank to complete text
a trajectory. The same final text x can be realized
by multiple trajectories. However, if we specify
the order in which the words in x are generated,
the trajectory will be uniquely determined. Con-
sider the example trajectory of a 4-word sentence
in Fig. 2. Given the order (3, 1, 4, 2), at step 0
when we generate x3, both left and right blanks
are created for future generations of x1 and x2, x4.
In step 1 of generating x1, only a right blank is
created for the future x2. Subsequent steps can be
deduced by analogy. The correspondence between
trajectories and generation orders allows us to write
the marginal likelihood as:

p(x; θ) =
∑
σ∈Sn

p(x, σ; θ)

=
∑
σ∈Sn

n−1∏
t=0

p(ax,σt |c
x,σ
t ; θ) (5)

where Sn is the set of all n-permutations; ax,σt , cx,σt
denote the action and canvas at step t under sen-
tence x and order σ, respectively (cf. Fig. 2).

Training Different losses have been proposed to
train generalized sequence models. For instance,
BERT and XL-Net mask and predict 15% of tokens
conditioned on the rest. This strategy is more suit-
able for representation learning rather than genera-
tion. Insertion Transformer masks different num-
bers of tokens and weights them with uniform loss
or binary tree loss (Stern et al., 2019; Chan et al.,

5189

Algorithm 1 BLM training2

1: Initialize model parameters θ
2: repeat
3: Sample a training example x = (x1, · · · , xn)
4: Sample t from 0 to n− 1

5: Sample an n-permutation σ
6: Construct canvas c that keeps tokens xσj (j =

1, · · · , t) and collapses remaining tokens as blanks
7: Get n − t target actions aj−t for filling xσj (j =

t+ 1, · · · , n) into canvas c
8: Compute loss({a1, · · · , an−t},model.forward(c))

from Eq. (8)
9: Update θ by gradient descent

10: until Convergence

2019). It aims to perform fast inference through
parallel decoding. Here, we present a training ob-
jective from the language modeling perspective by
estimating the log likelihood of generating x.

Directly computing the marginal likelihood over
n! orders is intractable. We apply Jensen’s inequal-
ity to lower bound the log likelihood:

log p(x; θ) = log
∑
σ∈Sn

n−1∏
t=0

p(ax,σt |c
x,σ
t ; θ)

≥ log(n!) +
1

n!

∑
σ∈Sn

n−1∑
t=0

log p(ax,σt |c
x,σ
t ; θ) (6)

where equality holds when the posterior p(σ|x; θ)
is uniform. By maximizing this lower bound, we
do not favor any particular order, but encourage the
model to realize x equally well in all orders. It can
help the model to complete any partial input text
regardless of the position of blanks.

A naive training algorithm is to directly estimate
the lower bound in Eq. (6): first uniformly sample a
permutation σ from Sn and a step t from 0 to n−1,
then construct the canvas cx,σt , and compute the
estimated loss [− log(n!)− n · log p(ax,σt |c

x,σ
t ; θ)].

However, this procedure has a large variance and
can only compute the loss of a single action in one
pass (in contrast to left-to-right language models
that compute n word losses per pass).

To train the model more efficiently, we note that
the canvas cx,σt depends only on the first t elements
of σ. Hence we can combine into one pass the loss
calculations of trajectories that are the same in the
first t steps but different at the t+1 step. Switching

2We implement a batch version of the algorithm.

They also have which .
They also have ice cream which is really good .

τε εγγονον εισαι? ? ? ? ? ? ?σοϕιαι
τε εγγονον εισαιου του σοϕιαι

The employees were super nice and efficient !
The employees were rude and unprofessional !

Figure 4: Examples of input and output for text infill-
ing, ancient text restoration, and style transfer tasks.

the summation order of σ and t, we have:

n−1∑
t=0

1

n!

∑
σ∈Sn

log p(ax,σt |c
x,σ
t ; θ)

= n · EtEσ1:tEσt+1Eσt+2:n [log p(a
x,σ
t |c

x,σ
t ; θ)]

= n · EtEσ1:tEσt+1 [log p(a
x,σ
t |c

x,σ
t ; θ)]

= EtEσ1:t

 n

n− t
∑
σt+1

log p(ax,σt |c
x,σ
t ; θ)

 (7)

which leads to our efficient training algorithm: sam-
ple t from 0 to n− 1 and partial permutation σ1:t,
construct the canvas cx,σt , and compute loss:

− log(n!)− n

n− t
∑
σt+1

log p(ax,σt |c
x,σ
t ; θ) (8)

The whole process is illustrated in Algorithm 1.
In this way, we can compute in expectation n/2
action losses per pass.

4 Experiments

We test BLM’s capacity to rewrite specified por-
tions of text on three tasks: text infilling (Zhu et al.,
2019), ancient text restoration (Assael et al., 2019)
and style transfer (Shen et al., 2017). Fig. 4 dis-
plays example inputs and outputs for these tasks.
We also measure the perplexity of BLM on lan-
guage modeling benchmarks and compare with
traditional left-to-right language models.

Experimental Details In all experiments, the se-
quence representations in BLM are obtained us-
ing the encoder module of transformer base
(Vaswani et al., 2017) (6 layers, 8 heads, dmodel =
512, dff = 2048, dk = dv = 64). The MLP used
for blank prediction has one hidden layer of size
1024. Weight decay, learning rate, and dropout are
tuned based on the loss on the validation set for
each dataset respectively. When decoding, we use
beam size in {1, 5, 10} and choose the best value as

5190

BLEU PPL

Mask ratio 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

No infill 75.2 55.0 37.4 23.6 13.0 98.4 163.0 266.3 421.0 647.9

InsT 84.8 72.3 58.9 46.0 33.8 48.3 44.2 41.8 39.7 37.7
MLM (oracle length) 83.7 69.3 55.5 43.2 32.2 58.4 59.8 59.8 59.0 56.8
BERT+LM 82.8 66.3 50.3 37.4 26.2 55.1 55.2 54.9 56.5 53.6
Seq2seq-full 86.3 72.9 59.4 46.3 34.0 51.3 46.9 41.0 31.9 20.6
Seq2seq-fill 82.8 67.5 52.9 39.9 28.6 64.6 71.0 73.4 65.6 48.7

BLM 86.5 73.2 59.6 46.8 34.8 50.2 44.9 39.9 35.0 32.7

Table 1: BLEU scores and perplexity of generated documents by different models for text infilling. The perplexity
is measured by a pre-trained left-to-right language model, and the original documents have perplexity 55.8.

Mask ratio 10% 20% 30% 40% 50%

Seq2seq-full 15.0 22.4 28.7 33.3 40.6
Seq2seq-fill 31.0 28.4 34.5 42.5 47.2

Table 2: Infilling failure rate (%) of seq2seq models.
Other methods always produce valid outputs.

observed on the validation set. We note that beam
search in BLM does not search for the sentence
with the maximum marginal likelihood p(x; θ), but
instead for a sentence and a trajectory that have the
maximum joint likelihood p(x, σ; θ).

4.1 Text Infilling

Dataset We experiment on the Yahoo Answers
dataset, which has 100K/10K/10K documents for
train/valid/test respectively (Yang et al., 2017). A
document has a maximum length of 200 words,
with an average of 78 words. Following Zhu et al.
(2019), we automatically compile test data by delet-
ing portions of documents. For each document x,
we randomly mask a given ratio r of its tokens.
Contiguous masked tokens are collapsed into a sin-
gle “ ”, resulting in a canvas c to be completed.

Metrics We measure generation’s accuracy by
computing its BLEU score against the original doc-
ument x, and fluency as its perplexity evaluated by
a pre-trained (left-to-right) language model. We
also report the failure rate, which is the percent-
age of invalid generations, such as missing existing
words or not filling in all the blanks.

Baselines We compare BLM with five baselines:

• Insertion Transformer (InsT): By default, InsT
does not support controlling the insertion posi-
tion. We force it to produce valid generations
by normalizing the predictions over valid loca-
tions, disabling the 〈eos〉 prediction unless all

blanks have been filled, and prioritizing slots
that have not been filled yet. Without these
steps, InsT would have a failure rate ≥ 88%.

• MLM (oracle length): MLM for text infilling
requires predicting the length of each blank.
Here we replace blanks with the target num-
ber of 〈mask〉 tokens, and fill them autoregres-
sively by the most-confident-first heuristic.

• BERT+LM: We use BERT’s representation of
each blank as seed for a left-to-right language
model that learns to generate the tokens in the
corresponding blank. At inference time, the
multiple blanks are filled in one after another,
conditioned on previous generations.

• Seq2seq-full (Donahue et al., 2020): We train
a seq2seq model to output the full document x
from input c. Note that it may have invalid out-
puts that do not match the input format, such
as missing existing tokens in c or generating
tokens in incorrect locations.

• Seq2seq-fill (Donahue et al., 2020): We train
a seq2seq model to output only tokens to be
placed in the blanks, with a special ‘|’ token to
indicate separation. For the example in Fig. 4,
its target output will be “ice cream |is really
good”. Unlike seq2seq-full, seq2seq-fill does
not have the problem of losing existing tokens
in c. However, it may still fail to generate the
correct number of ‘|’ that matches the input.

Results As shown in Table 1, BLM achieves the
highest BLEU score at all mask ratios: 0.7 to 1.7
higher than InsT, 2.6 to 4.1 higher than MLM with
oracle length, and 3.7 to 9.4 higher than BERT+LM.
InsT is not trained with insertion position control.
Restricting it to generate at the specified positions
thus bias the model towards making suboptimal

5191

Mask-ratio 10% Mask-ratio 50%

Blanked when time flies , does it go ? the center of the
to be recycled made into new time .

when time , where ? the of universe
to recycled made into .

BLM when time flies , where does it go ? for the center of the
earth to be recycled and made into new time .

when time was created , where did it come from ? it was the
first part of the universe to be recycled and made into space .

InsT when time flies , where does it go ? for the center of the
earth has to be recycled and made into new time .

when time was created , where was it ? what was the name of
the universe to be recycled and made into space .

MLM
(oracle len)

when time flies , where does it go ? from the center of
the earth to be recycled converted made into new time .

when time is , where is the universe ? from the creation of the
universe to be recycled and made into the universe .

BERT+LM when time flies , where does it go ? to the center of the
earth to be recycled came made into new time .

when time is , where to ? i need to find the way of the universe
to be recycled and made into a lot .

Seq2seq-
full

when time flies , where does it go ? at the center of the
earth to be recycled and made into new time .

when time heals , where does it go ? it ’s the end of the uni-
verse to be recycled and made into space .

Seq2seq-
fill

when time flies , how does it go ? at the center of the
earth to be recycled and made into new time .

when time is time , where is time ? time is the time of time
universe to the recycled be made into and . the universe

how |at |earth |and is time |is time |time is |time |time |the |be |and |the universe

Original when time flies , where does it go ? to the center of the
universe to be recycled and made into new time .

when time flies , where does it go ? to the center of the uni-
verse to be recycled and made into new time .

Figure 5: Example generations of different models for text infilling on Yahoo Answers. Completions are in italic.
Invalid completions are in red. For Seq2seq-fill, we present model outputs along with the merged document.

completions. MLM is trained to independently
predict masked tokens instead of jointly model-
ing them. Even with the target number of 〈mask〉
tokens given, its performance is still inferior to
BLM. BERT+LM lags behind other models. In
BERT training, one mask corresponds to one token,
whereas a blank here can cover multiple tokens, and
the distance between words is not fixed. Hence, it
is difficult for the LM to complete the sentence
from BERT representations.

Seq2seq-full has BLEU scores closest to BLM.
However, its failure rate ranges from 15% to 40.6%
as the mask ratio increases. Seq2seq-fill performs
worse than Seq2seq-full, possibly because the de-
coder has to model segmented text while counting
the number of blanks.

In terms of fluency, outputs of BLM, InsT and
Seq2seq-full all have perplexity lower than original
data perplexity. This is because with beam search,
models tend to generate the most typical output
with the highest likelihood (Holtzman et al., 2019).

Examination of model generations confirms the
superiority of BLM. In Fig. 5, we showcase exam-
ple outputs by each model at different mask ratios.
In low mask ratio settings, models only need to
fill in the blanks with a single word to produce
grammatical completions. Most models succeed
in this task. With a higher mask ratio of 50%, the
main ideas of the document are concealed, and the
infilling task is much more challenging. Models

need to creatively generate sentences that fit the
imposed canvas. Although the original meaning
of the sentence is not recovered, BLM is the only
model able to produce a coherent document with
consistency between the question and the answer.

Overall, BLM displays the best performance
both quantitatively and qualitatively. Its inherent
text infilling ability frees it from length, order, or
termination heuristics used by other methods.

4.2 Ancient Text Restoration
Ancient text restoration is a form of text infilling
where there are fragments in ancient documents
that are illegible due to time-related damages and
need to be recovered. Assael et al. (2019) intro-
duces the PHI-ML dataset made of fragments of an-
cient Greek inscriptions. Restoration is performed
at the character-level. The number of characters
to recover is assumed to be known and indicated
by a corresponding number of ‘?’ symbols, as
shown in the second row of Fig. 4. In reality, when
epigraphists restore a deteriorated document, the
length of the lost fragment is unknown and needs to
be guessed as a first step. While models proposed
by Assael et al. (2019) relies on expert conjectures,
we note that BLM can bypass this limitation and
flexibly generate completions without this addi-
tional knowledge. However, in order to compute
the character error rate (CER) for each ’?’ and have
a fair comparison with previous work, we evaluate
our model in the length-aware setting.

5192

Single- Multi-slot

Mask ratio 1% 25% 40% 50%

Human 57.3% - - -
Pythia 32.5% - - -
Pythia-Word 29.1% 36.9% 42.3% 44.9%

L-BLM 33.7% 37.1% 37.9% 41.6%

Table 3: CER for ancient text restoration.

Length-aware BLM (L-BLM) We present a
variant of BLM adapted to the specific features
of this task. The vocabulary V is an alphabet of
characters from the ancient Greek language. We ex-
tend V with special “ [t] ” tokens that denote
the length of the fragment to recover. Specifically,
as a preprocessing step, consecutive ‘?’ characters
are collapsed into a single “ [t] ” token, where
t is the number of ‘?’ symbols. For each such blank
token, L-BLM is trained to predict a character to
fill in and the length l ∈ {0, · · · , t− 1} of the new
blank to its left. The length of the new blank on the
right is accordingly t− 1− l.

Dataset The PHI-ML dataset contains about 3
million words / 18 million characters. We evaluate
models in two settings: single-slot and multi-slot.
For the single-slot setting, we use the testing script
of Assael et al. (2019) which samples a context of
length L = 1000 from an inscription, then samples
a slot of length C ∈ [1, 10] from that context. The
characters from the slot are replaced with ‘?’ and
constitute the target. For the multi-slot setting, we
progressively increase the number of slots, yielding
mask ratios of 25%, 40% and 50% respectively.

Baselines Assael et al. (2019) proposed two mod-
els: Pythia, a character-level seq2seq-based ap-
proach; and Pythia-Word, a variant of Pythia that
uses both character and word representations as
input. During training, the model learns to recover
the missing characters of examples where a random
slot has been masked. When testing on the multi-
slot setting, Pythia(-Word) is applied iteratively
with beam size 20 for each slot.

Results Table 3 summarizes the CER of all mod-
els in both settings. L-BLM achieves similar CER
as Pythia in the single-slot setting, significantly out-
performing human experts. Augmented with word
representations, Pythia-Word further decreases the
error rate compared to character-only methods.

In reality, restoring damaged inscriptions re-

quires reconstructing multiple lost fragments. As a
larger proportion of text is missing, Pythia-Word’s
performance is degraded. L-BLM is robust to the
setting change and outperforms Pythia-Word at the
mask ratio of 40% and 50% by 4.4 and 3.3 points,
respectively. We posit that L-BLM’s advantage lies
in its ability to maximize the joint likelihood of
the completions over all slots. In contrast, Pythia-
Word’s is only aware of one slot at a time, and
beam search is performed locally within each slot.

4.3 Sentiment Transfer

The goal of sentiment transfer is to modify the
sentiment of a sentence while maintaining its topic
(Shen et al., 2017). An example is described on the
third row of Fig. 4. Inspired by the way humans
perform rewriting, we follow a recent line of work
in style transfer that adopts a two-step approach (Li
et al., 2018; Xu et al., 2018; Wu et al., 2019b):

1. Remove words and expressions of high polar-
ity from the source sentence;

2. Complete the partial sentence with words and
expressions of the target sentiment.

Specifically, we adapt the Mask-And-Infill (M&I)
framework of Wu et al. (2019b). We perform Step 1
by training a Bi-LSTM sentiment classifier and
masking words whose attention weight is above
average. We evaluate the contribution of our model
as an infilling module in Step 2 in place of their
fine-tuned BERT model. To this end, we train two
instances of BLM on the dataset, one for each senti-
ment. At test time, the corresponding BLM is used
to produce completions of the target sentiment.

Wu et al. (2019b) further train the infilling model
with the classifier to improve transfer accuracy.
They use soft words relaxation to backprop gradi-
ents from the classifier to the generator. For BLM,
however, we cannot pick locations or insert blanks
as “soft” choices, making it challenging to employ
a classifier at training time. Nevertheless, we can
easily apply the classifier to guide inference. We
sample 10 outputs and keep the one with the high-
est classifier ranking. It is not slower than beam
search with size 10 and can be fully parallelized.

Datasets We test on the Yelp and Amazon re-
view datasets (Shen et al., 2017; Li et al., 2018).
The Yelp dataset has 450K/4K/1K non-parallel sen-
tences for train/valid/test respectively, and the Ama-
zon dataset has 555K/2K/1K sentences. Each sen-
tence is labeled as either positive or negative.

5193

Yelp Amazon

ACC BLEU ACC BLEU

Li et al. (2018) 88.7 8.4 48.0 22.8
Zhang et al. (2018) 96.6 22.8 84.1 33.9
Wu et al. (2019a) 91.5 29.9 40.2 41.9
M&I with MLM 41.5 15.9 31.2 32.1

+ classifier 97.3 14.1 75.9 28.5

M&I with BLM 79.6 21.9 52.0 24.7
+ classifier 96.5 21.5 92.5 23.1

Table 4: Accuracy and BLEU scores for style transfer.

everyone that i spoke with was very helpful and kind .
everyone that i spoke with was rude and unprofessional .
everyone that i spoke with wasn’t helpful or kind.

the beans were in the burro in the rice was nowhere to be found .
the beans were in the burro in the rice was the best i found .
the beans were in the burro and the rice was plentiful

there is definitely not enough room in that part of the venue .
there is always enough parking in that part of the venue .
there is so much room in that part of the venue

it is n’t terrible , but it is n’t very good either .
it is n’t fancy , but it is still very good either .
it is n’t perfect , but it is very good .

Figure 6: Example generations by BLM for sentiment
transfer on Yelp. The first line is the source sentence
with masked words in bold. The second line is BLM’s
completion. The third line is a human reference.

Metrics We use evaluation methods introduced
by prior work (Shen et al., 2017; Li et al., 2018).
To assess the accuracy of generated sentences with
respect to the target sentiment, we use a pretrained
CNN classifier that achieves 97.7% accuracy on the
Yelp dataset and 82.2% accuracy on the Amazon
dataset. We also measure the BLEU score between
transferred sentences and human references.

Results In Table 4, we can see that directly apply-
ing BLM as the infilling module is significantly bet-
ter than MLM. The accuracy on Yelp and Amazon
datasets is increased by 38.1% and 20.8%, respec-
tively. In addition to the aforementioned problem
of MLM being trained to predict masked tokens
independently, it must generate the same number
of tokens as in the source sentence, whereas our
BLM formulation is not subject to this constraint.
Our simple use of a classifier at inference time
further improves accuracy. It achieves the highest
accuracy of 92.5% on Amazon with a small de-
crease in BLEU, indicating that BLM can easily
find high-quality outputs.

In Fig. 6, we show examples generated by BLM
on Yelp. It can dynamically adapt to the imposed

m 1 10 100 1000

Estimated PPL 46.3 44.4 43.3 42.5

Table 5: The estimated perplexity of BLM with the
number of MC samples m on WikiText-103.

PTB WT2 WT103

LSTM (Grave et al., 2016) 82.3 99.3 48.7
AWD-LSTM (Merity et al., 2017) 57.3 65.8 -
TCN (Bai et al., 2018) 88.7 - 45.2
Transformer (Dai et al., 2019) - - 30.1
Adaptive (Baevski and Auli, 2018) - - 18.7
Transformer-XL (Dai et al., 2019) 54.5 - 18.3

InsT (our implementation) 77.3 91.4 39.4
BLM 69.2 81.2 42.5

Table 6: Perplexity on the PTB and WikiText datasets.

canvas and fill in blanks with expressions of varied
lengths, e.g., “nowhere to be found”→ “the best i
found” and “definitely not”→ “always”. We note
that failure cases arise when negative words like
“either” are left unmasked; BLM is then unable to
produce satisfactory outputs from the canvas.

4.4 Language Modeling
Language modeling is a special case of text infill-
ing where sequences are generated from scratch.
Traditional left-to-right models dominate this task,
but are not suitable for text infilling. Conversely,
unconventional sequence models are rarely eval-
uated on language modeling. Here, we study the
perplexity of BLM and Insertion Transformer, and
compare them with left-to-right language models
to provide additional insights.

We use the Monte-Carlo method to estimate the
likelihood in Eq. (5) with m samples. While the
estimate is unbiased, given that per-word perplex-
ity is a convex function of per-sentence likelihood,
sampling estimates like ours are likely yielding a
value higher than the actual perplexity (see Ap-
pendix B for a proof). As m increases, it converges
to the actual perplexity.

Datasets We test on three benchmark datasets:
Penn Treebank (PTB) which has about 1M tokens
(Mikolov et al., 2010), WikiText-2 (WT2) which
has 2M tokens, and WikiText-103 (WT103) which
has 103M tokens (Merity et al., 2016).

Results Table 5 shows the trend of estimated
PPL with the number of samples m. We choose
m = 1000 in our evaluation, which is close to con-
vergence. Table 6 summarizes the perplexity of our

5194

model in comparison with previous work. The top
results are achieved by the Transformer-XL (Dai
et al., 2019) and the adaptive embedding method
(Baevski and Auli, 2018). They use larger model
sizes and supplementary techniques that can also be
combined with our model. BLM rivals the Insertion
Transformer and outperforms left-to-right language
models with LSTM and Temporal Convolutional
Network (TCN) architecture. Language modeling
seems to still be challenging for free-order models.
By reporting the perplexity of unconventional mod-
els like BLM, we hope to stimulate future work in
this area to close the performance gap with tradi-
tional left-to-right models.

5 Conclusion

In this paper, we proposed the Blank Language
Model for flexible text generation. Given partially
specified text with one or more blanks, BLM will
fill in the blanks with a variable number of tokens
consistent with the context. We demonstrate the
effectiveness of our model on various text rewriting
tasks, including text infilling, ancient text restora-
tion and style transfer.

The action of BLM consists of selecting a blank
and replacing it with a word and possibly adjoin-
ing blanks. We train BLM by optimizing a lower
bound on the marginal data likelihood that sums
over all possible generation trajectories. In this
way, we encourage the model to realize a sentence
equally well in all orders, which is suitable for fill-
ing arbitrary blanks. Appendix C shows examples
generated by BLM along with their trajectories.
Depending on the application, we could also train
the model to generate in specific orders by placing
higher weights on the corresponding trajectories.

BLM has plenty of future applications, including
template filling, information fusion, assisting hu-
man writing, etc. Moreover, we can extend our for-
mulation to a conditional generative model. Such
models can be used in machine translation to sup-
port editing and refining translation, as well as in
dialogue systems to compose a complete sentence
with given elements. While we proposed BLM for
language generation, it would also be interesting to
compare the representations learned by BLM with
those produced by other pre-training methods.

Acknowledgments

We thank all reviewers and the MIT NLP group for
their thoughtful feedback.

References
Yannis Assael, Thea Sommerschield, and Jonathan

Prag. 2019. Restoring ancient text using deep learn-
ing: a case study on Greek epigraphy. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 6368–6375.

Alexei Baevski and Michael Auli. 2018. Adaptive in-
put representations for neural language modeling.
arXiv preprint arXiv:1809.10853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun.
2018. An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling.
arXiv preprint arXiv:1803.01271.

William Chan, Nikita Kitaev, Kelvin Guu, Mitchell
Stern, and Jakob Uszkoreit. 2019. Kermit: Gener-
ative insertion-based modeling for sequences. arXiv
preprint arXiv:1906.01604.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Chris Donahue, Mina Lee, and Percy Liang. 2020. En-
abling language models to fill in the blanks. arXiv
preprint arXiv:2005.05339.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776.

William Fedus, Ian Goodfellow, and Andrew M Dai.
2018. Maskgan: better text generation via filling in
the . arXiv preprint arXiv:1801.07736.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Constant-time machine
translation with conditional masked language mod-
els. arXiv preprint arXiv:1904.09324.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2016. Improving neural language models with a con-
tinuous cache. arXiv preprint arXiv:1612.04426.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor OK Li, and Richard Socher. 2017. Non-
autoregressive neural machine translation. arXiv
preprint arXiv:1711.02281.

5195

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019a.
Insertion-based decoding with automatically in-
ferred generation order. Transactions of the Asso-
ciation for Computational Linguistics, 7:661–676.

Jiatao Gu, Changhan Wang, and Junbo Zhao. 2019b.
Levenshtein transformer. In Advances in Neural In-
formation Processing Systems, pages 11179–11189.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld,
Luke Zettlemoyer, and Omer Levy. 2020. Spanbert:
Improving pre-training by representing and predict-
ing spans. Transactions of the Association for Com-
putational Linguistics, 8:64–77.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: a simple approach to sen-
timent and style transfer. In NAACL.

Dayiheng Liu, Jie Fu, Pengfei Liu, and Jiancheng Lv.
2019a. TIGS: An inference algorithm for text in-
filling with gradient search. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4146–4156.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Eleventh
annual conference of the international speech com-
munication association.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier, and
Michael Auli. 2019. fairseq: A fast, extensible
toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. In Advances in neural informa-
tion processing systems, pages 6830–6841.

Yong-Siang Shih, Wei-Cheng Chang, and Yiming
Yang. 2019. Xl-editor: Post-editing sentences with
xlnet. arXiv preprint arXiv:1910.10479.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. arXiv
preprint arXiv:1902.03249.

Qing Sun, Stefan Lee, and Dhruv Batra. 2017. Bidirec-
tional beam search: Forward-backward inference in
neural sequence models for fill-in-the-blank image
captioning. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6961–6969.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems.

Alex Wang and Kyunghyun Cho. 2019. Bert has
a mouth, and it must speak: Bert as a markov
random field language model. arXiv preprint
arXiv:1902.04094.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, R’emi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Chen Wu, Xuancheng Ren, Fuli Luo, and Xu Sun.
2019a. A hierarchical reinforced sequence oper-
ation method for unsupervised text style transfer.
arXiv preprint arXiv:1906.01833.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019b. Mask and infill: Applying
masked language model for sentiment transfer. In
IJCAI.

Jingjing Xu, Xu Sun, Qi Zeng, Xiaodong Zhang, Xu-
ancheng Ren, Houfeng Wang, and Wenjie Li. 2018.
Unpaired sentiment-to-sentiment translation: A cy-
cled reinforcement learning approach. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 979–988.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70,
pages 3881–3890. JMLR. org.

5196

Najam Zaidi, Trevor Cohn, and Gholamreza Haffari.
2020. Decoding as dynamic programming for recur-
rent autoregressive models. In International Confer-
ence on Learning Representations.

Zhirui Zhang, Shuo Ren, Shujie Liu, Jianyong Wang,
Peng Chen, Mu Li, Ming Zhou, and Enhong Chen.
2018. Style transfer as unsupervised machine trans-
lation. arXiv preprint arXiv:1808.07894.

Wanrong Zhu, Zhiting Hu, and Eric Xing. 2019. Text
infilling. arXiv preprint arXiv:1901.00158.

5197

Appendix

A Implementation Details for Text
Infilling Baselines

A.1 Insertion Transformer

We implement the Insertion Transformer in our
own framework, using the same Transformer en-
coder module as for BLM and replacing the predic-
tion layers by Insertion Transformer’s mechanism.
The canvas is also generated according to the train-
ing procedure of Insertion Transformer.

A.2 Masked Language Model

We use the RobertaForMaskedLM architecture
in the Transformers library for MLM (Wolf et al.,
2019; Liu et al., 2019b).

At test time, the model is given an easier version
of the text infilling task where blanks are expanded
into sequences of 〈mask〉 tokens of the target length
(or equivalently, the model uses an oracle to predict
the length of the infilling).

We experiment with three decoding strategies:
(1) one-shot: the model predicts all masks simul-
taneously (2) left-to-right: the model fills in the
masks from left to right (3) confident-first: the
model fills one mask at a time that has the high-
est score. We report results for the confident-first
strategy which has the best performance.

A.3 BERT+LM

We use the bert-base-uncased model as
served by the Transformers library (Wolf et al.,
2019; Devlin et al., 2018). The left-to-right lan-
guage model is a Transformer decoder to predict
tokens in a blank. Its input word embedding is con-
catenated with BERT’s output in the blank position
at each time step.

A.4 Seq2seq-full and Seq2seq-fill

For both seq2seq baselines, we use Fairseq’s
transformer iwslt de en architecture (Ott
et al., 2019). To generate training data, we apply
the blanking procedure to the input dataset and
generate k copies of each sentence with different
masks. We experiment with k ∈ {1, 10, 100} and
report the best performance, obtained by k = 10.

B Monte-Carlo Estimate of Perplexity

For a sentence x of length n, we estimate p(x; θ)
in Eq. (5) with m samples:

Xm =
n!

m

m∑
i=1

p(x, σi; θ)

where σi’s are randomly sampled orders.
Note that Xm is an unbiased estimate of p(x; θ):

E[Xm] = p(x; θ)

The estimated PPL is accordinly:

Ym = X−1/nm

Since z−1/n is a convex function of z,

E[Ym] = E[X−1/nm] ≥ E[Xm]
−1/n = p(x; θ)−1/n

i.e., the expectation of the estimated PPL ≥ the
actual PPL. As m increases, the variance of Xm

decreases, and the inequality becomes tighter.
Hence, we will observe that as m increases, the

estimated PPL becomes smaller and converges to
the real PPL.

5198

C Generation Trajectory

also
the also
the also choice
the salsa also choice
the salsa was also choice
the salsa was also only choice
the salsa was also only choice .
the salsa was also my only choice .

,
, terrible
poor , terrible
poor , terrible ,
poor , terrible , very
poor selection , terrible , very

very poor selection , terrible , very
very poor selection , service terrible , very
very poor selection , service terrible , very !
very poor selection , service terrible , very slow !

favorite
my favorite
my favorite pittsburgh
my favorite pittsburgh .
my favorite restaurant pittsburgh .
my favorite restaurant in pittsburgh .

the
is the
is the .
is the are .
food is the are .
food is the are friendly .
food is and the are friendly .
food is delicious and the are friendly .
food is delicious and the are very friendly .
food is delicious and the owners are very friendly .

the food is delicious and the owners are very friendly .

Figure 7: Examples of BLM generation trajectory on the Yelp review dataset.

