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Abstract

The concept of Dialogue Act (DA) is univer-
sal across different task-oriented dialogue do-
mains - the act of “request” carries the same
speaker intention whether it is for restaurant
reservation or flight booking. However, DA
taggers trained on one domain do not gener-
alize well to other domains, which leaves us
with the expensive need for a large amount of
annotated data in the target domain. In this
work, we investigate how to better adapt DA
taggers to desired target domains with only un-
labeled data. We propose MASKAUGMENT, a
controllable mechanism that augments text in-
put by leveraging the pre-trained MASK token
from BERT model. Inspired by consistency
regularization, we use MASKAUGMENT to in-
troduce an unsupervised teacher-student learn-
ing scheme to examine the domain adaptation
of DA taggers. Our extensive experiments on
the Simulated Dialogue (GSim) and Schema-
Guided Dialogue (SGD) datasets show that
MASKAUGMENT is useful in improving the
cross-domain generalization for DA tagging.

1 Introduction

Dialog act (DA) tagging, one of the important NLU
components of modern task-oriented dialog sys-
tems, aims to capture the speaker’s intention behind
the utterances at each dialog turn. Several different
schema and taxonomies have been introduced by
several different researchers (Core and Allen, 1997;
Stolcke et al., 2000; Bunt et al., 2010; Mezza et al.,
2018) over the years. However, the main focus of
the recent work (Kumar et al., 2018; Chen et al.,
2018; Raheja and Tetreault, 2019) on DA tagging
was on human-human social conversations (God-
frey et al., 1992; Jurafsky et al., 1997), which is
less applicable for task-oriented setting.

Recently, several task-oriented dialogue
datasets (Shah et al., 2018; Henderson et al., 2014;
Budzianowski et al., 2018) have been released.

Figure 1: Overview of dialog act tagging task and cross-
domain generalization scenario of similar dialog acts. The
specific contents of the utterances of the same dialog act (DA)
are distinct due to the domain difference, making the cross-
domain generalization challenging.

However, the discrepancy in their annotation
schema hinders the progress on building DA
taggers that can generalize across domains and
possibly datasets. To address this issue, Paul et al.
(2019) propose a universal schema for DAs by
aligning annotations for multiple existing corpora.
In this regard, another useful corpora employed as
a testbed in this work is Schema-guided dialogues
(SGD) (Rastogi et al., 2020), which covers 20
domains under the same DA annotation schema.

It is often challenging and costly to obtain a large
amount of in-domain dialogues with annotations.
However, unlabeled dialogue corpora in target do-
main can easily be curated from past conversation
logs or collected via crowd-sourcing (Byrne et al.,
2019; Budzianowski et al., 2018) at a more rea-
sonable cost. The goal of this work is to investi-
gate how to leverage pre-trained masked language
models (e.g., BERT) to better adapt DA taggers to
unseen domains with available unlabeled dialogues.
Pre-trained language models (Devlin et al., 2019;
Liu et al., 2019) have been successful for several
NLP tasks including dialogue systems (Wolf et al.,
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Figure 2: Given a dialogue turn in target domain, we obtain teacher and student representations by applying two different
maskings on its flattened original representation. We use the output binary probability distributions (per dialog act) of the teacher
as soft targets to train the student. Orange and green colored boxes indicate different segment ids.

2019; Zhang et al., 2019; Bao et al., 2020; Hender-
son et al., 2019; Wu et al., 2020). However, domain
adaptation capabilities of these models remain to
be further explored for goal-oriented dialogues.

In this paper, we use the pre-trained MASK token
of BERT model to define MASKAUGMENT, which
stochastically augments text input by randomly re-
placing its tokens with the MASK token. We adopt
consistency regularization approach (Sajjadi et al.,
2016) to introduce an unsupervised teacher-student
learning scheme by leveraging MASKAUGMENT

for generating teacher and student representations
retaining different amount of the original content
from the unlabeled dialogue example. Our exten-
sive experiments on GSim (Shah et al., 2018) and
SGD (Rastogi et al., 2020) datasets suggest: (i)
BERT establishes a much stronger baseline com-
pared to previous work (Paul et al., 2019), (ii) The
proposed teacher-student learning via MASKAUG-
MENT is useful in further improving the target do-
main F1 score over BERT baseline: up to 3% when
the full source domain data is used, and up to 10%
for the low-resource setting.

2 MASKAUGMENT

In this section, we first discuss the task setup,
BERT-based DA tagging model, and relevant back-
ground. We then define the proposed fine-tuning
objectives leveraging MASKAUGMENT.

2.1 Task Setup
We start by formalizing the DA tagging task, de-
picted in Figure 1, as a multi-label classification
problem. Let D = [T1, T2, . . . , Tn] denote a dia-
logue of n turns as a series of user and system utter-
ances. Let A = {aj}m1 be the predefined set of m
different DAs in the schema. The objective of dia-
logue act tagging is to determine a subset Ak ⊆ A
of DAs that apply to the current turn Tk given the
conversation history D:k = [T1, T2, . . . , Tk] so far.
We formulate this objective simply as a classifica-
tion problem with binary labels yj ∈ {0, 1} for

each act aj where yj = 1 if aj ∈ Ak and yj = 0
otherwise. As defined above, dialogue act tagging
is a turn-level classification problem, hence every
turn Tk constitutes: (i) a labeled example (D:k, Ak)
if we have a set Ak of DA annotations, or (ii) an
unlabeled example (D:k, ·) otherwise.

2.2 Model
Given a conversation history D:k as input, we first
convert it into a sequence of words by concatenat-
ing user and system utterances. Before concatenat-
ing each utterance, we prepend it with correspond-
ing speaker tag using [SYS] and [USR] special to-
kens indicating system and user sides, respectively.
Finally, the whole flattened sequence is finalized
by prepending it with [CLS] special token to obtain
the final dialogue history representation:

x = [CLS]...[USR] Ti [SYS] Ti+1... (1)

The segment ids are set to 0 and 1 for the tokens of
past turns and the current turn, respectively.

For DA tagging task, dialogue history x is used
as input to pre-trained language model M , and the
model computes a probability vector pθ(·|x) =
σ(WM(x) + b) where M(x) ∈ Rd is the output
contextualized embedding corresponding to CLS

token, W ∈ Rm×d and b ∈ Rm are trainable
weights of a linear projection layer, σ is the sig-
moid function, θ denotes the entire set of trainable
parameters of model M along with (W, b), and fi-
nally pθ(aj |x) indicates the probability of tag aj
being triggered. The following objective is used to
train the model parameters.
Supervised tagging loss (STL). This objective is
used to update the DA tagger via the supervision
coming from labeled source data S. We use binary-
cross entropy loss JSTL(θ;x, y) defined as:

− [y · log pθ(·|x) + (1− y) · log(1− pθ(·|x))] (2)

2.3 Learning with MASKAUGMENT

Semi-supervised learning (SSL) (Berthelot et al.,
2019, 2020; Sohn et al., 2020; Li et al., 2020) is
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an effective approach for improving deep learning
models by leveraging in-domain unlabeled data.
Unlike traditional SSL setting, our objective is to
primarily address the underlying source-to-target
domain shift. In prior work (Xie et al., 2019; Wei
and Zou, 2019), unsupervised data augmentation
methods including word replacement and back-
translation have been shown useful for short writ-
ten text classification. However, such augmentation
methods are shown to be less effective (Shleifer,
2019) when used with pre-trained models. Besides,
back-translation is less applicable in our scenario as
translation of multi-turn dialogue itself is a rather
challenging task compared to short text.

Instead, we propose a simple and controllable
data augmentation–MASKAUGMENT–to explore a
new unsupervised teacher-student learning scheme
for domain adaptation of DA taggers. MASKAUG-
MENT augments the original text input by randomly
replacing its tokens with MASK token at a specified
probability. We follow the masking policy in (De-
vlin et al., 2019). Formally, let z(x̄|x, ε) denote the
MASKAUGMENT as a stochastic transformation
with ε-probability for input x. Below we define
three fine-tuning objectives leveraging MASKAUG-
MENT that are used in addition to JSTL.
Masked tagging loss (MTL). We incorporate
MASKAUGMENT into the STL objective by per-
turbing its input sequence x as follows:

JMTL(θ;x, y, ε) = Ex̄∼z(x̄|x,ε) [JSTL(θ; x̄, y)] .

Masked LM loss (MLM). This is the original ob-
jective that BERT is pre-trained with. The objec-
tive of MLM training is to correctly reconstruct a
randomly selected subset (with probability ε) of
input tokens leveraging the unmasked context. We
denote this loss by JMLM(θ;x, ε).
Teacher-Student Learning with Disagreement
Loss (DAL). We adopt consistency regulariza-
tion (Sajjadi et al., 2016; Laine and Aila, 2017)
widely used in traditional SSL (Berthelot et al.,
2019; Sohn et al., 2020; Li et al., 2020) and de-
fine disagreement loss, which employs MASKAUG-
MENT in a novel way to give rise to an unsuper-
vised teacher-student training. The core idea is
to contrast the amount of controllable perturba-
tions to learn more generalizable representations.
We propose a stochastic imputation-based teacher
and student selection by leveraging MASKAUG-
MENT. As in Figure 2, we sample two augmenta-
tions x̄(t) ∼ z(x̄|x, εt) and x̄(s) ∼ z(x̄|x, εs) for

teacher and student, respectively. We take εt < εs
to ensure that the teacher augmentation x̄(t) retains
more of the original content x than the student
augmentation x̄(s), hence is more reliable. The dis-
agreement loss JDAL(θ;x, εt, εs) is then computed
as the binary cross-entropy loss between the teacher
pθ(·|x̄(t)) and the student pθ(·|x̄(s)) distributions as
in Eq. 2, treating teacher as the soft target (y).

3 Experiments

3.1 Datasets
GSIM (Shah et al., 2018) consists of machine-
machine task-oriented dialogues in two tasks of two
different domains: buying a movie ticket (GMov)
and reserving a restaurant table (GRes). It contains
1500/469/1117 dialogues for the train/dev/test sets.
Following (Paul et al., 2019), its dialogue acts are
mapped to 13 tags in universal schema.
SGD (Rastogi et al., 2020) consists of 22,825
schema-guided single/multi-domain dialogues
where domains can have multiple schemas, each
defined by a set of tracking slots. We use single-
domain dialogues of smaller sizes including music
(SMusic), media (SMedia), ride-sharing (SRide) as
source domains to study generalization on flights
(SFlights), the largest one, as the target domain.

3.2 Training and Implementation Details
The final loss function is the sum of the active ones
among JSTL,JMTL,JDAL, JMLM except JMLM is
multiplied with 0.1 when active. DAL is activated
after 1 epoch of training with the remaining ob-
jectives. We perform a tuning of εt ∈ [0, 0.1] and
εs ∈ [0.1, 0.5] for DAL objective. We optimize the
loss using AdamW (Loshchilov and Hutter, 2017).
The learning rate is tuned on [10−5, 5× 10−5] with
no warmup steps. We use a batch of 16 examples
with maximum sequence length of 128, which cov-
ers around 9.9, 10.3, 9.9 turns on average for train,
dev, test splits, respectively. We use transformers
library1 for our implementation.

3.3 Results and Discussion
We begin our discussion with our main findings
on domain adaptation as presented in Table 1. We
explore the effect of incorporating our proposed
MTL and DAL objectives on top of STL (base-
line) for both Transformer (Vaswani et al., 2017)
and BERT (Devlin et al., 2019) models. Trans-
former baseline model on DA tagging with STL

1https://github.com/huggingface/transformers
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Fine-tuning Objectives GMov → GRes GRes → GMov SMusic → SFlights SMedia → SFlights SRide → SFlights
STL MTL DAL Source Target Source Target Source Target Source Target Source Target
LSTM (Paul et al., 2019) 91.4 75.1 89.2 85.0 - - - - - -
Transformer
3 7 7 96.5 81.6 97.4 93.6 84.7 57.7 92.9 76.4 91.5 62.3
3 7 3 96.2 85.4 97.3 93.8 86.0 58.5 91.5 76.6 97.3 62.3
3 3 7 97.0 83.8 96.5 94.1 90.3 58.4 93.0 76.3 96.6 64.6
3 3 3 97.3 85.9 97.6 94.7 92.6 59.8 94.3 78.9 97.4 65.4

scratch-BERT
3 7 7 98.4 89.7 98.7 96.9 93.6 60.6 98.3 82.9 98.8 67.2
3 7 3 97.8 91.4 99.0 97.1 93.9 60.8 98.0 86.5 98.8 67.5
3 3 7 98.3 90.9 98.9 97.5 95.8 60.8 98.5 84.4 98.5 69.7
3 3 3 98.9 92.8 99.0 97.7 98.6 62.6 98.4 89.0 99.3 71.1

Table 1: Micro-F1 scores on the test set of source and target domains with combinations of STL, MTL, and DAL objectives.
scratch-BERT is initialized from original bert-base-uncased. Transformer is a randomly initialized version of scratch-BERT.

Model scratch-BERT pre-BERT

STL 89.7 91.9
STL + MLM 91.0 93.2
STL + MTL + DAL 92.8 94.0
STL + MTL + DAL + MLM 94.1 94.4

Table 2: Micro-F1 scores on target (GRes) domain for pre-
BERT (obtained by domain-adaptive pre-training) in com-
parison with scratch-BERT (initialized from BERT) across
different fine-tuning objectives. We also highlight the effect
of MLM when used as a fine-tuning objective on unlabeled
target domain examples in the second and fourth rows.

objective leads to considerable improvements on
the LSTM (Paul et al., 2019). Fine-tuning BERT
with STL objective from scratch provides further
improvements on Transformer, establishing a much
stronger baseline both on source and target domain
performance. For both Transformer and BERT
models, our proposed DAL and MTL objectives
are independently useful in further improving the
cross-domain generalization over strong baselines
that are trained only with STL objective while not
hurting the source domain performance. Moreover,
fine-tuning on the combined unsupervised objec-
tive of DAL and MTL leads to the best performance
(last row) on target domains across the board, hint-
ing they provide orthogonal benefits.

Domain-adaptive pre-training (pre-BERT). As
shown useful by Gururangan et al. (2020), we ex-
plore domain-adaptive pre-training of BERT model
on the combination of source and target domain
dialogues with MLM loss before fine-tuning it on
the task. As presented in Table 2, pre-BERT helps
improve the F1 score on the target domain (GRes)
by up to 2.2% over the strong scratch-BERT model
across different training objectives. Incorporating
MASKAUGMENT into pre-BERT via our proposed
DAL and MTL objectives leads to 2.1% boost
over fine-tuning with only STL, achieving 4.8% F1
score improvement over LSTM (Paul et al., 2019)
(89.2%) trained on the full labeled data (GRes)
itself in a supervised way. This might partly be

Precision Recall
Model Dev Test Dev Test

scratch-BERT
STL 87.8 88.3 89.6 91.1
STL + MTL + DAL 91.5 90.7 95.3 95.0
pre-BERT
STL 91.8 91.4 92.1 92.4
STL + MTL + DAL 93.1 92.4 95.6 95.6

Table 3: Precision and recall scores on target (GRes) domain
for pre-BERT and scratch-BERT including dev set results.

Model #Dials: 10 #Dials: 20 #Dials: 50

scratch-BERT
STL 53.3 65.5 73.6
STL + MTL + DAL 58.4 69.0 78.2
pre-BERT
STL 59.8 73.9 82.9
STL + MTL + DAL 70.4 77.8 85.1

Table 4: F1 scores on target domain (GRes) under the low-
resource setting. #Dials denote the number of labeled dia-
logues (randomly sampled) used in the source domain (GMov).
We report the average of 3 runs with different samples.

due to the effect of learning a more domain-aware
MASK token, which in return may lead to a more
informed and useful teacher representations.
The effect of MLM in fine-tuning. We also con-
duct experiments on using MLM as unsupervised
fine-tuning objective on the target domain dia-
logues. As shown in Table 2, it helps improve the
cross-domain generalization performance. Specifi-
cally, our ultimate model (last row) achieves 94.1%
and 94.4% F1 scores on the target domain for
scratch-BERT and pre-BERT models, respectively.
Consistent gains on precision and recall. In Ta-
ble 3, we demonstrate that our proposed approach
leads to consistent gains on both precision and
recall. While the improvement is consistent, we
observe that MASKAUGMENT significantly helps
close the recall gap between scratch-BERT and pre-
BERT (i.e., from 2.5% to 0.3% on the dev set and
from 1.3% to 0.6% on the test set).
Low-resource setting for source domain. As
shown in Table 4, we observe that the benefit of
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(a) Improved example for sys-offer. (b) Improved example for request. (c) Failure example for sys-notify-failure.

Figure 3: Qualitative examples comparing baseline and proposed approach across scratch-BERT and pre-BERT settings.

scratch-BERT pre-BERT
Acts Frequency Baseline Ours Baseline Ours
affirm 13% 92.0 94.3 95.5 94.2
inform 30% 95.3 95.0 95.3 95.8
repeat 1% 95.2 90.9 98.3 89.5
request 15% 92.2 97.8 97.0 99.3
sys-expl-confirm 6% 76.5 87.4 86.8 89.6
sys-negate 3% 89.8 78.2 84.9 82.3
sys-notify-failure 4% 93.8 82.4 85.0 84.5
sys-notify-success 3% 80.7 91.8 95.1 88.2
sys-offer 13% 69.2 89.3 71.5 91.1
thank-you 2% 98.5 85.5 98.5 97.1
user-hi 6% 99.6 99.9 99.7 99.2
user-negate 4% 87.4 88.5 89.8 91.9

Table 5: Micro-F1 scores for each dialog act (DA) on the
test split of target (GRes) domain. Note that we use the tar-
get data without their labels in totally unsupervised fashion,
where only the source (GMov) domain provides label supervi-
sion. We compare baseline (STL) and our proposed training
scheme (STL + MTL +DAL) through MASKAUGMENT for
both scratch-BERT and pre-BERT settings. Frequency indi-
cates the occurrence ratio of the corresponding dialog act in
the test split of the target domain. We highlighted the rows
with more than 10% frequency. Green highlighting indicates
the tags on which our method is superior to baseline, and red
highlighting indicates the opposite.

MASKAUGMENT through DAL and MTL objec-
tives becomes larger as the number of labeled dia-
logues in the source domain gets smaller. The ef-
fect of domain-adaptive pre-training also becomes
stronger, providing 12% improvement over scratch-
BERT when only 10 labeled dialogues are avail-
able in the source domain while achieving 85.1%
F1 score on the target domain with 50 labeled di-
aligues when combined with MASKAUGMENT.
Adaptation performance across DAs. In Table
5, we present additional analysis on the adapta-
tion performance across the set of all dialog acts in
the schema. MASKAUGMENT provides significant
improvement across most of the DAs including
frequent ones such as request and sys-offer while
not hurting the performance much (if not improv-
ing) on other frequent acts such as affirm and in-
form. For scratch-BERT setting, baseline (STL)
objective obtains superior performance on less fre-

quent DAs including sys-negate, sys-notify-failure,
and thank-you, for which the performance drop is
mostly bridged in pre-BERT setting. On the other
hand, Pre-BERT provides consistent adaptation im-
provement over scratch-BERT across all dialog acts
except for sys-negate and sys-notify-failure.
Qualitative analysis of the approach. In Fig-
ures 3a and 3b, we provide examples for improved
predictions on sys-offer and request acts, respec-
tively. These are some of the most frequent DAs
that MASKAUGMENT can provide a significant
(5-20%) improvement over the baseline approach
for both scratch-BERT and pre-BERT settings. In
Figure 3c, we include an example where scratch-
BERT with MASKAUGMENT fails on predicting
sys-notify-failure act correctly as opposed the base-
line. However, most of such failure cases vanish
for pre-BERT setting, where the gap in F1 score
drops from 11.4% in scatch-BERT to only 0.5% in
pre-BERT as shown in Table 5.

4 Conclusion

We study cross-domain generalization of pre-
trained language models for DA tagging. While
the fine-tuned BERT model performs well on in-
domain DA tagging, its cross-domain generaliza-
tion is still not satisfactory. To combat this short-
coming, we investigate domain adaptation through
the proposed unsupervised teacher-student train-
ing that leverages the MASKAUGMENT method
for data augmentation. Our empirical results show
that the proposed training scheme leads to signifi-
cant improvements on domain adaptation for dia-
log act taggers. In the future, we plan to explore
MASKAUGMENT for other tasks in NLP domain.
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