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Abstract

We focus on the problem of capturing declar-
ative knowledge about entities in the learned
parameters of a language model. We introduce
a new model—Entities as Experts (EAE)—
that can access distinct memories of the en-
tities mentioned in a piece of text. Unlike
previous efforts to integrate entity knowledge
into sequence models, EAE’s entity representa-
tions are learned directly from text. We show
that EAE’s learned representations capture suf-
ficient knowledge to answer TriviaQA ques-
tions such as “Which Dr.  Who villain has
been played by Roger Delgado, Anthony Ain-
ley, Eric Roberts?”, outperforming an encoder-
generator Transformer model with 10x the pa-
rameters. According to the LAMA knowledge
probes, EAE contains more factual knowledge
than a similarly sized BERT, as well as previ-
ous approaches that integrate external sources
of entity knowledge. Because EAE associates
parameters with specific entities, it only needs
to access a fraction of its parameters at infer-
ence time, and we show that the correct identi-
fication and representation of entities is essen-
tial to EAE’s performance.

1 Introduction

Neural network sequence models, pre-trained as
language models, have recently revolutionized text
understanding (Dai and Le, 2015; Peters et al.,
2018; Howard and Ruder, 2018; Devlin et al.,
2018), and recent work has suggested that they
could take the place of curated knowledge bases or
textual corpora for tasks such as question answer-
ing (Petroni et al., 2019; Roberts et al., 2020).

In this paper, we focus on developing neural se-
quence models that capture the knowledge required
to answer questions about real world entities. To
this end, we introduce a new model architecture
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TWork done at Google Research.
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Figure 1: Our model with an entity memory, applied to
the open domain QA task. The red arrows shows the
integration of the entity and token representations.

that can access distinct and independent representa-
tions of the entities mentioned in text. Unlike other
efforts to inject entity specific knowledge into se-
quence models (Peters et al., 2019; Zhang et al.,
2019; Poerner et al., 2019) our model learns entity
representations from text along with all the other
model parameters. We call our model Entities as
Experts (EAE), since it divides the parameter space
according to entity identity. This name also reflects
EAE’s similarities with the Massive Mixture of Ex-
perts (Shazeer et al., 2017), as well as other work
that integrates learned memory stores into sequence
models (Weston et al., 2014; Lample et al., 2019).

To understand the motivation for distinct and in-
dependent entity representations, consider Figure 1.
A traditional Transformer (Vaswani et al., 2017)
needs to build an internal representation of Charles
Darwin from the words “Charles” and “Darwin’,
both of which can also refer to different entities
such as the Charles River, or Darwin City. Con-
versely, EAE can access a dedicated representation
of “Charles Darwin”, which is a memory of all
of the contexts in which this entity has previously
been mentioned. This memory can also be accessed
for other mentions of Darwin, such as “Charles
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Robert Darwin” or “the father of natural selection”.
Retrieving and re-integrating this memory makes it
easier for EAE to find the answer.

We train EAE to predict masked-out spans in
English Wikipedia text (Devlin et al., 2018); to
only access memories for entity mention spans;
and to access the correct memory for each entity
mention. Mention span supervision comes from
an existing mention detector, and entity identity
supervision comes from Wikipedia hyperlinks. By
associating memories with specific entities, EAE
can learn to access them sparsely. The memory is
only accessed for spans that mention entities, and
only the mentioned memories need to be retrieved.

We evaluate EAE’s ability to capture declarative
knowledge using the LAMA knowledge probes in-
troduced by Petroni et al. (2019), as well as the
open-domain variants of the TriviaQA and Web-
Questions question answering tasks (Joshi et al.,
2017; Berant et al., 2013). On both tasks, EAE
outperforms related approaches with many more
parameters. An in-depth analysis of EAE’s predic-
tions on TriviaQA shows that the correct identifi-
cation and reintegration of entity representations is
essential for EAE’s performance.

We further demonstrate that EAE’s learned en-
tity representations are better than the pre-trained
embeddings used by Zhang et al. (2019); Peters
etal. (2019) at knowledge probing tasks and the TA-
CRED relation extraction task (Zhang et al., 2017;
Alt et al., 2020). We show that training EAE to
focus on entities is better than imbuing a similar-
sized network with an unconstrained memory store,
and explain how EAE can outperform much larger
sequence models while only accessing a small pro-
portion of its parameters at inference time.

2 Approach

Let £ = {e1...en} be a predefined set of entities,
and letV = {[MASK], wy ... w)s} be a vocabulary
of tokens. A context x = [xq...x] is a sequence
of tokens x; € V. Each context comes with the
list of the mentions it contains, m = [myg ... myz),
where each mention m; = (e, Sm,;, tm,) 1s de-
fined by its linked entity e,,,, start token index s,,,
and end token index ¢,,,;. Entity mentions might not
be linked to a specific entity in £, thus e, € EUeg,
where eg refers to the null entity.

2.1 Model Architecture

The basic model architecture follows the Trans-
former (Vaswani et al., 2017), interleaved with our
entity memory layer. Our model has two embed-
ding matrices — token and entity embeddings. Fig-
ure 2 illustrates our model. Our model is:

X’ = TokenEmbed(x)

X! = Transformer(X", num_layers = Iy)
X? = EntityMemory(X")

X* = LayerNorm(X? + X')

X* = Transformer(X® num_layers = I;)

X® = TaskSpecificHeads(X")

The entity memory layer constructs an entity em-
bedding E,,, for each mention m;. The output
of the entity memory layer and preceding trans-
former layer are summed, normalized, then pro-
cessed by additional transformer layers. Through-
out this work we use [p = 4 and [; = 8.

Entity Memory Layer Let E be a matrix of
learned entity embeddings of shape (IV,dens).
EntEmbed(e;) maps an entity e; to its row in E.
The entity memory layer takes the output sequence
from the preceding transformer layer (X') and out-
puts a new sequence (X'T1), sparsely populated
with entity representations. For each entity men-
tion m;, the output sequence has an entity represen-
tation, a projection of the weighted sum of entity
embeddings in E, at position s,,.

et = Wy B, if 0= sy, (1)

where W), maps the entity representation Fy,, to
the dimension of :z:i

We now describe how to generate F,,; for each
mention m;. First, we generate a pseudo entity
embedding h,,,, based on the mention’s span repre-
sentation [z, ||} ], a concatenation of its start
and tail represéntati(;ns.

him, = Wil ||z}, ] 2

where Wy is of shape (dent, 2 - demp), Wwhere depp
is the dimension of X*.

We find the k nearest entity embeddings of i,
from E by computing the dot product, and E,,, is
a weighted sum of them. More formally:

Pu- Y
e;j €topK(E,hm, k)
exp(EntEmbed(e;) - hpm,)

a; - (EntEmbed(e;))

o =
! ZeEtopK(E,hmi,k) eXp(EntEmbed(e) : hmz)
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Figure 2: The Entities as Experts model: the initial transformer layer output is used (i) to predict mention bound-
aries, (ii) to retrieve entity embeddings from entity memory, and (iii) to construct input to the next transformer
layer, augmented with the retrieved entity embeddings of (ii). The final transformer block output is connected to
task specific heads: token prediction and entity prediction. The entity retrieval after the first transformer layer (ii)
is also supervised with an entity linking objective during pre-training.

Where topK(&, hp,, k) returns the £ entities that
yield the highest score EntEmbed(e;) - hy,,. We
use £ = N to train and use £ = 100 at inference
(see Section 4.1 and 6.3).

The entity memory layer can be applied to any
sequence output without loss of generality. We
apply it to the output of the first Transformer.

Task-Specific Heads The final transformer layer
can be connected to multiple task specific heads.
In our experiments, we introduce two heads:
TokenPredand EntityPred.

The TokenPred head predicts masked tokens
for a cloze task. Each masked token’s final repre-
sentation xf is fed to an output softmax over the
token vocabulary, as in BERT.

The EntityPred head predicts entity ids for
each entity mention span (i.e., entity linking). We
build the pseudo entity embedding (k) from the
last sequence output (X*). Then, the model pre-
dicts the entity whose embedding in E is the closest
to the pseudo entity embedding.

Inference-time Mention Detection We intro-
duce a mention detection layer to avoid dependence
at inference on an external mention detector. The
mention detection layer applies a BIO! classifier
to the first transformer block’s output. We decode
the entire BIO sequence, ensuring that inconsistent
sequences are disallowed. We use inferred mention
spans at inference for all our experiments.

'In a BIO encoding, each token is classified as being the
Beginning, Inside, or Outside of a mention.

2.2 Training
2.2.1 Data and Preprocessing

We assume access to a corpus D = {(x;, m;)},
where all entity mentions are detected but not nec-
essarily all linked to entities. We use English
Wikipedia as our corpus, with a vocabulary of 1m
entities. Entity links come from hyperlinks, lead-
ing to 32m 128 byte contexts containing 17m entity
links. Non-overlapping entity mention boundaries
come from hyperlinks and the Google Cloud Natu-
ral Language API? leading to 140m mentions.

We remove 20% of randomly chosen entity men-
tions (all tokens in the mention boundaries are re-
placed with [MASK]) to support a masked language
modeling objective. See Appendix B for full de-
tails of our pre-processing and pre-training hyper-
parameters.

2.2.2 Learning Objective

The pre-training objective is the sum of (1) a men-
tion boundary detection loss, (2) an entity linking
loss, and (3) a masked language modeling loss.

Mention Detection The B10 classification of to-
kens is supervised with a cross-entropy loss over
the labels. Assuming the mention boundaries are
complete, we apply this supervision to all tokens.

Entity Linking We use the hyperlinked entities
em,; to supervise entity memory assess. For each
hyperlinked mention m; = (e, Sm,, tm, ), Where

https://cloud.google.com/
natural-language/docs/basics#entity
analysis
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e; # ey, the pseudo embedding h,,, (Equation 2)
should be close to the entity embedding of the an-
notated entity, EntEmbed (e, ).

ELLoss = Zai . ]lemi#z
m;

exp(EntEmbed(eym,) « hm,)
Y ece exp(EntEmbed(e) - ;)

oy =

Note that this loss is not applied to 88% of men-
tions, which do not have hyperlinks. Memory ac-
cess for those mentions is unsupervised. The same
loss is used for the Ent it yPred head.

Masked Language Modelling We follow BERT,
and train the TokenPred head to independently
predict each of the masked out tokens in an input
context, using a cross-entropy loss over V.

3 Related Work

Knowledge-augmented language models Our
work shares inspiration with other approaches seek-
ing to inject knowledge into language models (Ahn
et al., 2016; Yang et al., 2016; Logan et al., 2019;
Zhang et al., 2019; Levine et al., 2019; Xiong
et al., 2019a; Peters et al., 2019; Poerner et al.,
2019; Wang et al., 2020). These have used a
variety of knowledge sources (WikiData, Word-
Net relations, outputs from dependency parsers)
and additional training objectives (synonym and
hyponym-hypernym prediction, word-supersense
prediction, replaced entity detection, predication
prediction, dependency relation prediction, entity
linking).> Our focus is on adding knowledge
about entities, so our work is closer to Zhang et al.
(2019); Peters et al. (2019); Xiong et al. (2019b);
Wang et al. (2020); Poerner et al. (2019) than to
the linguistically-augmented approaches of Levine
et al. (2019); Lauscher et al. (2019). Closest to
our work, KNOWBERT (Peters et al., 2019) intro-
duce an entity memory layer that is similar to the
one in EAE. In contrast with our work, KNOW-
BERT starts from the BERT checkpoint, does not
train with a knowledge-focused objective such as
our mention-masking input function and uses pre-
computed entity representations when integrating
the information from knowledge bases. In addi-
tion, KNOWBERT relies on a fixed, pre-existing
candidate detector (alias table) to identify potential
candidates and entities for a span while our model

3See also Table 1 of Wang et al. (2020) for a useful review
of such approaches.

learns to detect mentions. We compare to their
approach in Section 7.

Memory Augmented Neural Networks Our en-
tity memory layer is closely tied to memory-based
neural layers (Weston et al., 2014; Sukhbaatar et al.,
2015). In particular, it can be seen as a memory net-
work where memory access is supervised through
entity linking, and memory slots each correspond
to a learned entity representation. When uncon-
strained, these memory networks can be computa-
tionally expensive and supervising access through
entity linking limits this issue. Another approach
to scale memory networks is given by Lample et al.
(2019) who introduce product-key memories to ef-
ficiently index a large store of values.

Conditional Computation Conditional compu-
tation models seek to increase model capacity with-
out a proportional increase in computational com-
plexity. This is usually done through routing, where
only a subset of the network is used to process each
input. To facilitate such routing, approaches such
as large mixture of experts (Shazeer et al., 2017) or
gating (Eigen et al., 2013; Cho and Bengio, 2014)
have been used. Our method proposes entities as
experts, which allows us to supervise memory ac-
cess at two levels. We only access memories for
entity mentions, and we only need to access mem-
ories for the entities that were mentioned.

4 Models Evaluated

We evaluate EAE on cloze knowledge probes, open-
domain question answering and relation extraction.
Here, we describe baselines from previous work
and ablations.

4.1 The Entities as Experts models

Our primary model, Entities As Experts embeds
the input using the token embedding layer, then
passes it through 4 transformer layers. This output
is used for the entity memory layer, which uses em-
beddings of size 256, then passed through an addi-
tional 8 transformer layers. Finally, the model has a
TokenPred head and an EntityPred head. In
EAE, hyper-parameters for the transformer layers
are identical to those in BERT-base (Devlin et al.,
2018).

Sparse Activation in EaE EAE only accesses
the entity embedding matrix for mention spans,
and we only retrieve k& = 100 entity memories for
each mention (see Appendix 6.3 for analysis of this
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choice). This type of conditional computation can
facilitate massive model scaling with fixed com-
putational resources (Shazeer et al., 2017; Lample
et al., 2019) and, while our current implementation
does not yet include an efficient implementation of
top-k routing (Section 2), we note that it is possible
with fast maximum inner product search (Ram and
Gray, 2012; Shen et al., 2015; Shrivastava and Li,
2014; Johnson et al., 2017). We leave the imple-
mentation and investigation of this to future work.

4.2 Ablations

EaE-unsup In EAE-unsup, the entity memory is
not supervised to isolate the usefulness of supervis-
ing memory slots with entity linking. We use full
attention at inference when doing memory access.

No-EaE This ablation seeks to isolate the impact
of the entity-memory layer. No EAE has a token
embedding layer, twelve transformer layers, and an
EntityPred and a TokenPred head. This ap-
proach has similar number of parameters as EAE,*
but only uses the entity embedding matrix at the
EntityPred head. In contrast with EAE, this
baseline cannot model interactions between the en-
tity representations in the entity embedding matrix.
Also, the entity embeddings cannot be directly used
to inform masked language modelling predictions.

BERT / MM We compare to the BERT model.
To ascertain which changes are due to EAE’s data
and masking function (Section 2.2.2), and which
are due to the entity-specific modeling, we report
performance for BERT-MM which uses BERT’s
architecture with EAE’s masking function and data.
We present results for Base and Large model sizes.

4.3 Question Answering Models

RELIC learns entity embeddings that match BERT’s
encoding of the contexts in which those entities
were mentioned (Ling et al., 2020). TS5 is an
encoder-decoder trained on an enormous web cor-
pus. We compare to the version fine-tuned for open-
domain question answering (Roberts et al., 2020).
We also compare to the nearest neighbour baselines
introduced by Lewis et al. 2020; and we compare
to three recent QA models that use a retriever and a
reader to extract answers: BM25+BERT and ORQA
from Lee et al. 2019 and GraphRetriever (GR) is
introduced by Min et al. 2019b. All are described
fully in Appendix A.

“With the exception of projection matrices totalling less
than one million parameters.

5 Knowledge Probing Tasks

We follow previous work in using cloze tests and
question answering tasks to quantify the declarative
knowledge captured in the parameters of our model
(Petroni et al., 2019; Roberts et al., 2020).

5.1 Predicting Wikipedia Hyperlinks

We explore the ability of our model to predict
masked out hyperlink mentions from Wikipedia,
similar to the pre-training task> (Section 2.2). We
calculate accuracy on a 32k test examples separate
from the training data (Appendix B).

Table 1 shows the results for all our models. The
MM-base and No-EAE models perform similarly
on the token prediction task. These two models
have the same architecture up until the point of to-
ken prediction. This indicates that the signal com-
ing from the entity linking loss (Section 2.2.2) does
not benefit language modeling when it is applied at
the top of the transformer stack only.

Introducing the entity memory layer in the mid-
dle of the transformer stack (EAE) improves per-
formance on both language modeling and entity
linking, compared to the No-EAE model. This
indicates that the entity representations are being
used effectively, and that the model is learning
inter-entity relations, using the output from the en-
tity memory layer to improve predictions at the
downstream entity and token prediction layers.

If the memory layer is not supervised (EAE-
unsup), performance on token prediction accuracy
and perplexity is significantly worse than for EAE.
This underlines the importance of entity linking
supervision in teaching EAE how to best allocate
the parameters in the entity memory layer.

Finally, EAE performs better at predicting men-
tion tokens than the 24-layer MM-large, but does
marginally worse in terms of perplexity. We believe
that EAE is overconfident in its token predictions
when wrong, and we leave investigation of this
phenomenon to future work.

5.2 LAMA

LAMA (Petroni et al., 2019) contains cloze tasks
from three different knowledge base sources, and
one QA dataset. LAMA aims to probe the knowl-
edge contained in a language model, with a fo-
cus on the type of knowledge that has traditionally
been manually encoded in knowledge bases. As
a zero-shot probing task, it does not involve any

5n pre-training, we also mask non-hyperlinked mentions.
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Token
Model Params  Entity Acc Acc PPL
MM-base 110m - 45.0 19.6
MM-large 340m - 534 103
EAE-unsup | 366m - 469 169
No EAE 366m 58.6 45.0 193
EAE 367m 61.8 569 11.0

Table 1: Results on cloze-style entity prediction accu-
racy, token prediction accuracy and perplexity on the
test set of our masked hyperlink data.

Model Concept  RE  SQuAD T Avg.
Net -REx
BERT-base 15.6 9.8 14.1 31.1 17.7
BERT-large 19.2 10.5 17.4 323 | 199
MM-base 10.4 9.2 16.0 29.7 | 163
MM-large 12.4 6.5 24.4 314 | 18.7
EAE-unsup 10.6 8.4 23.1 30.0 | 18.0
No EAE 10.3 9.2 18.5 318 | 174
EAE 10.7 94 224 374 | 20.0

Table 2: Results on the LAMA probe. Adding entity
memory improves performance for the probes that fo-
cus on entities. Mention masking reduces performance
on ConceptNet sub-task which requires prediction of
non-mention terms such as “happy”.

task specific model training, and we do not apply
any LAMA-specific modeling. Table 2 shows that
adding the entity memory layer to the MM-base
model improves performance across the board on
this task. Not supervising this layer with entity
linking (EAE-unsup) is worse overall.

EAE’s average accuracy is similar to BERT-
large. However, the LAMA sub-task accuracies
show that the two models are complementary. Men-
tion focused approaches are much better than the
BERT baselines at predicting the mention like
words in the SQuAD and T-REx probes, but they
are marginally worse for the RE probe and very
significantly worse for the ConceptNet probe. This
is because the ConceptNet sub-task mostly in-
cludes non-entity answers such as “fly”, “cry”, and
“happy”, and a third of the answers in the Google-
RE sub-task are dates. We leave modeling of non-
entity concepts and dates to future work. Finally,
the entity specific memory in EAE is most benefi-
cial for T-Rex, which focuses on common entities
that are likely in our 1m entity vocabulary.

5.3 Open domain Question Answering

Setup TriviaQA and WebQuestions were intro-
duced as reading comprehension and semantic pars-
ing tasks, respectively (Joshi et al., 2017; Berant

et al., 2013). More recently, these datasets have
been used to assess the performance of QA systems
in the open domain setting where no evidence docu-
ments or database is given. In this setup, TriviaQA
contains 79k train examples and WebQuestions
3.1k. Most approaches rely on a text corpus at test
time, extracting answers from evidence passages
returned by a retrieval system. However, TS and
RELIC used neural networks to answer questions
directly. We follow Roberts et al. 2020 in describ-
ing approaches as open-book (test time access to
corpus) and closed-book (no test time access to cor-
pus), and we report the nearest neighbour results
from Lewis et al. 2020.

We follow RELIC and resolve answer strings to
Wikipedia entity identifiers.® We follow the train-
ing procedure from Section 2.2, with a round of
task specific training that applies the entity link-
ing and mention detection losses to the question
answering data. Each question is appended with a
special ‘answer position’ token and EAE is trained
to predict the correct answer entity in this position,
using the entity linking loss from Section 2.2.2.
Mention spans are identified within the question
(Section 2.2.1) and the mention detection loss from
Section 2.2.2 is applied to encourage EAE to ac-
cess the entity memory for entities in the question.
See Appendix C for additional information on task
setup and fine-tuning hyper-parameters.

Results Table 3 shows results on two open do-
main QA datasets. Entity prediction methods,
RELIC and EAE, significantly outperform nearest
neighbor baselines, showing that model general-
izes beyond train / development overlap and entity
representations contains information about answer
entities. No-EAE and RELIC both encode text with
a transformer and retrieve answer entities. Com-
pared to RELIC, No-EAE is trained to identify all
entities in a piece of text, instead of just one. This
leads to small but significant gains on TriviaQA. A
much larger gain (almost 6 points on both datasets)
comes from adding an entity memory inside the
transformer encoder (EAE). We also show that it
is possible to improve performance on TriviaQA
by doubling the size of the entity embeddings to
512d (EAE-emb-512). While this almost doubles
the model size, it does not significantly increase

®We resolve 77% of TriviaQA train; 84% of TriviaQA
dev; 84% of WebQuestions train; 95% of WebQuestions dev;
91% of WebQuestions test. See Appendix C for full details.
Answering with free-form text is out of this paper’s scope
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# TQA TQA Web

Params Dev  Wiki Test Q

Open-Book: Span Selection - Oracle 100%
BM25+BERT 110m 47.1 - 17.7
ORQA 330m 45.0 - 36.4
GR 110m 55.4 - 31.6
Closed-Book: Nearest Neighbor

ORACLE - 63.6 - -

TFIDF - 23.5 - -

BERT-base 110m 28.9 - -

Closed-Book: Generation - Oracle 100%
T5-Base 220m - 29.1 29.1
T5-Large 770m - 359 322
T5-3B 3B - 434 344
T5-11B 11B 423 50.1 374
T5-11B+SSM 11B 53.3 61.6 43.5
Closed-Book: Entity Prediction

ORACLE - 85.0 - 91.0

RELIC 3B 35.7 - -
No EAE 366m 37.7 - 334
EAE 367m 432 534 39.0
EAE,emb 512  623m 45.7 - 38.7

Table 3: Exact Match accuracy on TriviaQA and Web-
Questions. Open-book approaches reserve 10% of the
training data for development; entity prediction ap-
proaches only train on linked entity answers; and T5
merges Unfiltered-Deyv into training for Wiki-Test. For
more description of these choices, see Appendix E.

the number of parameters that need to be accessed
at inference time. See Section 4.1 for a discussion
of how this could be beneficial, and Appendix 6.3
for a preliminary investigation of conditional acti-
vation in EAE.

Even though entity prediction approach cannot
answer 15% of the data with unlinked answers for
TriviaQA, and 9% for WebQuestions, it outper-
forms all of the standard T5 models including one
that has 30 x the parameters. This indicates that the
entity specific model architecture is more efficient
in capturing the sort of information required for this
knowledge probing task than the general encoder-
decoder architecture used by TS5. However, when
TS5 is enhanced with an extra pre-training steps
focusing on likely answer spans from Wikipedia
(T5-11B + SSM) its performance leapfrogs that of
EAE. We note that the ‘salient spans’ included in
the SSM objective are likely to be entities (Guu
et al., 2020), and believe that there is significant
future work to be done in combining methods of
entity prediction and text generation.

Though closed-book approaches are still be-
hind open-book approaches on TriviaQA, we be-

lieve even higher performances could be attained
by ensembling diverse approaches and a prelimi-
nary study (Appendix F), indicates that ensembling
open-book with closed-book approaches is prefer-
able to ensembling within a single paradigm.

6 Analysis of TriviaQA Results
6.1 Entity-Based Analysis

We compare the performances of retrieval-based
GR, generation-based T5-11B, and our EAE model
on the TriviaQA Unfiltered-dev set. Figure 3 (a)
shows that all models perform better on frequent
entities. EAE’s performance is much lower for en-
tities seen fewer than one hundred times, likely be-
cause their entity embedding do not contain enough
information. Figure 3 (b) shows that as the number
of named entity mentions grows in the question,
TS5 performance decreases whereas EAE and GR
performance increases. We presume more entity
mentions makes it easier to retrieve relevant docu-
ments, thus contributing to better performance for
GR. For EAE, having more entity mentions allows
the model to access more entity knowledge. We
conduct further qualitative analysis below. Figure 3
(c) shows that closed-book models under-perform
on long questions. The trend disappears for open-
book models.

6.2 Manual Analysis

We randomly sampled 100 examples from
unfiltered-dev set, and analysed the ability of
EAE’s to correctly identify and link the question’s
entities. We find that 87% of questions do not have
any incorrectly predicted entities.’

We find that when there is at least one incor-
rectly linked entity, the performance of EAE is
considerably reduced. On this small sample, the
performance is even lower than for examples in
which there are no named entities in the question.

Table 4 illustrates three representative examples
from EAE and T5. In the first example, the ques-
tion contains a date but no proper names. Since
EAE does not have a representation for dates in the
entity memory, this question is challenging and the
model predicts an incorrect answer of the correct
type (annual event). The second example demon-
strates EAE’s ability to model connections between
entities. In this case, “The Master’ only occurs 38

"We do not define a strict bracketing to decide which enti-
ties in nested phrases like [[1966 [FIFA World Cup]] Final]
should be predicted.
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Figure 3: Performance on TriviaQA by: answer frequency in our Wikipedia training corpus (NA if not linked);
proper names in the question; tokens in the question. Standard deviations obtained through bootstrapping.

Question Answer TS5 Prediction EaE Prediction

Next Sunday, Sept 19, is International what day? Talk like a pirate day ~ talk like a pirate day =~ Pearl Harbor Re-
membrance Day

Which [Dr. Who] villain has been played by [Roger  The Master mr. daleks The Master

Delgado], [Anthony Ainley], [Eric Roberts], etc?

Which early aviator flew in a plane christened {Jason}?  Amy Johnston jean batten Icarus

Jason — Jason (Greek Mythology) Q176758

Table 4: Illustrative examples of predictions for the TriviaQA dev set. Questions are annotated with [correct] and
{incorrect} entity predictions from EAE, which is most successful when question entities are linked successfully.

K | Entity acc Tokacc Tok PPL | TQA
1 59.2 56.7 18.0 40.1
10 61.7 57.2 11.1 43.1
100 61.8 57.1 11.0 43.2
Full (10%) 61.8 56.9 11.0 434

Table 5: Impact of varying the number of retrieved en-
tity embeddings (K) in the Entity Memory layer at in-
ference on the entity prediction and TriviaQA tasks.

times in our training data, but in each of those oc-
currences it is likely that at least one of the relevant
actors is also mentioned. EAE learns the character-
actor relationship, while TS makes up an incorrect
character name based on a common category of
Dr. Who villain. The final example highlights the
sensitivity of EAE to incorrectly linked question
entities. Here, the name ‘Jason’ has been incor-
rectly linked to the Greek mythological with that
name, which causes EAE to predict another Greek
mythological figure, Icarus, as the answer. This is
particularly interesting because Icarus is strongly
associated with human flight—EAE is still trying
to find an aviator, albeit one from Greek mythology.
Additional examples can be found in Appendix G.

6.3 Top-K over Entity Embeddings

As described in Section 2, EAE uses the top 100
entity memories during retrieval for each mention.

Here, we empirically analyse the influence of this
choice. Table 5 shows how varying the number of
retrieved entity embeddings in the entity memory
layer at inference time impacts accuracy of entity
prediction and TrviaQA. Even for K = 10, perfor-
mance does not deteriorate meaningfully.

This is a key advantage of our modular approach,
where entity information is organized in the Entity
Memory layer. Despite only accessing as many pa-
rameters as BERT Base, our model outperforms
BERT Large on token prediction. Similarly in
TriviaQA, we outperform T5-3B model, while ac-
cessing about 3% of the parameters. While naive
implementation would not bring significant compu-
tational gain, fast nearest neighbor methods meth-
ods on entity embeddings enable retrieving the top
K entities in sub-linear time and storage, enabling
efficient model deployment.

7 Comparison to Alternative Entity
Representations

EAE is novel in learning entity representations
along with the parameters of a Transformer model.
Here, we provide a direct comparison between
EAE’s learned representations and the externally
trained, fixed representations used by ERNIE
(Zhang et al., 2019) and KNOWBERT (Peters et al.,
2019). Table 6 presents results for the EAE ar-
chitecture trained with entity memories initialized
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Initialization Dim Learned | Typing | PPL  Entity Acc. | LAMA-SquAD T-REx | TQA
Random 100 v 74.5 10.6 63.0 17.7 324 30.9
TransE 100 X 74.1 14.7 49.7 12.8 30.8 24.2
TransE 100 v 75.1 10.5 63.1 16.3 31.9 30.6
Random 300 v 74.2 9.4 64.5 19.3 31.7 33.2
Deep-Ed 300 X 73.0 12.6 57.4 17.0 29.8 30.1
Deep-Ed 300 v 74.2 8.9 65.1 15.7 33.5 33.9

Table 6: Comparison of learned representations to knowledge graph embeddings (TransE) and pre-trained repre-
sentations of entity descriptions and contexts (Deep-Ed). All experiments use same 200k entities.

from three different sources and two different train-
ing scenarios. The initial embedddings are either
the TransE-Wikidata embeddings used by ERNIE
(Bordes et al., 2013); the Deep-Ed embeddings
used by KNOWBERT (Ganea and Hofmann, 2017);
or the random embeddings used by EAE. The em-
beddings are either frozen, following ERNIE and
KNOWBERT, or trained along with all other net-
work parameters.® Along with the knowledge prob-
ing tasks from Section 5, we report performance
on the on the 9-way entity typing task from Choi
et al. 2018 (Appendix D).

It is clear that learning entity representations is
beneficial. However, initializing the entity memory
with Deep-Ed embeddings leads to gains on most
of the knowledge probing tasks, suggesting that
there are potential benefits from combining train-
ing regimens. Meanwhile, the best entity typing
results come from initializing with Wikidata em-
beddings, possibly because Wikidata has high qual-
ity coverage of the types (‘person’, ‘organization’,
‘location’, etc.) used. Finally, we point out that
both ERNIE and KNOWBERT differ from EAE in
other ways (see Appendix A). KNOWBERT in par-
ticular incorporates WordNet synset embeddings as
well as entity embeddings, leading to entity typing
accuracy of 76.1. Future work will explore differ-
ent ways of combining learned embeddings with
knowledge from diverse external sources.

As discussed in Section 3, there are significant
differences between EAE and KNOWBERT other
than the choice of entity representation. In par-
ticular, KNOWBERT has an explicit entity-entity
attention mechanism. To determine whether this
has a significant effect on a model’s ability to
model entity-entity relations, we evaluate EAE on
TACRED (Zhang et al., 2017) using the cleaned

8All experiments use the same 200k entities, at the intersec-
tion of the sets used by ERNIE and KNOWBERT For efficiency,
these three comparison systems are trained for 500k steps,
rather than the full 1m steps used in Section 5.

Model ‘ # Params Original Revised Weighted
KNOWBERT 523m 71.5 79.3 584
EAE 366m 70.2 80.6 61.3

Table 7: F; scores on original and revisited versions of
TACRED test sets. KNOWBERT scores are reported as
in Alt et al. (2020), corresponding to the best perform-
ing variant (KnowBert —W+W).

dataset introduced by (Alt et al., 2020).° Table 7
shows that EAE outperforms KNOWBERT on the
revised and weighted splits introduced by (Alt et al.,
2020), although it slightly under-performs on the
original setting.'® This result indicates that EAE,
without explicitly entity-entity attention, can cap-
ture relations between entities effectively.

8 Conclusion

We introduced a new transformer architecture,
EAE, which learns entity representations from text
along with other model parameters. Our evaluation
shows that EAE is effective at capturing declarative
knowledge and can be used for a wide variety of
tasks — including open domain question answering,
relation extraction, entity typing and knowledge
probing tasks. Our entity representations influence
the answer predictions for open-domain question
answering system and are of high quality, com-
pared to prior work such as KNOWBERT.

Our model learns representations for a pre-fixed
vocabulary of entities, and cannot handle unseen
entities. Future work can explore representations
for rare or unseen entities, as well as developing
less memory-intensive ways to learn and integrate
entity representations. Furthermore, integrating
information from knowledge-bases can further im-
prove the quality of entity representation.

°Our method follows (Baldini Soares et al., 2019) in using
special tokens to mark subject and object, and concatenating
their representations to model the relation.

The weighted split weights examples by its difficulty,
focusing on correctly predicting difficult examples.
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A Other Models Evaluated

In this section we describe the models mentioned in
Section 4.3 and compared to in Section sections 5
and 7.

A.1 Open-Book Question Answering Systems

Open-Book Open Domain Question Answering
Systems are usually comprised of two components:
a retriever and a reader. The retriever reads a set of
documents from a corpus or facts from a knowledge
base. Top retrievals are then fed to the reader which
predicts an answer, often through span selection.

BM25+BERT (Lee et al., 2019) uses the non-
parametric BM25 as its retriever and a BERT-base
reader to predict an answer through span selection.

ORQA (Lee et al., 2019) uses two BERT-base
models to retrieve relevant passages and a BERT-
base reader to predict the answer span.

Graph Retriever (Min et al., 2019b)’s retriever
can perform Graph-based, Entity-based and Text-
match retrieval. These different retrieval modalities
are then fused in representations that serve as input
to a span-selection reader.

A.2 Other Models

BERT (Devlin et al., 2018) is a transformer, pre-
trained using masked language modelling. We re-
port results for BERT-base, which has 110m param-
eters, and BERT-large, which has 340m parameters.
The transformer architecture used by BERT-base
is identical to the 12 transformer layers in EAE.
BERT-large uses a much larger transformer, and
has a similar number of parameters overall to EAE.

RELIC (Ling et al., 2020) is a dual encoder with
a BERT-base architecture that compares a represen-
tation of a mention to an entity representation. It
is similar to our No-EAE architecture. Its training
is however different, as only linked mentions are
masked and only one mention is masked at a time.
In addition, RELIC does not have mention detection
or masked language modelling losses. Finally, it is
also initialized with the BERT checkpoint whereas
we train our models from scratch.

TS5 T5 is an encoder-decoder transformer intro-
duced in Raffel et al. (2019). It has been fine-tuned
for open domain question answering in Roberts
et al. (2020). In that setup, the model is trained
to generate the answer to a question without any

context. T5 does not explicitly model entities or
have any form of memory. We compare to models
of different sizes, from 220m parameters to 11B.
‘SSM’ refers to salient span masking, indicating
that prior to fine-tuning on open domain question
answering the model was fine-tuned using salient
span masking, which bears resemblances to our
mention masking.

KnowBERT (Peters et al., 2019) KNOWBERT
is a BERT-base transformer that embeds multiple
knowledge bases to improve performance in a vari-
ety of tasks. The integration of this information is
done through a Knowledge Attention and Recon-
textualization component, which can be seen as a
small transformer that is run on the pooled men-
tion representations of potential entities. KNOW-
BERT uses this layer to embed entity representa-
tions from Wikipedia as well as Wordnet graph
information. In contrast with our work, KNOW-
BERT starts from the BERTcheckpoint, does not
train with a knowledge-focused objective such as
our mention-masking input function and uses pre-
existing representations when integrating the infor-
mation from knowledge bases. In addition, KNOW-
BERT relies on a fixed, pre-existing candidate de-
tector (alias table) to identify potential candidates
and entities for a span while our model learns men-
tion detection.

ERNIE (Zhang et al., 2019) ERNIE is a BERT-
base transformer that takes as additional input the
list of entities in the sentence. Multi-head atten-
tion is performed on those entities before they are
introduced in they are aggregated with the token
representations. In addition to BERT’s pre-training
objective, ERNIE also masks entities and trains
the model to predict them. In contrast with both
KNOWBERT and EAE, ERNIE takes entity linking
as an input rather than learning to do it inside the
model. In contrast with our approach, ERNIE uses
pre-existing entity representations that are fixed
during training.

B Wikipedia Pre-training

Wikipedia Processing We build our training cor-
pus of contexts paired with entity mention labels
from the 2019-04-14 dump of English Wikipedia.
We first divide each article into chunks of 500 bytes,
resulting in a corpus of 32 million contexts with
over 17 million entity mentions. We restrict our-
selves to the one million most frequent entities
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(86% of the linked mentions). These are processed
with the BERT tokenizer using the lowercase vo-
cabulary, limited to 128 word-piece tokens. In
addition to the Wikipedia links, we annotate each
sentence with unlinked mention spans using the
mention detector from Section 2.2. These are used
as additional signal for our mention detection com-
ponent and allow the model to perform retrieval
even for mentions that are not linked in Wikipedia.
We set aside 0.2% of the data for development and
0.2% for test and use the rest to pre-train our model.

Pre-training hyper-parameters We pre-train
our model from scratch. We use ADAM (Kingma
and Ba, 2014) with a learning rate of le-4. We
apply warmup for the first 5% of training, decay-
ing the learning rate afterwards. We also apply
gradient clipping with a norm of 1.0. We train
for one million steps using a large batch size of
4096. We use a TokenPrediction head for all
our models and an EntityPrediction head
for the EAE and No-EAE models. We did not run
extensive hyper-parameter tuning for pre-training
due to computational cost. We train on 64 Google
Cloud TPUs for all our pre-training experiments.
All pre-training experiments took between 2 days
and a week to complete.

C Open Domain Question Answering

Open Domain QA Preprocessing We annotate
each question with proper-name mentions!! using
the mention detector from Section 2.2.

When the answer is an entity, in our entity vo-
cabulary, we link the answer string to an entity ID
using the SLING phrase table!? (Ringgaard et al.,
2017). If the answer is not an entity in our vocabu-
lary, we discard the question from the training set,
though we keep it in the development and test set
to ensure fair comparisons with prior work. Ta-
ble 8 shows the share of answers that were linked
using our procedure. This means that Oracle perfor-
mance for our model on the TriviaQA development
set is only 85%, which is due to non entity-answers
and entities not in our vocabulary.

""Nominal mentions in questions typically refer to the an-
swer entity. This is unlike Wikipedia text, where nominal
mentions refer to entities that have previously been named.
We only link proper name mentions in questions so that the
model is not forced to hallucinate links for entities that have
not been properly introduced to the discourse.

Phttps://github.com/google/sling

Dataset | Train Development  Test
TriviaQA 77% 84% -
WebQuestions | 84% 95% 91%

Table 8: Share of the answers that are linked by our
linking procedure for the TriviaQA and WebQuestion
datasets. The test set for TriviaQA is not public, hence
the missing number.

Hyper-parameters For TriviaQA, we fine-tune
the entire model using a learning rate of 5e-6, a
batch size of 64 and performing 50,000 training
steps. For WebQuestions, we set the learning rate
to 3e-5, the batch size to 32 and train for 700 steps.
Fine-tuning was done on 4 Google Cloud TPUs.
In both cases, we searched the learning rate over
{5 x107°,3 x 107°,107°,5 x 1075,3 x 1076}
and the batch size in {32, 64, 128} and selected the
model based on validation performance.

D Entity Typing

We describe the procedure to obtain the Typing
results of Table 6.

Open Entity Processing We use the Ultra-fine
entity typing dataset introduced in (Choi et al.,
2018). As is done in Zhang et al. (2019); Peters
et al. (2019) we limit the task to the 9 generic types
(‘person’, ‘group’, ‘organization’, ‘location’, ‘en-
tity’, ‘time’, ‘object’, ‘event’ and ‘place’) and use
the Micro-F1 metric. The dataset is comprised of
5994 examples, equally divided between train, de-
velopment and test. We pass the sentences to our
model without extra annotations for mention an-
notations or entity linking, relying instead on the
model’s own predictions. To predict a type for the
span, we take the span representation and project it
to the 9 classes.

Hyper-parameters Since we have no mention
boundary or linking information, we freeze the
entity embeddings and the mention detection pa-
rameters in fine-tuning. We used a learning rate of
3e-5, a batch size of 32 and trained for 700 steps.
We also used label smoothing with a value of 0.1.
We searched the learning rate and the batch size
between the same bounds as for the open-domain
question answering tasks. For every model, we
ran with five different seeds and selected the best
model based on validation performance before run-
ning on test. We selected the threshold to compute
F1 based on validation scores.
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Systems | Oracle Acc.  Pred Overlap (%)
TS5 & EAE 55.9 29.3
T5 & GR 66.4 30.1
EAE & GR 64.6 33.6
ORQA & GR 63.8 39.6

Table 9: Comparing prediction overlap and oracle ac-
curacy on TriviaQA. Oracle accuracy considers a pre-
diction correct if at least one of the model prediction is
correct. While ORQA and GR outperform EAE and T5,
their predictions overlap more with GR and offer less
complementary value.

E TriviaQA Evaluation Data
Configuration

As the TriviaQA dataset was originally introduced
for reading comprehension task, prior work adapted
the initial splits and evaluation to reflect the open
domain setting. We describe the setup used by
prior approaches and introduce ours, to enable fair
comparison. The dataset comes in two blends,
Wikipedia and Web documents. While TriviaQA’s
official web evaluation uses (question, document,
answer) triplets, all open domain approaches aver-
age over (question, answer) pairs when using the
Web data.

Open-book Approaches: Lee et al. (2019); Min
et al. (2019a,b) use only the web splits. They use
90% of the original train data for training, perform-
ing model selection on the remaining 10% and
reporting test numbers on the original development
set since the original test set is hidden.

Previous Closed-book Approaches: Roberts
et al. (2020) also use the web data to train and
validate their model. However, they use the
Wikipedia'?® test split as a test set. After hyper-
parameter tuning, they re-train a model on both
the training and development sets of the web data.
Ling et al. (2020) uses the original web splits and
reports performance on the development set.

Our approach: To compare our approach more
closely to T5, we follow their setup, with the ex-
ception that we do not re-train a model on both the
train and development splits after hyper-parameter
selection.

F Comparing QA paradigms

We compare the performance of four systems
(ORQA, GraphRetriever (GR), TS5, EAE) on the
TriviaQA Unfiltered-Dev set. GR achieves an ac-
curacy of 55.4, ORQA 45.1, EAE 43.2 and T5 42.3.
As the open-book paradigm differs significantly
from the closed-book one, we intuit they might
complement each other.

To test this hypothesis, we measure prediction
overlap and oracle accuracy. Oracle accuracy con-
siders a prediction correct if either system is correct
(see Table 9). Unsurprisingly, the two open book
approaches show the most similar predictions, over-
lapping in nearly 40% of examples. While ORQA
outperforms T5 and EAE, the oracle accuracy of
ORQA & GR is lower than ORQA & TS5 or ORQA &
EAE. This suggests some questions might be better
suited to the closed book paradigm. In addition, the
oracle accuracy of the two closed book systems is
higher than that of the best performing open book
system. We leave designing approaches that better
combine these paradigms to future work.

G Additional Examples of TriviaQA
Predictions

Table 10 illustrates additional representative sam-
ple of questions and predictions from EAE and T5.
We break this sample down into questions that con-
tain no named entities, questions that contain only
correctly linked named entities, and questions that
contain incorrectly linked named entities.

Example (i) shows another case where our model
fails to handle dates. While TS5 also has no distinct
representation for dates, its 11B parameters man-
aged to memorize the esoteric connection between
the phrases ‘Sept 19° and °‘talk like a pirate day’.
In the second example without named entities, the
answer entity is sufficiently frequent in Wikipedia
(top 50k entities), and EAE seems to have learned
its connection with the specific categorical infor-
mation in the question.

Example (iii) shows another case where the cor-
rectly linked entities enable EAE to correctly an-
swer the prompt while T5 predicts a different direc-
tor’s name. Example (vi) shows how EAE fails at
predicting date answers, even when there is abun-
dant information in the question, predicting the
entity representing the 1990’s.

Bhttps://competitions.codalab.org/
competitions/17208
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Questions with no proper name mentions

Answer

TS5 Prediction

EaE Prediction

What links 1st January 1660 and 31st May 1669?

First and last
entries in Samuel
Pepys’s diaries

they were the dates
of the henry viii’s
last bath

Anglo-Dutch Wars

ii

Which radioactive substance sometimes occurs nat-
urally in spring water?

radon

radon

radon

Questions with only [correctly] linked entities

iii

Who directed the 2011 [Palme d’Or] winning film
‘[The Tree Of Life]’?

Terence Malick

ang lee

Terrence Malick

iv

Name the year: [Hirohito] dies; The [Exxon Valdez]
runs aground; [San Francisco] suffers its worst
earthquake since 1906.

1989

1989

1990s

Questions with {incorrectly} linked entities

Which car manufacturer produces the {Jimmy }
model?

Jimmy — Marcos Engineering Q1637323

Suzuki

suzuki

Brixham

vi

Where do you find the {Bridal Veil }, [American],
and [Horseshoe Falls]?

Bridal Veil — Veil (Garment) Q6497446

Niagara falls

niagra Falls

Niagara Falls

Table 10: Additional examples of question, answer and model predictions for the TriviaQA Unfiltered dev set.

Examples (v) and (vi) shows other failure modes
when EAE fails to correctly predict the entities in
the question. In example (vi) the entity is not avail-
able, though this not cause the model to err, likely
thanks to the two other correctly predicted ques-
tion entities. Example’s (vi) typo (from ‘Jimny’
to ‘Jimmy’) is particularly interesting: when fixed,
EAE links ‘Jimny’ correctly and predicts the right
answer.
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