
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4927–4936,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4927

Be More with Less: Hypergraph Attention Networks for
Inductive Text Classification

Kaize Ding
Arizona State University
kaize.ding@asu.edu

Jianling Wang
Texas A&M University
jlwang@tamu.edu

Jundong Li
University of Virginia

jundong@virginia.edu

Dingcheng Li
Amazon Inc.

lidingch@amazon.com

Huan Liu
Arizona State University
huan.liu@asu.edu

Abstract

Text classification is a critical research topic
with broad applications in natural language
processing. Recently, graph neural networks
(GNNs) have received increasing attention
in the research community and demonstrated
their promising results on this canonical task.
Despite the success, their performance could
be largely jeopardized in practice since they
are: (1) unable to capture high-order interac-
tion between words; (2) inefficient to handle
large datasets and new documents. To address
those issues, in this paper, we propose a prin-
cipled model – hypergraph attention networks
(HyperGAT), which can obtain more expres-
sive power with less computational consump-
tion for text representation learning. Extensive
experiments on various benchmark datasets
demonstrate the efficacy of the proposed ap-
proach on the text classification task.

1 Introduction

Text classification, as one of the most fundamen-
tal tasks in the field of natural language process-
ing, has received continuous endeavors from re-
searchers due to its wide spectrum of applications,
including sentiment analysis (Wang et al., 2016),
topic labeling (Wang and Manning, 2012), and dis-
ease diagnosis (Miotto et al., 2016). Inspired by the
success of deep learning techniques, methods based
on representation learning such as convolutional
neural networks (CNNs) (Kim, 2014) and recurrent
neural networks (RNNs) (Liu et al., 2016) have
been extensively explored in the past few years. In
essence, the groundbreaking achievements of those
methods can be attributed to their strong capability
of capturing sequential context information from
local consecutive word sequences.

More recently, graph neural networks
(GNNs) (Kipf and Welling, 2017; Veličković
et al., 201b; Hamilton et al., 2017) have drawn

much attention and demonstrated their superior
performance in the task of text classification (Yao
et al., 2019; Wu et al., 2019a; Liu et al., 2020).
This line of work leverages the knowledge from
both training and test documents to construct a
corpus-level graph with global word co-occurrence
and document-word relations, and consider text
classification as a semi-supervised node classifi-
cation problem. Then with GNNs, long-distance
interactions between words could be captured to
improve the final text classification performance.

Despite their promising early results, the usabil-
ity of existing efforts could be largely jeopardized
in real-world scenarios, mainly owing to their lim-
itations in the following two aspects: (i) Expres-
sive Power. Existing GNN-based methods predom-
inately focus on pairwise interactions (i.e., dyadic
relations) between words. However, word inter-
actions are not necessarily dyadic in natural lan-
guage, but rather could be triadic, tetradic, or of
a higher-order. For instance, consider the idiom
“eat humble pie”, whose definition is “admit
that one was wrong” in common usage. If we
adopt a simple graph to model the word interac-
tions, GNNs may misinterpret the word pie as “a
baked dish” based on its pairwise connections to
other two words (humble – pie and eat – pie),
then further misunderstand the actual meaning of
the whole idiom. Hence, how to go beyond pair-
wise relations and further capture the high-order
word interactions is vital for high-quality text repre-
sentation learning, but still remains to be explored.
(ii) Computational Consumption. On the one hand,
most of the endeavors with GNN backbone tend
to be memory-inefficient when the scale of data in-
creases, due to the fact that constructing and learn-
ing on a global document-word graph consumes im-
mense memory (Huang et al., 2019). On the other
hand, the mandatory access to test documents dur-
ing training renders those methods inherently trans-

4928

ductive. It means that when new data arrives, we
have to retrain the model from scratch for handling
newly added documents. Therefore, it is necessary
to design a computationally efficient approach for
solving graph-based text classification.

Upon the discussions above, one critical research
question to ask is “Is it feasible to acquire more
expressive power with less computational consump-
tion?”. To achieve this goal, we propose to adopt
document-level hypergraph (hypergraph is a gener-
alization of simple graph, in which a hyperedge can
connect arbitrary number of nodes) for modeling
each text document. The use of document-level
hypergraphs potentially enables a learning model
not only to alleviate the computational inefficiency
issue, but more remarkably, to capture heteroge-
neous (e.g., sequential and semantic) high-order
contextual information of each word. Therefore,
more expressive power could be obtained with less
computational consumption during the text repre-
sentation learning process. As conventional GNN
models are infeasible to be used on hypergraphs,
to bridge this gap, we propose a new model named
HyperGAT, which is able to capture the encoded
high-order word interactions within each hyper-
graph. In the meantime, its internal dual attention
mechanism highlights key contextual information
for learning highly expressive text representations.
To summarize, our contributions are in three-fold:

• We propose to model text documents with
document-level hypergraphs, which improves
the model expressive power and reduces compu-
tational consumption.

• A principled model HyperGAT based on a dual
attention mechanism is proposed to support rep-
resentation learning on text hypergraphs.

• We conduct extensive experiments on multiple
benchmark datasets to illustrate the superiority
of HyperGAT over other state-of-the-art methods
on the text classification task.

2 Related Work

2.1 Graph Neural Networks

Graph neural networks (GNNs) – a family of neural
models for learning latent node representations in
a graph, have achieved remarkable success in dif-
ferent graph learning tasks (Defferrard et al., 2016;
Kipf and Welling, 2017; Veličković et al., 201b;
Ding et al., 2019a, 2020). Most of the prevailing
GNN models follow the paradigm of neighborhood

aggregation, aiming to learn latent node representa-
tions via message passing among local neighbors
in the graph. With deep roots in graph spectral
theory, the learning process of graph convolutional
networks (GCNs) (Kipf and Welling, 2017) can
be considered as a mean-pooling neighborhood ag-
gregation. Later on, GraphSAGE (Hamilton et al.,
2017) was developed to concatenate the node’s fea-
ture with mean/max/LSTM pooled neighborhood
information, which enables inductive representa-
tion learning on large graphs. Graph attention net-
works (GATs) (Veličković et al., 201b) incorporate
trainable attention weights to specify fine-grained
weights on neighbors when aggregating neighbor-
hood information of a node. Recent research fur-
ther extend GNN models to consider global graph
information (Battaglia et al., 2018) and edge infor-
mation (Gilmer et al., 2017) during aggregation.
More recently, hypergraph neural networks (Feng
et al., 2019; Bai et al., 2020; Wang et al., 2020)
are proposed to capture high-order dependency be-
tween nodes. Our model HyperGAT is the first
attempt to shift the power of hypergraph to the
canonical text classification task.

2.2 Deep Text Classification

Grounded on the fast development of deep learn-
ing techniques, various neural models that auto-
matically represent texts as embeddings have been
developed for text classification. Two representa-
tive deep neural models, CNNs (Kim, 2014; Zhang
et al., 2015) and RNNs (Tai et al., 2015; Liu et al.,
2016) have shown their superior power in the text
classification task. To further improve the model
expressiveness, a series of attentional models have
been developed, including hierarchical attention
networks (Yang et al., 2016), attention over at-
tention (Cui et al., 2017), etc. More recently,
graph neural networks have shown to be a pow-
erful tool for solving the problem of text classi-
fication by considering the long-distance depen-
dency between words. Specifically, TextGCN (Yao
et al., 2019) applies the graph convolutional net-
works (GCNs) (Kipf and Welling, 2017) on a sin-
gle large graph built from the whole corpus, which
achieves state-of-the-art performance on text clas-
sification. Later on, SGC (Wu et al., 2019a) is
proposed to reduce the unnecessary complexity
and redundant computation of GCNs, and shows
competitive results with superior time efficiency.
TensorGCN (Liu et al., 2020) proposes a text graph

4929

tensor to learn word and document embeddings by
incorporating more context information. (Huang
et al., 2019) propose to learn text representations on
document-level graphs. However, those transduc-
tive methods are computationally inefficient and
cannot capture the high-order interactions between
words for improving model expressive power.

3 Methodology

In this section, we introduce a new family of GNN
models developed for inductive text classification.
By reviewing the existing GNN-based endeavors,
we first summarize their main limitations that need
to be addressed. Then we illustrate how we use
hypergraphs to model text documents for achieving
the goals. Finally, we propose the model Hyper-
GAT based on a new dual attention mechanism and
model training for inductive text classification.

3.1 GNNs for Text Classification

With the booming development of deep learning
techniques, graph neural networks (GNNs) have
achieved great success in representation learning
on graph-structured data (Zhou et al., 2018; Ding
et al., 2019b). In general, most of the prevailing
GNN models follow the neighborhood aggregation
strategy, and a GNN layer can be defined as:

hl
i = AGGRl

(
hl−1
i , {hl−1

j |∀j ∈ Ni}
)
, (1)

where hl
i is the node representation of node i at

layer l (we use xi as h0
i) and Ni is the local neigh-

bor set of node i. AGGR is the aggregation function
of GNNs and has a series of possible implemen-
tations (Kipf and Welling, 2017; Hamilton et al.,
2017; Veličković et al., 201b).

Given the capability of capturing long-distance
interactions between entities, GNNs also have
demonstrated promising performance on text clas-
sification (Yao et al., 2019; Wu et al., 2019b; Liu
et al., 2020). The prevailing approach is to build
a corpus-level document-word graph and try to
classify documents through semi-supervised node
classification. Despite their success, most of the
existing efforts suffer from the computational inef-
ficiency issue, not only because of the mandatory
access of test documents, but also the construc-
tion of corpus-level document-word graphs. In the
meantime, those methods are largely limited by the
expressibility of using simple graphs to model word
interactions. Therefore, how to improve model ex-

pressive power with less computational consump-
tion is a challenging and imperative task to solve.

3.2 Documents as Text Hypergraphs

To address the aforementioned challenges, in this
study, we alternatively propose to model text docu-
ments with document-level hypergraphs. Formally,
hypergraphs can be defined as follows:

Definition 3.1 Hypergraphs: A hypergraph is de-
fined as a graph G = (V, E), where V =
{v1, . . . , vn} represents the set of nodes in the
graph, and E = {e1, . . . , em} represents the set
of hyperedges. Note that for any hyperedge e, it
can connect two or more nodes (i.e., σ(e) ≥ 2).

Notably, the topological structure of a hyper-
graph G can also be represented by an incidence
matrix A ∈ Rn×m, with entries defined as:

Aij =

{
1, if vi ∈ ej ,
0, if vi 6∈ ej .

(2)

In the general case, each node in hypergraphs
could come with a d-dimensional attribute vector.
Therefore, all the node attributes can be denoted
as X = [x1,x2, . . . ,xn]

T ∈ Rn×d, and we can
further use G = (A,X) to represent the whole
hypergraph for simplicity.

For a text hypergraph, nodes represent words in
the document and node attributes could be either
one-hot vector or the pre-trained word embeddings
(e.g., word2vec, GloVe). In order to model het-
erogeneous high-order context information within
each document, we include multi-relational hyper-
edges as follows:

Sequential Hyperedges. Sequential context de-
picts the language property of local co-occurrence
between words, which has demonstrated its effec-
tiveness for text representation learning (Yao et al.,
2019). To leverage the sequential context infor-
mation of each word, we first construct sequential
hyperedges for each document in the corpus. One
natural way is to adopt a fixed-size sliding window
to obtain global word co-occurrence as the sequen-
tial context. Inspired by the success of hierarchical
attention networks (Yang et al., 2016), here we con-
sider each sentence as a hyperedge and it connects
all the words in this sentence. As another benefit,
using sentences as sequential hyperedges enables
our model to capture the document structural infor-
mation at the same time.

4930

` ` `

Node-level Attention

Node-level Attention

Node-level Attention

Edge-level Attention

z
𝒚"

𝒉𝟏𝑳#𝟏

PoolingHyperGAT

HyperGAT

HyperGAT

. . .

. . .

Layer L

𝒉𝟒𝑳#𝟏

𝒉𝟓𝑳#𝟏

𝒉𝟐𝑳#𝟏

𝒉𝟒𝑳#𝟏

𝒉𝟓𝑳#𝟏

𝒉𝟑𝑳#𝟏

𝒉𝟒𝑳#𝟏

𝒉𝟔𝑳#𝟏

𝒇𝟏𝑳

𝒇𝟐𝑳

𝒇𝟑𝑳

...

...

!

" #

$ %
&

`

. . .
. . .

𝒉𝟒𝑳

𝒉𝟔𝑳

𝒉𝟏𝑳

Text Representation

Figure 1: Illustration of the proposed hypergraph attention networks (HyperGAT) for inductive text classification.
We construct a hypergraph for each text document and feed it into HyperGAT. Based on the node and edge-level
attention, text representations that capture high-order word interactions can be derived. Figure best viewed in color.

Semantic Hyperedges. Furthermore, in order to
enrich the semantic context for each word, we build
semantic hyperedges to capture topic-related high-
order correlations between words (Linmei et al.,
2019). Specifically, we first mine the latent topics
T from the text documents using LDA (Blei et al.,
2003) and each topic ti = (θ1, ...,θw) (w denotes
the vocabulary size) can be represented by a prob-
ability distribution over the words. Then for each
topic, we consider it as a semantic hyperedge that
connects the top K words with the largest proba-
bilities in the document. With those topic-related
hyperedges, we are able to enrich the high-order
semantic context of words in each document.

It is worth mentioning that though we only dis-
cuss sequential and semantic hyperedges in this
study, other meaningful hyperedges (e.g., syntactic-
related) could also be integrated into the proposed
model for further improving the model expressive-
ness and we leave this for future work.

3.3 Hypergraph Attention Networks
To support text representation learning on the con-
structed text hypergraphs, we then propose a new
model called HyperGAT (as shown in Figure 1) in
this section. Apart from conventional GNN mod-
els, HyperGAT learns node representations with
two different aggregation functions, allowing to
capture heterogeneous high-order context informa-
tion of words on text hypergraphs. In general, a
HyperGAT layer can be defined as:

hl
i = AGGRl

edge

(
hl−1
i , {f lj |∀ej ∈ Ei}

)
,

f lj = AGGRl
node

(
{hl−1

k |∀vk ∈ ej}
)
,

(3)

where Ei denotes the set of hyperedges connected
to node vi and f lj is the representation of hyperedge
ej in layer l. AGGRedge is an aggregation function
that aggregates features of hyperedges to nodes
and AGGRnode is another aggregation function that
aggregates features of nodes to hyperedges. In this
work, we propose to implement those two functions
based on a dual attention mechanism. We will start
by describing a single layer l for building arbitrary
HyperGAT architectures as follows:

Node-level Attention. Given a specific node vi,
our HyperGAT layer first learns the representations
of all its connected hyperedges Ei. As not all the
nodes in a hyperedge ej ∈ Ei contribute equally
to the hyperedge meaning, we introduce attention
mechanism (i.e., node-level attention) to highlight
those nodes that are important to the meaning of
the hyperedge and then aggregate them to compute
the hyperedge representation f lj . Formally:

f lj = σ

(∑
vk∈ej

αjkW1h
l−1
k

)
, (4)

where σ is the nonlinearity such as ReLU and W1

is a trainable weight matrix. αjk denotes the at-
tention coefficient of node vk in the hyperedge ej ,
which can be computed by:

αjk =
exp(aT1 uk)∑

vp∈ej exp(a
T
1 up)

,

uk = LeakyReLU(W1h
l−1
k),

(5)

where aT1 is a weight vector (a.k.a, context vector).

4931

Edge-level Attention. With all the hyperedges
representations {f lj |∀ej ∈ Ei}, we again apply an
edge-level attention mechanism to highlight the
informative hyperedges for learning the next-layer
representation of node vi. This process can be
formally expressed as:

hl
i = σ

(∑
ej∈Ei

βijW2f
l
j

)
, (6)

where hl
i is the output representation of node vi and

W2 is a weight matrix. βij denotes the attention
coefficient of hyperedge ej on node vi, which can
be computed by:

βij =
exp(aT2 vj)∑

ep∈Ei exp(a
T
2 vp)

,

vj = LeakyReLU([W2f
l
j ||W1h

l−1
i]),

(7)

where aT2 is another weight (context) vector for
measuring the importance of the hyperedges and ||
is the concatenation operation.

The proposed dual attention mechanism enables
a HyperGAT layer not only to capture the high-
order word interactions, but also to highlight the
key information at different granularities during the
node representation learning process.

3.4 Inductive Text Classification
For each document, after going through L Hyper-
GAT layers, we are able to compute all the node
representations on the constructed text hypergraph.
Then we apply the mean-pooling operation on the
learned node representations HL to obtain the doc-
ument representation z, and feed it to a softmax
layer for text classification. Formally:

ŷ = softmax
(
Wcz+ bc

)
, (8)

where Wc is a parameter matrix mapping the doc-
ument representation into an output space and bc

is the bias. ŷ denotes the predicted label scores.
Specifically, the loss function of text classification
is defined as the cross-entropy loss:

L = −
∑
d

log(ŷd
j), (9)

where j is the ground truth label of document d.
Thus HyperGAT can be learned by minimizing the
above loss function over all the labeled documents.

Note that HyperGAT eliminates the mandatory
access of test documents during training, making

Dataset 20NG R8 R52 Ohsumed MR

Doc 18,846 7,674 9,100 7,400 10,662
Train 11,314 5,485 6,532 3,357 7,108
Test 7,532 2,189 2,568 4,043 3,554

Word 42,757 7,688 8,892 14,157 18,764
Avg Len 221.26 65.72 69.82 135.82 20.39
Class 20 8 52 23 2

Table 1: Summary statistics of the evaluation datasets.

the model different from existing GNN-based meth-
ods. For unseen documents, we can directly feed
their corresponding text hypergraphs to the pre-
viously learned model and compute their labels.
Hence, we can handle the newly added data in an
inductive way instead of retraining the model.

4 Experiments

4.1 Experimental Setting

Evaluation Datasets. To conduct a fair and com-
prehensive evaluation, we adopt five benchmark
datasets from different domains in our experiments:
20-Newsgroups (20NG), Reuters (R8 and R52),
Ohsumed, and Movie Review (MR). Those datasets
have been widely used for evaluating graph-based
text classification performance (Yao et al., 2019;
Huang et al., 2019; Liu et al., 2020). Specifi-
cally, the 20-Newsgroups dataset and two Reuters
datasets are used for news classification. The
Ohsumed dataset is medical literature. The Movie
Review dataset is collected for binary sentiment
classification. A summary statistics of the bench-
mark datasets is presented in table 1 and more
detailed descriptions can be found in (Yao et al.,
2019). For quantitative evaluation, we follow the
same train/test splits and data preprocessing proce-
dure in (Yao et al., 2019) in our experiments. In
each run, we randomly sample 90% of the training
samples to train the model and use the left 10%
data for validation. More details can be found in
Appendix A.1.

Compared Methods. In our experiments, the
baselines compared with our model HyperGAT
can be generally categorized into three classes:
(i) word embedding-based methods that classify
documents based on pre-trained word embed-
dings, including fastText (Joulin et al., 2016),
and more advanced methods SWEM (Shen et al.,
2018) and LEAM (Wang et al., 2018); (ii)
sequence-based methods which capture text fea-

4932

Model 20NG R8 R52 Ohsumed MR

CNN-rand 0.7693 ± 0.0061 0.9402 ± 0.0057 0.8537 ± 0.0047 0.4387 ± 0.0100 0.7498 ± 0.0070
CNN-non-static 0.8215 ± 0.0052 0.9571 ± 0.0052 0.8759 ± 0.0048 0.5833 ± 0.0106 0.7775 ± 0.0072

LSTM 0.6571 ± 0.0152 0.9368 ± 0.0082 0.8554 ± 0.0113 0.4114 ± 0.0117 0.7506 ± 0.0044
LSTM (pretrain) 0.7543 ± 0.0172 0.9609 ± 0.0019 0.9048 ± 0.0086 0.5110 ± 0.0150 0.7733 ± 0.0089

Bi-LSTM 0.7318 ± 0.0185 0.9631 ± 0.0033 0.9054 ± 0.0091 0.4927 ± 0.0107 0.7768 ± 0.0086
fastText 0.7938 ± 0.0030 0.9613 ± 0.0021 0.9281 ± 0.0009 0.5770 ± 0.0049 0.7514 ± 0.0020

fastText (bigrams) 0.7967 ± 0.0029 0.9474 ± 0.0011 0.9099 ± 0.0005 0.5569 ± 0.0039 0.7624 ± 0.0012
SWEM 0.8516 ± 0.0029 0.9532 ± 0.0026 0.9294 ± 0.0024 0.6312 ± 0.0055 0.7665 ± 0.0063
LEAM 0.8191 ± 0.0024 0.9331 ± 0.0024 0.9184 ± 0.0023 0.5858 ± 0.0079 0.7695 ± 0.0045

Graph-CNN 0.8142 ± 0.0032 0.9699 ± 0.0012 0.9275 ± 0.0022 0.6386 ± 0.0053 0.7722 ± 0.0027
TextGCN (transductive) 0.8643 ± 0.0009 0.9707 ± 0.0010 0.9356 ± 0.0018 0.6836 ± 0.0056 0.7674 ± 0.0020

TextGCN (inductive) 0.8331 ± 0.0026 0.9578 ± 0.0029 0.8820 ± 0.0072 0.5770 ± 0.0035 0.7480 ± 0.0025
Text-level GNN 0.8416 ± 0.0025 0.9789 ± 0.0020 0.9460 ± 0.0030 0.6940 ± 0.0060 0.7547 ± 0.0006

HyperGAT (ours) 0.8662 ± 0.0016 0.9797 ± 0.0023 0.9498 ± 0.0027 0.6990 ± 0.0034 0.7832 ± 0.0027

Table 2: Test accuracy on document classification with different models. Each model we ran 10 times and report
the mean ± standard deviation. HyperGAT significantly outperforms all the baselines based on t-tests (p < 0.05).

tures from local consecutive word sequences, in-
cluding CNNs (Kim, 2014), LSTMs (Liu et al.,
2016), and Bi-LSTM (Huang et al., 2015); (iii)
graph-based methods that aim to capture interac-
tions between words, including Graph-CNN (Def-
ferrard et al., 2016), two versions of TextGCN (Yao
et al., 2019) and Text-level GNN (Huang et al.,
2019). Note that TextGCN (transductive) is the
model proposed in the original paper and TextGCN
(inductive) is the inductive version implemented
by the same authors. Text-level GNN is a state-of-
the-art baseline which performs text representation
learning on document-level graphs. More details
of baselines can be found in (Yao et al., 2019).

Implementation Details. HyperGAT is imple-
mented by PyTorch and optimized with the Adam
optimizer. We train and test the model on a 12
GB Titan Xp GPU. Specifically, our HyperGAT
model consists of two layers with 300 and 100 em-
bedding dimensions, respectively. We use one-hot
vectors as the node attributes and the batch size
is set to 8 for all the datasets. The optimal values
of hyperparameters are selected when the model
achieves the highest accuracy for the validation
samples. The optimized learning rate α is set to
0.0005 for MR and 0.001 for the other datasets. L2
regularization is 10−6 and dropout rate is 0.3 for
the best performance. For learning HyperGAT, we
train the model for 100 epochs with early-stopping
strategy. To construct the semantic hyperedges, we
train an LDA model for each dataset using the train-
ing documents and select the Top-10 words from
each topic. The topic number is set to the same

number of classes. For baseline models, we either
show the results reported in previous research (Yao
et al., 2019) or run the codes provided by the au-
thors using the parameters described in the origi-
nal papers. More details can be found in the Ap-
pendix A.2. Our data and source code is available
at https://github.com/kaize0409/HyperGAT.

4.2 Experimental Results

Classification Performance. We first conduct
comprehensive experiments to evaluate model per-
formance on text classification and present the re-
sults in Table 2. Overall, our model HyperGAT
outperforms all the baselines on the five evaluation
datasets, which demonstrates its superior capability
in text classification. In addition, we can make the
following in-depth observations and analysis:
• Graph-based methods, especially GNN-based

models are able to achieve superior performance
over the other two categories of baselines on
the first four datasets. This observation indi-
cates that text classification performance can
be directly improved by capturing long-distance
word interactions. While for the MR dataset,
sequence-based methods (CNNs and LSTMs)
show stronger classification capability than most
of the graph-based baselines. One potential rea-
son is that sequential context information plays
a critical role in sentiment classification, which
cannot be explicitly captured by the majority of
existing graph-based methods.

• Not surprisingly, without the additional knowl-
edge on test documents, the performance of

https://github.com/kaize0409/HyperGAT

4933

Model TextGCN (transductive) HyperGAT

20NG 1,4479.36MB 180.33MB
R8 931.58MB 41.75MB

R52 1289.48MB 46.85MB
Ohsumed 1822.71MB 63.17MB

MR 3338.24MB 80.99MB

Table 3: GPU memory consumption of different meth-
ods. The batch size for HyperGAT is set to 8.

TextGCN (inductive) largely falls behind its orig-
inal transductive version. Though Text-level
GNN is able to achieve performance improve-
ments by adding trainable edge weights between
word, its performance is still limited by the infor-
mation loss of using pairwise simple graph. In
particular, our model HyperGAT achieves con-
siderable improvements over other GNN-based
models, demonstrating the importance of high-
order context information for learning word rep-
resentations.

Computational Efficiency. Table 3 presents the
computational cost comparison between the most
representative transductive baseline TextGCN and
our approach. Form the reported results, we can
clearly find that HyperGAT has a significant com-
putational advantage in terms of memory consump-
tion. The main reason is that HyperGAT con-
ducts text representation learning at the document-
level and it only needs to store a batch of small
text hypergraphs during training. On the contrary,
TextGCN requires constructing a large document-
word graph using both training and test docu-
ments, which inevitably consumes a great amount
of memory. Another computational advantage of
our model is that HyperGAT is an inductive model
that can generalize to unseen documents. Thus we
do not have to retrain the whole model for newly
added documents like transductive methods.

Model Sensitivity. The model performance on
20NG and Ohsumed with different first-layer em-
bedding dimensions is reported in Figure 2, and
we omit the results on other datasets since similar
results can be observed. Notably, the best perfor-
mance of HyperGAT is achieved when the first-
layer embedding size is set to 300. It indicates
that small embedding size may render the model
less expressive, while the model may encounter
overfitting if the embedding size is too large. In
the meantime, to evaluate the effect of the size of

100 200 300 400
Embedding Dimension

0.850

0.853

0.856

0.859

0.862

0.865

0.868

Ac
cu

ra
cy

HyperGAT

(a) 20NG

100 200 300 400
Embedding Dimension

0.650

0.660

0.670

0.680

0.690

0.700

Ac
cu

ra
cy

HyperGAT

(b) Ohsumed

Figure 2: Test accuracy by varying the embedding size
of the first HyperGAT layer.

0.0 0.2 0.4 0.6 0.8
Training Percentage

0.200

0.300

0.400

0.500

0.600

0.700

Ac
cu

ra
cy

HyperGAT
Text-level GNN
TextGCN (transductive)
TextGCN (inductive)

(a) Ohsumed

0.0 0.2 0.4 0.6 0.8
Training Percentage

0.620

0.660

0.700

0.740

0.780

Ac
cu

ra
cy

HyperGAT
Text-level GNN
TextGCN (transductive)
TextGCN (inductive)

(b) MR

Figure 3: Test accuracy by varying the proportions of
training data (2.5%, 5%, 7.5%, 10%, 25%, 50%, 75%).

labeled training data, we compare several best per-
forming models with different proportions of the
training data and report the results on Ohsumed
and MR in Figure 3. In general, with the growth
of labeled training data, all the evaluated methods
can achieve performance improvements. More re-
markably, HyperGAT can significantly outperform
other baselines with limited labeled data, showing
its effectiveness in real-world scenarios.

4.3 Ablation Analysis

To investigate the contribution of each module in
HyperGAT, we conduct an ablation analysis and
report the results in Table 4. Specifically, w/o atten-
tion is a variant of HyperGAT that replaces the dual
attention with convolution. w/o sequential and w/o
semantic are another two variants by excluding se-
quential, semantic hyperedges, respectively. From
the reported results we can learn that HyperGAT
can achieve better performance by stacking more
layers. This observation can verify the usefulness
of long-distance word interactions for text repre-
sentation learning. Moreover, the performance gap
between w/o attention and HyperGAT shows the
effectiveness of the dual attention mechanism for
learning more expressive word representations. By
comparing the results of w/o sequential and w/o
semantic, we can learn that the context informa-

4934

Model 20NG R8 R52 Ohsumed MR

w/o attention 0.8645 ± 0.0006 0.9705 ± 0.0015 0.9321 ± 0.0023 0.6611 ± 0.0042 0.7699 ± 0.0044
w/o sequential 0.6813 ± 0.0024 0.9448 ± 0.0053 0.9051 ± 0.0023 0.5664 ± 0.0047 0.7766 ± 0.0009
w/o semantic 0.8602 ± 0.0031 0.9714 ± 0.0026 0.9415 ± 0.0032 0.6848 ± 0.0045 0.7811 ± 0.0028

HyperGAT (1 layer) 0.8610 ± 0.0014 0.9735 ± 0.0012 0.9472 ± 0.0023 0.6913 ± 0.0023 0.7788 ± 0.0016
HyperGAT 0.8662 ± 0.0016 0.9797 ± 0.0023 0.9498 ± 0.0027 0.6990 ± 0.0034 0.7832 ± 0.0027

Table 4: Text classification comparison results w.r.t. test accuracy (mean ± standard deviation). HyperGAT signif-
icantly outperforms all its variants on each dataset based on t-tests (p < 0.05).

tion encoded by the sequential hyperedges is more
important, but adding semantic hyperedges can en-
hance the model expressiveness. It also indicates
that heterogeneous high-order context information
can complement each other and we could inves-
tigate more meaningful hyperedges to further im-
prove the performance of our approach.

4.4 Case Study

Embedding Visualization. In order to show the
superior embedding quality of HyperGAT over
other methods, we use t-SNE (Maaten and Hin-
ton, 2008) to visualize the learned representations
of documents for comparison. Specifically, Figure
4 shows the visualization results of the best per-
forming baseline Text-level GNN and HyperGAT
on the test documents of Ohsumed. Note that the
node’s color corresponds to its label, which is used
to verify the model’s expressive power on 23 doc-
ument classes. From the embedding visualization,
we are able to observe that HyperGAT can learn
more expressive document representations over the
state-of-the-art method Text-level GNN.

Attention Visualization. To better illustrate the
learning process of the proposed dual attention
mechanism, we take a text document from 20NG
(labeled as sport.baseball correctly) and visual-
ize the attention weights computed for the word
player. As shown in Figure 5, player is con-

(a) Text-level GNN (b) HyperGAT

Figure 4: The t-SNE visualization of Text-level GNN
and HyperGAT for test documents in Ohsumed.

his

the

we cannot isolate the total contribution

player at any position

playeralwaysthey can find a a

than one on they already have

best player is onethe who does the most

things to help team win

.

.

.

player team baseball

player

that any

little bit better

win

Figure 5: Visualization of the dual attention mecha-
nism in HyperGAT. Figure best viewed in color.

nected to four hyperedges within the constructed
document-level hypergraph. The first three lines
ended with periods represent sequential hyper-
edges, while the last one without a period is a
semantic hyperedge. Note that we use orange to
denote the node-level attention weight and blue
to denote the edge-level attention weight. Darker
color represents larger attention weight.

On the one hand, node-level attention is able
to select those nodes (words) carrying informa-
tive context on the same hyperedge. For example,
win and team in the third hyperedge gain larger
attention weights since they are more expressive
compared to other words in the same sentence. On
the other hand, edge-level attention can also as-
sign fine-grained weights to highlight meaningful
hyperedges. As we can see, the last hyperedge
that connects player with baseball and win
receives higher attention weight since it can bet-
ter characterize the meaning of player in the
document. To summarize, this case study shows
that our proposed dual attention can capture key
information at different granularities for learning
expressive text representations.

5 Conclusion

In this study, we propose a new graph-based
method for solving the problem of inductive text
classification. Apart from the existing efforts, we
propose to model text documents with document-

4935

level hypergraphs and further develop a new family
of GNN model named HyperGAT for learning dis-
criminative text representations. Specifically, our
method is able to acquire more expressive power
with less computational consumption for text repre-
sentation learning. By conducting extensive experi-
ments, the results demonstrate the superiority of the
proposed model over the state-of-the-art methods.

Acknowledgements

This material is in part supported by the National
Science Foundation (NSF) grant 1614576.

References
Song Bai, Feihu Zhang, and Philip HS Torr. 2020. Hy-

pergraph convolution and hypergraph attention. Pat-
tern Recognition.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst,
Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Ma-
teusz Malinowski, Andrea Tacchetti, David Raposo,
Adam Santoro, Ryan Faulkner, et al. 2018. Rela-
tional inductive biases, deep learning, and graph net-
works. arXiv preprint arXiv:1806.01261.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2017. Attention-over-
attention neural networks for reading comprehen-
sion. ACL.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. 2016. Convolutional neural networks
on graphs with fast localized spectral filtering. In
NeurIPS.

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan
Liu. 2019a. Deep anomaly detection on attributed
networks. In SDM.

Kaize Ding, Yichuan Li, Jundong Li, Chenghao
Liu, and Huan Liu. 2019b. Feature interaction-
aware graph neural networks. arXiv preprint
arXiv:1908.07110.

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu,
Chenghao Liu, and Huan Liu. 2020. Graph proto-
typical networks for few-shot learning on attributed
networks. arXiv preprint arXiv:2006.12739.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji,
and Yue Gao. 2019. Hypergraph neural networks.
In AAAI.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural
message passing for quantum chemistry. In ICML.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017.
Inductive representation learning on large graphs. In
NeurIPS.

Lianzhe Huang, Dehong Ma, Sujian Li, Xiaodong
Zhang, and Houfeng WANG. 2019. Text level graph
neural network for text classification. EMNLP.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Thomas N Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. NeurIPS.

Hu Linmei, Tianchi Yang, Chuan Shi, Houye Ji, and
Xiaoli Li. 2019. Heterogeneous graph attention net-
works for semi-supervised short text classification.
In EMNLP.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Recurrent neural network for text classification with
multi-task learning. IJCAI.

Xien Liu, Xinxin You, Xiao Zhang, Ji Wu, and Ping Lv.
2020. Tensor graph convolutional networks for text
classification. In AAAI.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research.

Riccardo Miotto, Li Li, Brian A Kidd, and Joel T Dud-
ley. 2016. Deep patient: an unsupervised represen-
tation to predict the future of patients from the elec-
tronic health records. Scientific reports.

Dinghan Shen, Guoyin Wang, Wenlin Wang, Martin
Renqiang Min, Qinliang Su, Yizhe Zhang, Chun-
yuan Li, Ricardo Henao, and Lawrence Carin.
2018. Baseline needs more love: On simple word-
embedding-based models and associated pooling
mechanisms. In ACL.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. ACL.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
201b. Graph attention networks. ICLR.

4936

Guoyin Wang, Chunyuan Li, Wenlin Wang, Yizhe
Zhang, Dinghan Shen, Xinyuan Zhang, Ricardo
Henao, and Lawrence Carin. 2018. Joint embedding
of words and labels for text classification. In ACL.

Jianling Wang, Kaize Ding, Liangjie Hong, Huan Liu,
and James Caverlee. 2020. Next-item recommenda-
tion with sequential hypergraphs. In WSDM.

Sida Wang and Christopher D Manning. 2012. Base-
lines and bigrams: Simple, good sentiment and topic
classification. In ACL.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-level
sentiment classification. In EMNLP.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr,
Christopher Fifty, Tao Yu, and Kilian Q Weinberger.
2019a. Simplifying graph convolutional networks.
ICML.

Man Wu, Shirui Pan, Xingquan Zhu, Chuan Zhou, and
Lei Pan. 2019b. Domain-adversarial graph neural
networks for text classification. In ICDM.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
NAACL-HLT.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In AAAI.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NeurIPS.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. 2018. Graph neural networks: A re-
view of methods and applications. arXiv preprint
arXiv:1812.08434.

A Appendix

A.1 Implementation Details
As the supplement to Section 4, in the following,
we explain the implementation of HyperGAT.

LDA Model Training. We use the implementation
provided in scikit-learn to train the LDA model.
We only use the documents in the training set to
train the LDA model for each dataset. We select
to use the Online Variational Bayes method for
model learning. We set the random state is set
to be 0 and the learning offset to be 50. As for
the other parameters, we follow the default setting
provided by scikit-learn. The topic number is set
to be the same as the number of classes for each of

the datasets. And we select the Top-10 keywords
of each topic to construct the semantic hyperedges.
Implementation of HyperGAT. The proposed
HyperGAT model is implemented in PyTorch and
optimized with the Adam optimizer (Kingma and
Ba, 2014). It is trained and tested on a 12 GB Ti-
tan Xp GPU. Specifically, the hypergraph attention
network consists of two layers with 300 and 100
embedding dimensions, respectively. We use one-
hot vectors as the node attributes. The batch size is
set to be 8 for all the datasets. We grid search for
the learning rate in {0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, 0.1}, L2 regularization in {10−6, 10−5,
10−4, 10−3, 10−2, 10−1} and the dropout rate in
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. The optimal
values are selected when the model achieves the
highest accuracy for the validation samples. The
optimized learning rate α for MR is 0.0005 while
that for the other datasets is 0.001. We select the
L2 regularization to be 10−6 and the dropout rate
to be 0.3 for the best performance. For each dataset,
we train the model for 100 epochs or stop if the
performance for the validation doesn’t increase for
5 consecutive epochs as an early-stopping strategy.
Under the optimized setup, the model can converge
in 587s, 145s, 156s, 97s and 78s on average for
20NG, R8, R52, Ohsumed and MR, respectively.

Validation Performance. As supplement to the
test results in Table 2, we also report the cor-
responding validation performance of the pro-
posed HyperGAT. The validation accuracy is
0.9355 ± 0.0011, 0.9755 ± 0.0019, 0.9375 ±
0.0023, 0.6964± 0.0024 and 0.7779± 0.0015 for
20NG, R8, R52, Ohsumed and MR, respectively.

A.2 Space Complexity Analysis
Theoretically, the main difference of memory us-
age between HyperGAT and other methods lies in
the size of the adjacency matrix. Formally, let N
denote vocabulary size and M denote document
size. Take TextGCN as an example, the size of
the adjacency matrix is (N +M)2. As HyperGAT
adopts document-level hypergraphs, for each hy-
pergraph, the adjacency matrix size is n×m, where
n is the number of words and m is the number of
hyperedges in a document. Based on mini-batch
training, the memory consumption for each mini-
batch is about n ×m × bsz. Since N and M are
way larger than n and m, the memory consumption
of HyperGAT can be largely reduced in practice.

