Analyzing Redundancy in Pretrained Transformer Models

Fahim Dalvi

Hassan Sajjad Nadir Durrani

Yonatan Belinkov"

{faimaduddin, hsajjad, ndurrani}@hbku.edu.qga
Qatar Computing Research Institute, HBKU Research Complex, Doha 5825, Qatar

“MIT Computer Science and Artificial Intelligence Laboratory and Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA
belinkov@csail.mit.edu

Abstract

Transformer-based deep NLP models are
trained using hundreds of millions of param-
eters, limiting their applicability in computa-
tionally constrained environments. In this pa-
per, we study the cause of these limitations
by defining a notion of Redundancy, which
we categorize into two classes: General Re-
dundancy and Task-specific Redundancy. We
dissect two popular pretrained models, BERT
and XLNet, studying how much redundancy
they exhibit at a representation-level and at
a more fine-grained neuron-level. Our anal-
ysis reveals interesting insights, such as: 1)
85% of the neurons across the network are
redundant and ii) at least 92% of them can
be removed when optimizing towards a down-
stream task. Based on our analysis, we present
an efficient feature-based transfer learning pro-
cedure, which maintains 97% performance
while using at-most 10% of the original neu-
rons.!

1 Introduction

Large pretrained models have improved the state-
of-the-art in a variety of NLP tasks, with each new
model introducing deeper and wider architectures
causing a significant increase in the number of pa-
rameters. For example, BERT large (Devlin et al.,
2019), NVIDIA’s Megatron model, and Google’s
TS5 model (Raffel et al., 2019) were trained using
340 million, 8.3 billion and 11 billion parameters
respectively.

An emerging body of work shows that these mod-
els are over-parameterized and do not require all
the representational power lent by the rich archi-
tectural choices during inference. For example,
these models can be distilled (Sanh et al., 2019;

!The code for the experiments in this paper is available
at https://github.com/fdalvi/analyzing-
redundancy-in-pretrained-transformer—
models

Sun et al., 2019) or pruned (Voita et al., 2019;
Sajjad et al., 2020), with a minor drop in perfor-
mance. Recent research (Mu et al., 2018; Etha-
yarajh, 2019) analyzed contextualized embeddings
in pretrained models and showed that the repre-
sentations learned within these models are highly
anisotropic. While these approaches successfully
exploited over-parameterization and redundancy
in pretrained models, the choice of what to prune
is empirically motivated and the work does not
directly explore the redundancy in the network.
Identifying and analyzing redundant parts of the
network is useful in: i) developing a better under-
standing of these models, ii) guiding research on
compact and efficient models, and iii) leading to-
wards better architectural choices.

In this paper, we analyze redundancy in pre-
trained models. We classify it into general redun-
dancy and task-specific redundancy. The former
is defined as the redundant information present
in a pretrained model irrespective of any down-
stream task. This redundancy is an artifact of over-
parameterization and other training choices that
force various parts of the models to learn simi-
lar information. The latter is motivated by pre-
trained models being universal feature extractors.
We hypothesize that several parts of the network
are specifically redundant for a given downstream
task.

We study both general and task-specific redun-
dancies at the representation-level and at a more
fine-grained neuron-level. Such an analysis allows
us to answer the following questions: i) how redun-
dant are the layers within a model? ii) do all the
layers add significantly diverse information? iii)
do the dimensions within a hidden layer represent
different facets of knowledge, or are some neurons
largely redundant? iv) how much information in
a pretrained model is necessary for specific down-
stream tasks? and v) can we exploit redundancy to

4908

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4908-4926,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

https://github.com/fdalvi/analyzing-redundancy-in-pretrained-transformer-models
https://github.com/fdalvi/analyzing-redundancy-in-pretrained-transformer-models
https://github.com/fdalvi/analyzing-redundancy-in-pretrained-transformer-models

enable efficiency?

We introduce several methods to analyze redun-
dancy in the network. Specifically, for general
redundancy, we use Center Kernel Alignment (Ko-
rnblith et al., 2019) for layer-level analysis, and
Correlation Clustering for neuron-level analysis.
For task-specific redundancy, we use Linear Prob-
ing (Shi et al., 2016a; Belinkov et al., 2017) to iden-
tify redundant layers, and Linguistic Correlation
Analysis (Dalvi et al., 2019) to examine neuron-
level redundancy.

We conduct our study on two pretrained
language models, BERT (Devlin et al., 2019) and
XLNet (Yang et al., 2019). While these networks
are similar in the number of parameters, they are
trained using different training objectives, which
accounts for interesting comparative analysis
between these models. For task-specific analysis,
we present our results across a wide suite of
downstream tasks: four core NLP sequence
labeling tasks and seven sequence classification
tasks from the GLUE benchmark (Wang et al.,
2018). Our analysis yields the following insights:

General Redundancy:

* Adjacent layers are most redundant in the net-
work, with lower layers having greater redun-
dancy with adjacent layers.

» Up to 85% of the neurons across the network
are redundant in general, and can be pruned to
substantially reduce the number of parameters.

* Up to 94% of neuron-level redundancy is exhib-
ited within the same or neighbouring layers.

Task-specific Redundancy:

* Layers in a network are more redundant w.r.t.
core language tasks such as learning morphology
as compared to sequence-level tasks.

¢ At least 92% of the neurons are redundant with
respect to a downstream task and can be pruned
without any loss in task-specific performance.

* Comparing models, XL.Net is more redundant
than BERT.

* Our analysis guides research in model distilla-
tion and suggests preserving knowledge of lower
layers and aggressive pruning of higher-layers.

Finally, motivated by our analysis, we present
an efficient feature-based transfer learning pro-
cedure that exploits various types of redundancy
present in the network. We first target layer-level
task-specific redundancy using linear probes and

reduce the number of layers required in a forward
pass to extract the contextualized embeddings. We
then filter out general redundant neurons present in
the contextualized embeddings using Correlation
Clustering. Lastly, we remove task-specific redun-
dant neurons using Linguistic Correlation Analy-
sis. We show that one can reduce the feature set
to less than 100 neurons for several tasks while
maintaining more than 97% of the performance.
Our procedure achieves a speedup of up to 6.2x in
computation time for sequence labeling tasks.

2 Related Work

A number of studies have analyzed representations
at layer-level (Conneau et al., 2018; Liu et al., 2019;
Tenney et al., 2019; Kim et al., 2020; Belinkov
et al., 2020) and at neuron-level (Bau et al., 2019;
Dalvi et al., 2019; Suau et al., 2020; Durrani et al.,
2020). These studies aim at analyzing either the
linguistic knowledge learned in representations and
in neurons or the general importance of neurons in
the model. The former is commonly done using
a probing classifier (Shi et al., 2016a; Belinkov
et al., 2017; Hupkes et al., 2018). Recently, Voita
and Titov (2020); Pimentel et al. (2020) proposed
probing methods based on information theoretic
measures. The general importance of neurons is
mainly captured using similarity and correlation-
based methods (Raghu et al., 2017; Chrupata and
Alishahi, 2019; Wu et al., 2020). Similar to the
work on analyzing deep NLP models, we analyze
pretrained models at representation-level and at
neuron-level. Different from them, we analyze
various forms of redundancy in these models. We
draw upon various techniques from the literature
and adapt them to perform a redundancy analysis.

While the work on pretrained model compres-
sion (Cao et al., 2020; Shen et al., 2020; Sanh
et al., 2019; Turc et al., 2019; Gordon et al., 2020;
Guyon and Elisseeff, 2003) indirectly shows that
models exhibit redundancy, little has been done
to explore the redundancy in the network. Recent
studies (Voita et al., 2019; Michel et al., 2019; Saj-
jad et al., 2020; Fan et al., 2020) dropped atten-
tion heads and layers in the network with marginal
degradation in performance. Their work is lim-
ited in the context of redundancy as none of the
pruning choices are built upon the amount of re-
dundancy present in different parts of the network.
Our work identifies redundancy at various levels of
the network and can guide the research in model

4909

compression.

3 Experimental Setup

3.1 Datasets and Tasks

To analyze the general redundancy in pre-trained
models, we use the Penn Treebank development
set (Marcus et al., 1993), which consists of roughly
44,000 tokens. For task-specific analysis, we use
two broad categories of downstream tasks — Se-
quence Labeling and Sequence Classification tasks.
For the sequence labeling tasks, we study core
linguistic tasks, i) part-of-speech (POS) tagging
using the Penn TreeBank, ii) CCG super tagging
using CCGBank (Hockenmaier, 2006), iii) seman-
tic tagging (SEM) using Parallel Meaning Bank
data (Abzianidze and Bos, 2017) and iv) syn-
tactic chunking using CoNLL 2000 shared task
dataset (Sang and Buchholz, 2000).

For sequence classification, we study tasks from
the GLUE benchmark (Wang et al., 2018), namely
1) sentiment analysis (SST-2) (Socher et al., 2013),
ii) semantic equivalence classification (MRPC)
(Dolan and Brockett, 2005), iii) natural language
inference (MNLI) (Williams et al., 2018), iv)
question-answering NLI (QNLI) (Rajpurkar et al.,
2016), iv) question pair similarity? (QQP), v) tex-
tual entailment (RTE) (Bentivogli et al., 2009), and
vi) semantic textual similarity (Cer et al., 2017).3
Complete statistics for all datasets is provided in
Appendix A.1.

Other Settings The neuron activations for each
word in our dataset are extracted from the pre-
trained model for sequence labeling while the
[CLS] token’s representation (from a fine-tuned
model) is used for sequence classification. The
fine-tuning step is essential to optimize the [CLS]

token for sentence representation. In the case of
sub-words, we pick the last sub-word’s represen-
tation (Durrani et al., 2019; Liu et al., 2019). For
sequence labeling tasks, we use training sets of
150K tokens, and standard development and test
splits. For sequence classification tasks, we set
aside 5% of the training data and use it to optimize
all the parameters involved in the process and re-
port results on development sets, since the test sets
are not publicly available.

http://data.quora.com/First-Quora-
Dataset—Release—-Question—-Pairs

3We did not evaluate on CoLA and WNLI because of the
irregularities in the data and instability during the fine-tuning
process: https://gluebenchmark.com/faq.

3.2 Models

We present our analysis on two transformer-based
pretrained models, BERT-base (Devlin et al., 2019)
and XLNet-base (Yang et al., 2019).* The for-
mer is a masked language model, while the lat-
ter is of an auto-regressive nature. We use the
transformers library (Wolf et al., 2019) to fine-
tune these models using default hyperparameters.

Classifier Settings For layer-level probing and
neuron-level ranking, we use a logistic regression
classifier with ElasticNet regularization. We train
the classifier for 10 epochs with a learning rate of
le—3, batch size of 128 and a value of le ™ for
both L1 and L2 lambda regularization parameters.

4 Problem Definition

Consider a pretrained model M with L layers:
{lo,l1,...,11}, where [y is an embedding layer
and each layer [; is of size H. Given a dataset
D = {wy,wa, ..., wr} consisting of 7" words, the
contextualized embedding of word w; at layer [; is
2k = l;(w;). A neuron consists of each individual
unit of z;. For example, BERT-base has L = 13
layers, each of size 768 i.e. there are 768 individual
neurons in each layer. The total number of neurons
in the model are 13 x 768 = 9984.

We analyze redundancy in M at layer-level /;:
how redundant is a layer? and at neuron-level:
how redundant are the neurons? We target these
two questions in the context of general redundancy
and task-specific redundancy.

Notion of redundancy: We broadly define re-
dundancy to cover a range of observations. For ex-
ample, we imply high similarity as a reflection of re-
dundancy. Similarly, for task-specific neuron-level
redundancy, we hypothesize that some neurons ad-
ditionally might be irrelevant for the downstream
task in hand. There, we consider irrelevancy as part
of the redundancy analysis. Succinctly, two neu-
rons are considered to be redundant if they serve
the same purpose from the perspective of feature-
based transfer learning for a downstream task.

5 General Redundancy

Neural networks are designed to be distributed in
nature and are therefore innately redundant. Addi-

“We could not run BERT and XLNet large because of
computational limitations. See the official BERT readme
describing the issue https://github.com/google-
research/bert#out-of-memory-issues

4910

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://gluebenchmark.com/faq
https://github.com/google-research/bert#out-of-memory-issues
https://github.com/google-research/bert#out-of-memory-issues

Embedding
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

Embedding
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10
Layer 11
Layer 12

2
3
4
5
6
7
8
9
10
2
3
4
5
6
7
8
9
10

Embeddin
Embeddin

&
o)
3
3
=
e
-
Z
Q

Figure 1: Pairwise Similarity between the layers.
Brighter colors indicate higher similarity.

tionally, over-parameterization in pretrained mod-
els with a combination of various training and de-
sign choices causes further redundancy of informa-
tion. In the following, we analyze general redun-
dancy at layer-level and at neuron-level.

5.1 Layer-level Redundancy

We compute layer-level redundancy by compar-
ing representations from different layers in a given
model using linear Center Kernel Alignment (cka
- Kornblith et al. (2019)). cka is invariant to
isotropic similarity and orthogonal transformation.
In other words, the similarity measure itself does
not depend on the various representations having
neurons or dimensions with exactly the same distri-
butions, but rather assigns a high similarity if the
two representations behave similarly over all the
neurons. Moreover, cka is known to outperform
other methods such as CCA (Andrew et al., 2013)
and SVCCA (Raghu et al., 2017), in identifying re-
lationships between different layers across different
architectures. While there are several other meth-
ods proposed in literature to analyze and compare
representations (Kriegeskorte et al., 2008; Boucha-
court and Baroni, 2018; Chrupata and Alishahi,
2019; Chrupata, 2019), we do not intend to com-
pare them here and instead use cka to show redun-
dancy in the network. The mathematical definition
of cka is provided in Appendix A.6 for the reader.

We compute pairwise similarity between all L
layers in the pretrained model and show the corre-
sponding heatmaps in Figure 1. We hypothesize
that a high similarity entails (general) redundancy.
Overall the similarity between adjacent layers is
high, indicating that the change of encoded knowl-
edge from one layer to another takes place in small
incremental steps as we move from a lower layer to
a higher layer. An exception to this observation is

O Accuracy
Number of Features
|

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Clustering Threshold

(a) BERT

O Accuracy
Number of Features
i

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Correlation Clustering Threshold

(b) XLNet

Figure 2: General neuron-level redundancy in BERT
and XLNet; comparing the average reduction of neu-
rons for different CC thresholds and the average accu-
racy across all downstream tasks. See Appendix A.2
for detailed per-task results.

the final pair of layers, /11 and [12, whose similarity
is much lower than other adjacent pairs of layers.
We speculate that this is because the final layer is
highly optimized for the objective at hand, while
the lower layers try to encode as much general lin-
guistic knowledge as possible. This has also been
alluded to by others (Hao et al., 2019; Wu et al.,
2020).

5.2 Neuron-level Redundancy

Assessing redundancy at the layer level may be
too coarse grained. Even if a layer is not redun-
dant with other layers, a subset of its neurons may
still be redundant. We analyze neuron-level redun-
dancy in a network using correlation clustering —
CC (Bansal et al., 2004). We group neurons with
highly correlated activation patterns over all of the
words w;. Specifically, every neuron in the vector
z;- from some layer 7 can be represented as a T’
dimensional vector, where each index is the acti-
vation value z;- of that neuron for some word wyj,
where j ranges from 1 to 7. We calculate the Pear-
son product-moment correlation of every neuron
vector z* with every other neuron. This results in a
N x N matrix corr, where N is the total number of
neurons and corr(x,y) represents the correlation

4911

90%

g1% B3%

75%

B BERT
B XLNet

60%

45%

30%

15%

Percentage of clusters spanning a window

0%

Window size

Figure 3: Percentage of clusters which contain neu-
rons from the same layers, adjacent layers, within three
neighboring layers and more than three layers apart.

between neurons x and y. The correlation value
ranges from —1 to 1, giving us a relative scale to
compare any two neurons. A high absolute correla-
tion value between two neurons implies that they
encode very similar information and therefore are
redundant. We convert corr into a distance matrix
cdist by applying cdist(z,y) = 1 — |corr(z,y)|
and cluster the distance matrix cdist by using ag-
glomerative hierarchical clustering with average
linkage’ to minimize the average distance of all
data points in pairs of clusters. The maximum
distance between any two points in a cluster is con-
trolled by the hyperparameter c;. It ranges from
0 to 1 where a high value results in large-sized
clusters with a small number of total clusters.

Substantial amount of neurons are redundant
In order to evaluate the effect of clustering in com-
bining redundant neurons, we randomly pick a neu-
ron from each cluster and form a reduced set of
non-redundant neurons. Recall that the cluster-
ing is applied independently on the data without
using any task-specific labels. We then build task-
specific classifiers for each task on the reduced set
and analyze the average accuracy. If the average
accuracy of a reduced set is close to that of the
full set of neurons, we conclude that the reduced
set has filtered out redundant neurons. Figure 2
shows the effect of clustering on BERT and XL.Net
using different values of ¢; with respect to aver-
age performance across all tasks. It is remarkable
to observe that 85% of neurons can be removed
without any loss in accuracy (¢; = 0.7) in BERT,
alluding to a high-level of neuron-level redundancy.
We observe an even higher reduction in XLNet. At

>We experimented with other clustering algorithms such
as k-means and DBSCAN, and did not see any noticeable
difference in the resulting clusters.

¢ = 0.7, 92% of XLLNet neurons can be removed
while maintaining oracle performance. We addi-
tionally visualize a few neurons within a cluster.
The activation patterns are quite similar in their
behavior, though not identical, highlighting the ef-
ficacy of CC in clustering neurons with analogous
behavior. An activation heatmap for several neu-
rons is provided in Appendix A.2.

Higher neuron redundancy within and among
neighboring layers We analyze the general
makeup of the clusters at ¢; = 0.3.° Figure 3
shows the percentage of clusters that contain neu-
rons from the same layer (window size 1), neighbor-
ing layers (window sizes 2 and 3) and from layers
further apart. We can see that a vast majority of
clusters (= 95%) either contain neurons from the
same layer or from adjacent layers. This reflects
that the main source of redundancy is among the
individual representation units in the same layer or
neighboring layers of the network. The finding mo-
tivates pruning of models by compressing layers as
oppose to reducing the overall depth in a distilled
version of a model.

6 Task-specific Redundancy

While pretrained models have a high amount of
general redundancy as shown in the previous sec-
tion, they may additionally exhibit redundancies
specific to a downstream task. Studying redun-
dancy in relation to a specific task helps us under-
stand pretrained models better. It further reflects
on how much of the network, and which parts of
the network, suffice to perform a task efficiently.

6.1 Layer-level Redundancy

To analyze layer-level task-specific redundancy, we
train linear probing classifiers (Shi et al., 2016b;
Belinkov et al., 2017) on each layer I; (layer-
classifier). We consider a classifier’s performance
as a proxy for the amount of task-specific knowl-
edge learned by a layer. Linear classifiers are a
popular choice in analyzing deep NLP models due
to their better interpretability (Qian et al., 2016;
Belinkov et al., 2020). Hewitt and Liang (2019)
have shown linear probes to have higher Selectivity,
a property deemed desirable for more interpretable
probes.

We compare each layer-classifier with an oracle-
classifier trained over concatenation of all layers

The choice of 0.3 avoids aggressive clustering and en-
ables the analysis of the most redundant neurons.

4912

Number of Redundant Layers Number of Redundz
1111 9 8 5 2 2 2 2 0 2
Embedding
bavert BERT

Layer 2

XLNet

Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9

Layer 10

Layer 11

Layer 12

Figure 4: Task-specific layer-wise redundant layers rep-
resented by the colored blocks. Appendix A.3 presents
fine-grained graphs for a few tasks.

of the network. For all individual layers that per-
form close to oracle (maintaining 99% of the per-
formance in our results), we imply that they encode
sufficient knowledge about the task and are there-
fore redundant in this context. Note that this does
not necessarily imply that those layers are identical
or that they represent the knowledge in a similar
way — instead they have redundant overall knowl-
edge specific to the task at hand.

High redundancy for core linguistic tasks Fig-
ure 4 shows the redundant layers that perform
within a 1% performance threshold with respect to
the oracle on each task. We found high layer-level
redundancy for sequence labeling tasks. There are
up to 11 redundant layers in BERT and up to 10
redundant layers in XLNet, across different tasks.
This is expected, because the sequence labeling
tasks considered here are core language tasks, and
the information related to them is spread across the
network. Comparing models, we found such core
language information to be distributed amongst
fewer layers in XLNet.

Substantially less amount of redundancy for
higher-level tasks The amount of redundancy
is substantially lower for sequence classification
tasks, with RTE having the least number of redun-
dant layers in both models. Especially in BERT,
we did not find any layer that matched the oracle
performance for RTE. It is interesting to observe
that all the sequence classification tasks are learned
at higher layers and none of the lower layers were
found to be redundant. These results are intuitive
given that the sequence classification tasks require
complex linguistic knowledge, such as long range
contextual dependencies, which are only learned

at the higher-layers of the model. Lower layers
do not have the sufficient sentence-level context to
perform these tasks well.

XLNet is more redundant than BERT While
XLNet has slightly fewer redundant layers for se-
quence labeling tasks, on average across all down-
stream tasks it shows high layer-level task-specific
redundancy. Having high redundancy for sequence-
level tasks reflects that XLNet learns the higher-
level concepts much earlier in the network and this
information is then passed to all the subsequent
layers. This also showcases that XLLNet is a much
better candidate for model compression where sev-
eral higher layers can be pruned with marginal loss
in performance, as shown by Sajjad et al. (2020).

6.2 Neuron-level Redundancy

Pretrained models being a universal feature extrac-
tor contain redundant information with respect to
a downstream task. We hypothesize that they may
also contain information that is not necessary for
the underlying task. In task-specific neuron anal-
ysis, we consider both redundant and irrelevant
neurons as redundancy with respect to a task. Un-
like layers, it is combinatorially intractable to ex-
haustively try all possible neuron permutations that
can carry out a downstream task. We therefore
aim at extracting only one minimal set of neurons
that suffice the purpose, and consider the remaining
neurons redundant or irrelevant for the task at hand.

Formally, given a task and a set of neurons from
a model, we perform feature selection to identify a
minimal set of neurons that match the oracle perfor-
mance. To accomplish this, we use the Linguistic
Correlation Analysis method (Dalvi et al., 2019) to
ranks neurons with respect to a downstream task,
referred as F'S (feature selector) henceforth. For
each downstream task, we concatenate represen-
tations from all layers L and use F'S to extract a
minimal set of top ranked neurons that maintain the
oracle performance, within a defined threshold. Or-
acle is the task-specific classification performance
obtained using all the neurons for training. The
minimum set allows us to answer how many neu-
rons are redundant and irrelevant to the given task.
Tables 1 and 2 show the minimum set of top neu-
rons for each task that maintains at least 97% of
the oracle performance.

Complex core language tasks require more neu-
rons CCG and Chunking are relatively complex
tasks compared to POS and SEM. On average

4913

Task | #Neurons Task | #Neurons
POS 290 POS 280
SEM 330 SEM 290
CCG 330 CCG 690
Chunk. 750 Chunk. 660

(a) BERT (b) XLNet

Table 1: Task-specific neuron-level analysis for se-

quence labeling tasks.

Task | # Neurons Task | # Neurons
SST-2 30 SST-2 70
MRPC 190 MRPC 170
MNLI 30 MNLI 90
QNLI 40 QNLI 20
QQP 10 QQP 20
RTE 320 RTE 400
STS-B 290 STS-B 300
(a) BERT (b) XLNet

Table 2: Task-specific neuron-level analysis for se-
quence classification tasks.

across both models, these complex tasks require
more neurons than POS and SEM. It is interest-
ing to see that the size of minimum neurons set is
correlated with the complexity of the task.

Less task-specific redundancy for core linguis-
tic tasks compared to higher-level tasks While
the minimum set of neurons per task consist of a
small percentage of total neurons in the network,
the core linguistic tasks require substantially more
neurons compared to higher-level tasks (compar-
ing Tables 1 and 2). It is remarkable that some
sequence-level tasks require as few as only 10 neu-
rons to obtain desired performance. One reason
for the large difference in the size of minimum set
of neurons could be the nature of tasks, since core
linguistic tasks are word-level tasks, a much higher
capacity is required in the pretrained model to store
the knowledge for all of the words. While in the
case of sequence classification tasks, the network
learns to filter and mold the features to form fewer
“high-level” sentence features.

7 Efficient Transfer Learning

In this section, we build upon the redundancy anal-
ysis presented in the previous sections and propose
a novel method for efficient feature-based trans-
fer learning. In a typical feature-based transfer
learning setup, contextualized embeddings are first

extracted from a pretrained model, and then a classi-
fier is trained on the embeddings towards the down-
stream NLP task. The bulk of the computational
expense is incurred from the following sources:

* A full forward pass over the pretrained model to
extract the contextualized vector, a costly affair
given the large number of parameters.

* Classifiers with large contextualized vectors are:
a) cumbersome to train, b) inefficient during in-
ference, and c¢) may be sub-optimal when super-
vised data is insufficient (Hameed, 2018).

We propose a three step process to target these two
sources of computation bottlenecks:

1. Use the task-specific layer-classifier (Sec-
tion 6.1) to select the lowest layer that main-
tains oracle performance. Differently from the
analysis, a concatenation of all layers until the
selected layer is used instead of just the individ-
ual layers.

2. Given the contextualized embeddings extracted
in the previous step, use CC (Section 5.2) to
filter-out redundant neurons.

3. Apply F'S (Section 6.2) to select a minimal set
of neurons that are needed to achieve optimum
performance on the task.

The three steps explicitly target task-specific
layer redundancy, general neuron redundancy and
task-specific neuron redundancy respectively. We
referto Step 1 as LayerSelector (LS) and Step
2 and 3 as CCFS (Correlation clustering + Fea-
ture selection) later on. For all experiments, we
use a performance threshold of 1% for LS and
CCFS each. It is worth mentioning that the trade-
off between loss in accuracy and efficiency can
be controlled through these thresholds, which can
be adjusted to serve faster turn-around or better
performance.

7.1 Results

Table 3 presents the average results on all sequence
labeling and sequence classification tasks. Detailed
per-task results are provided in Appendix A.5.1. As
expected from our analysis, a significant portion
of the network can be pruned by LS for sequence
labeling tasks, using less than 6 layers out of 13
(Embedding + 12 layers) for BERT and less than
3 layers for XLNet. Specifically, this reduces the
parameters required for a forward pass for BERT

4914

Sequence Sequence
Classification Labeling
BERT XLNet ‘ BERT XLNet
Oracle 93.0% 93.4% ‘ 85.5% 84.8%
Neurons 9984
LS 923% 932% | 85.0% 84.5%
Layers 5.3 2.5 11.6 8.1
CCFS 92.0% 92.2% | 84.0% 84.0%
Neurons 425 400 90 150

% Reduct. | 95.7%] 96.0% | 99.0%] 98.5%]

Table 3: Average results using LS and CCFS with per-
formance thresholds of 1% for each. Oracle is using
a concatenation of all layers. Layers shows the av-
erage number of selected layers. Neurons are the fi-
nal number of neurons (features) used for classification.
% Reduct. shows the percentage reduction in neurons
compared to the full network.

by 65% for POS and SEM, and 33% for CCG and
39% for Chunking. On XLNet, LS led to even
larger reduction in parameters; 70% for POS and
SEM, and 65% for CCG and Chunking. The results
were less pronounced for sequence classification
tasks, with LS using 11.6 layers for BERT and 8.1
layers for XLLNet on average, out of 13 layers.

Applying CCF'S on top of the reduced layers led
to another round of significant efficiency improve-
ments. The number of neurons needed for the final
classifier reducing to just 5% for sequence labeling
tasks and 1.5% for sequence classification tasks.
The final number of neurons is surprising low for
some tasks compared to the initial 9984, with some
tasks like QNLI using just 10 neurons.

More concretely, taking the POS task as an exam-
ple: the pre-trained oracle BERT model has 9984
features and 110M parameters. LS reduced the
feature set to 2304 (embedding + 2 layers) and the
number of parameters used in the forward pass to
37M. CCF'S further reduced the feature set to 300,
maintaining a performance close to oracle BERT’s
performance on this task (95.2% vs. 93.9%).

An interesting observation in Table 3 is that the
sequence labeling tasks require fewer layers but a
higher number of features, while sequence classifi-
cation tasks follow the opposite pattern. As we go
deeper in the network, the neurons are much more
richer and tuned for the task at hand, and only a few
of them are required compared to the much more
word-focused neurons in the lower layers. These
observations suggest pyramid-shaped architectures

Baseline

Runtime (in s)
]

s @Al

0

10 50 90 400 800 2000 4000 6000 8000 10000

Number of features

Figure 5: BERT: Runtime of the classifier w.r.t. number
of neurons (features). The dots on the line mark the
number of features selected by our method. Note that
the X-axis is not linear, the lower half of the spectrum
has been stretched for clarity.

that have wider lower layers and narrow higher
layers. Such a design choice leads to significant
savings of capacity in higher layers where a few,
rich neurons are sufficient for good performance. In
terms of neuron-based compression methods, these
findings propose aggressive pruning of higher lay-
ers while preserving the lower layers in building
smaller and accurate compressed models.

7.2 Efficiency Analysis

While the algorithm boosts the theoretical effi-
ciency in terms of the number of parameters re-
duced and the final number of features, it is im-
portant to analyze how this translates to real world
performance. Using LS leads to an average speed
up of 2.8x and 6.2x with BERT and XLNet respec-
tively on sequence labeling tasks. On sequence
classification tasks, the average speed ups are 1.1x
and 1.6x with BERT and XLNet respectively. De-
tailed results are provided in Appendix A.5.2.

For the classifier built on the reduced set, we
simulate a test scenario with 100,000 tokens and
compute the total runtime for 10 iterations of train-
ing. The numbers were computed on a 6-core 2.8
GHz AMD Opteron Processor 4184, and were av-
eraged across 3 runs. Figure 5 shows the runtime
of each run (in seconds) against the number of fea-
tures selected. The runtime of the classifier reduced
from 50 to 10 seconds in the case of BERT. The 5x
speedup can be very useful in a heavy-use scenar-
ios where the classifier is queried a large number
times in a short duration.

Training time efficiency: Although the focus of
the current application is to improve inference-time
efficiency, it is nevertheless important to under-
stand how much computation complexity is added

4915

during training time. Let 7" be the total number
of tokens in our training set, and N be the total
number of neurons across all layers in a pre-trained
model. The application presented in this section
consists of 5 steps.

1. Feature extraction from pre-trained model:
Extraction time scales linearly with the num-
ber of tokens 7T'.

2. Training a classifier for every layer LS: With a
constant number of neurons N, training time
per layer scales linearly with the number of
tokens 7.

3. Correlation clustering CC: With a constant
number of neurons N, running correlation
clustering scales linearly with the number of
tokens 7.

4. Feature ranking: This step involves training
a classifier with the reduced set of features,
which scales linearly with the number of to-
kens T'. Once the classifier is trained, the
weights of the classifier are used to extract a
feature ranking, with the number of weights
scaling linearly with the number of selection
neurons V.

5. Minimal feature set: Finding the minimal set
of neurons is a brute-force search process,
starting with a small number of neurons. For
each set of neurons, a classifier is trained, the
time for which scales linearly with the total
number of tokens 7'. As the feature set size
increases, the training time also goes up as
described in Figure 5.

Appendix A.5.3 provides additional experiments
and results used to analyze the training time com-
plexity of our application.

8 Conclusion and Future Directions

We defined a notion of redundancy and analyzed
pre-trained models for general redundancy and
task-specific redundancy exhibited at layer-level
and at individual neuron-level. Our analysis on
general redundancy showed that i) adjacent layers
are most redundant in the network with an excep-
tion of final layers which are close to the objec-
tive function, and ii) up to 85% and 92% neurons
are redundant in BERT and XLNet respectively.
We further showed that networks exhibit varying

amount of task-specific redundancy; higher layer-
level redundancy for core language tasks compared
to sequence-level tasks. We found that at least
92% of the neurons are redundant with respect to
a downstream task. Based on our analysis, we
proposed an efficient transfer learning procedure
that directly targets layer-level and neuron-level
redundancy to achieve efficiency in feature-based
transfer learning.

While our analysis is helpful in understanding
pretrained models, it suggests interesting research
directions towards building compact models and
models with better architectural choices. For exam-
ple, a high amount of neuron-level redundancy in
the same layer suggests that layer-size compression
might be more effective in reducing the pretrained
model size while preserving oracle performance.
Similarly, our finding that core-linguistic tasks are
learned at lower-layers and require a higher number
of neurons, while sequence-level tasks are learned
at higher-layers and require fewer neurons, sug-
gests pyramid-style architectures that have wide
lower layers and compact higher layers and may
result in smaller models with performance compet-
itive with large models.

Acknowledgements

This research was carried out in collaboration be-
tween the HBKU Qatar Computing Research Insti-
tute (QCRI) and the MIT Computer Science and
Artificial Intelligence Laboratory (CSAIL). Y.B.
was also supported by the Harvard Mind, Brain,
and Behavior Initiative (MBB).

References

Lasha Abzianidze and Johan Bos. 2017. Towards uni-
versal semantic tagging. In Proceedings of the 12th
International Conference on Computational Seman-
tics (IWCS 2017) — Short Papers, pages 1-6, Mont-
pellier, France.

Galen Andrew, Raman Arora, Jeff A. Bilmes, and
Karen Livescu. 2013. Deep canonical correlation
analysis. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, At-
lanta, GA, USA, 16-21 June 2013, volume 28
of JMLR Workshop and Conference Proceedings,
pages 1247-1255. JMLR.org.

Nikhil Bansal, Avrim Blum, and Shuchi Chawla.
2004. Correlation clustering. Machine Learning,
56(13):89113.

D. Anthony Bau, Yonatan Belinkov, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass. 2019.

4916

http://proceedings.mlr.press/v28/andrew13.html
http://proceedings.mlr.press/v28/andrew13.html
https://doi.org/10.1023/B:MACH.0000033116.57574.95

Identifying and controlling important neurons in
neural machine translation. In International Confer-
ence on Learning Representations (ICLR).

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan
Sajjad, and James Glass. 2017. What do Neural Ma-
chine Translation Models Learn about Morphology?
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL), Van-
couver. Association for Computational Linguistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2020. On the linguistic
representational power of neural machine translation
models. Computational Linguistics, 45(1):1-57.

Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo
Giampiccolo, and Bernardo Magnini. 2009. The
fiftth PASCAL recognizing textual entailment chal-
lenge. In Proceedings of the Second Text Analy-
sis Conference, TAC 2009, Gaithersburg, Maryland,
USA, November 16-17, 2009. NIST.

Diane Bouchacourt and Marco Baroni. 2018. How
agents see things: On visual representations in an
emergent language game. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 981-985, Brussels, Bel-
gium. Association for Computational Linguistics.

Qingqing Cao, Harsh Trivedi, Aruna Balasubramanian,
et al. 2020. Faster and just as accurate: A simple
decomposition for transformer models. ICLR Open-
review.

Daniel Cer, Mona Diab, Eneko Agirre, Ifligo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 1l1th International Workshop on Semantic
Evaluation (SemEval-2017), pages 1-14, Vancouver,
Canada. Association for Computational Linguistics.

Grzegorz Chrupata. 2019. Symbolic inductive bias
for visually grounded learning of spoken language.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
6452-6462, Florence, Italy. Association for Compu-
tational Linguistics.

Grzegorz Chrupata and Afra Alishahi. 2019. Corre-
lating neural and symbolic representations of lan-
guage. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2952-2962, Florence, Italy. Association
for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loic Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (ACL).

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, D. Anthony Bau, and James Glass. 2019.
What is one grain of sand in the desert? analyzing
individual neurons in deep nlp models. In Proceed-
ings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI, Oral presentation).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan
Belinkov, and Preslav Nakov. 2019. One size does
not fit all: Comparing NMT representations of dif-
ferent granularities. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1504—1516, Minneapolis, Minnesota.
Association for Computational Linguistics.

Nadir Durrani, Hassan Sajjad, Fahim Dalvi, and
Yonatan Belinkov. 2020. Analyzing individual neu-
rons in pretrained language models. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP-2020), On-
line. Association for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5565,
Hong Kong, China. Association for Computational
Linguistics.

Angela Fan, Edouard Grave, and Armand Joulin. 2020.
Reducing transformer depth on demand with struc-
tured dropout. In 8th International Conference on
Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net.

Mitchell A. Gordon, Kevin Duh, and Nicholas An-
drews. 2020. Compressing BERT: studying the ef-
fects of weight pruning on transfer learning. In
Proceedings of the 5th Workshop on Representation
Learning for NLP, RepL4NLP@ACL 2020, Online,
July 9, 2020, pages 143—155. Association for Com-
putational Linguistics.

Isabelle Guyon and André Elisseeff. 2003. An intro-
duction to variable and feature selection. Journal of
Machine Learning Research, 3:1157-1182.

4917

https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://tac.nist.gov/publications/2009/additional.papers/RTE5_overview.proceedings.pdf
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/D18-1119
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/S17-2001
https://doi.org/10.18653/v1/P19-1647
https://doi.org/10.18653/v1/P19-1647
https://doi.org/10.18653/v1/P19-1283
https://doi.org/10.18653/v1/P19-1283
https://doi.org/10.18653/v1/P19-1283
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://doi.org/10.18653/v1/D19-1006
https://openreview.net/forum?id=SylO2yStDr
https://openreview.net/forum?id=SylO2yStDr
https://www.aclweb.org/anthology/2020.repl4nlp-1.18/
https://www.aclweb.org/anthology/2020.repl4nlp-1.18/
http://jmlr.org/papers/v3/guyon03a.html
http://jmlr.org/papers/v3/guyon03a.html

Shilan Hameed. 2018. Filter-wrapper combination and
embedded feature selection for gene expression data.
International Journal of Advances in Soft Comput-
ing and its Applications, 10:90-105.

Yaru Hao, Li Dong, Furu Wei, and Ke Xu. 2019. Visu-
alizing and understanding the effectiveness of BERT.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4141—
4150, Hong Kong, China. Association for Computa-
tional Linguistics.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-1JCNLP), pages 2733-2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Julia Hockenmaier. 2006. Creating a CCGbank and a
wide-coverage CCG lexicon for German. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 06, pages 505-512, Sydney, Australia.

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema.
2018. Visualisation and ‘diagnostic classifiers’ re-
veal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial
Intelligence Research, 61:907-926.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang-
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Ad-
dis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In Proceedings
of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine
Learning Research, pages 3519-3529, Long Beach,
California, USA. PMLR.

Nikolaus Kriegeskorte, Marieke Mur, and Peter Ban-
dettini. 2008. Representational similarity analysis
- connecting the branches of systems neuroscience.
Frontiers in Systems Neuroscience, 2:4.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073-1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 14014—
14024. Curran Associates, Inc.

Jiagi Mu, Suma Bhat, and Pramod Viswanath. 2018.
All-but-the-top: Simple and effective postprocessing
for word representations. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4609—
4622. Association for Computational Linguistics.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016.
Analyzing Linguistic Knowledge in Sequential
Model of Sentence. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 826-835, Austin, Texas. Associa-
tion for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv e-prints.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and
Jascha Sohl-Dickstein. 2017. SVCCA: Singu-
lar Vector Canonical Correlation Analysis for
Deep Learning Dynamics and Interpretability. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems
30, pages 6078—6087. Curran Associates, Inc.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392, Austin,
Texas. Association for Computational Linguistics.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and
Preslav Nakov. 2020. Poor man’s bert: Smaller and
faster transformer models. ArXiv, abs/2004.03844.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Natu-
ral Language Learning, CoNLL 2000, and the Sec-
ond Learning Language in Logic Workshop, LLL

4918

https://doi.org/10.18653/v1/D19-1424
https://doi.org/10.18653/v1/D19-1424
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
https://openreview.net/forum?id=H1xPR3NtPB
http://proceedings.mlr.press/v97/kornblith19a.html
http://proceedings.mlr.press/v97/kornblith19a.html
https://doi.org/10.3389/neuro.06.004.2008
https://doi.org/10.3389/neuro.06.004.2008
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
http://papers.nips.cc/paper/9551-are-sixteen-heads-really-better-than-one.pdf
https://openreview.net/forum?id=HkuGJ3kCb
https://openreview.net/forum?id=HkuGJ3kCb
https://www.aclweb.org/anthology/2020.acl-main.420/
https://www.aclweb.org/anthology/2020.acl-main.420/
https://aclweb.org/anthology/D16-1079
https://aclweb.org/anthology/D16-1079
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
http://papers.nips.cc/paper/7188-svcca-singular-vector-canonical-correlation-analysis-for-deep-learning-dynamics-and-interpretability.pdf
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/W00-0726/
https://www.aclweb.org/anthology/W00-0726/

2000, Held in cooperation with ICGI-2000, Lisbon, lulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina

Portugal, September 13-14, 2000, pages 127-132.
ACL.

Victor Sanh, Lysandre Debut, Julien Chaumond, and

Toutanova. 2019. Well-read students learn better:
The impact of student initialization on knowledge
distillation. CoRR, abs/1908.08962.

Thomas Wolf. 2019. Distilbert, a distilled version of Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-

bert: smaller, faster, cheaper and lighter.

Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei
Yao, Amir Gholami, Michael W. Mahoney, and
Kurt Keutzer. 2020. Q-BERT: hessian based ul-
tra low precision quantization of BERT. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-

nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5797-5808, Florence,
Italy. Association for Computational Linguistics.

gence, AAAI 2020, The Thirty-Second Innovative Ap- Elena Voita and Ivan Titov. 2020. Information-

plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8815—
8821. AAAI Press.

theoretic probing with minimum description length.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-

Xing Shi, Kevin Knight, and Deniz Yuret. 2016a. Why
neural translations are the right length. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2278-2282,
Austin, Texas. Association for Computational Lin-
guistics.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016b. Does

lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353-355, Brussels, Belgium.
Association for Computational Linguistics.

string-based neural MT learn source syntax? In Pro- Adina Williams, Nikita Nangia, and Samuel Bowman.

ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016, pages
1526-1534. The Association for Computational Lin-
guistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models

2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112-1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

for semantic compositionality over a sentiment tree- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien

bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing,
pages 1631-1642, Seattle, Washington, USA. Asso-
ciation for Computational Linguistics.

Xavier Suau, Luca Zappella, and Nicholas Apos-
toloff. 2020. Finding experts in transformer models.
CoRR, abs/2005.07647.

Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rmi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2019.
Huggingface’s transformers: State-of-the-art natural
language processing. ArXiv, abs/1910.03771.

Sigi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. 2019. johpy M. Wu, Yonatan Belinkov, Hassan Sajjad, Nadir

Patient knowledge distillation for BERT model com-
pression. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
43224331, Hong Kong, China. Association for
Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipan-
jan Das, and Ellie Pavlick. 2019. What do you
learn from context? probing for sentence structure
in contextualized word representations. In 7th Inter-
national Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

4919

Durrani, Fahim Dalvi, and James R. Glass. 2020.
Similarity analysis of contextual word representa-
tion models. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020, pages
4638-4655. Association for Computational Linguis-
tics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-

bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5754-5764.

http://arxiv.org/abs/1910.01108
http://arxiv.org/abs/1910.01108
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://aaai.org/ojs/index.php/AAAI/article/view/6409
https://doi.org/10.18653/v1/D16-1248
https://doi.org/10.18653/v1/D16-1248
https://doi.org/10.18653/v1/d16-1159
https://doi.org/10.18653/v1/d16-1159
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
https://www.aclweb.org/anthology/D13-1170
http://arxiv.org/abs/2005.07647
https://doi.org/10.18653/v1/D19-1441
https://doi.org/10.18653/v1/D19-1441
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
http://arxiv.org/abs/1908.08962
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/P19-1580
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/2020.acl-main.422/
https://www.aclweb.org/anthology/2020.acl-main.422/
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding

A Appendices

A.1 Data

For Sequence labeling tasks, we use the first
150,000 tokens for training, and standard devel-
opment and test data for all of the four tasks
(POS, SEM, CCG super tagging and Chunking).
The links to all datasets is provided in the code
README instructions. The statistics for the
datasets are provided in Table 4.

Task Train Dev Test Tags
POS 149973 44320 47344 44
SEM 149986 112537 226426 73
Chunking | 150000 44346 47372 22
CCG 149990 45396 55353 1272

Table 4: Data statistics (number of tokens) on training,
development and test sets used in the experiments and
the number of tags to be predicted

For the sequence classification tasks, we study
tasks from the GLUE benchmark (Wang et al.,
2018), namely i) sentiment analysis (SST-2) us-
ing the Stanford sentiment treebank (Socher et al.,
2013), i1) semantic equivalence classification using
the Microsoft Research paraphrase corpus (MRPC)
(Dolan and Brockett, 2005), iii) natural language in-
ference corpus (MNLI) (Williams et al., 2018), iv)
question-answering NLI (QNLI) using the SQUAD
dataset (Rajpurkar et al., 2016), iv) question pair
similarity using the Quora Question Pairs’ dataset
(QQP), v) textual entailment using recognizing
textual entailment dataset(RTE) (Bentivogli et al.,
2009), and vi) semantic textual similarity using the
STS-B dataset (Cer et al., 2017). The statistics for
the datasets are provided in Table 5.

A.2 General Neuron-level Redundancy

Table 6 presents the detailed results for the illustra-
tion in Figures 2a and 2b. As a concrete example,
6 out of 12 tasks (POS, SEM, CCG, Chunking,
SST-2, STS-B) can do away with more than 85%
reduction in the number of neurons (threshold=0.7)
with very little loss in performance.

Figure 6 visualizes heatmaps of a few neurons
that belong to the same cluster built using CC at
c; = 0.3 as a qualitative example of a cluster.

"http://data.quora.com/First—Quora—
Dataset—-Release-Question-Pairs

Task Train Dev
SST-2 | 67349 872
MRPC | 3668 408
MNLI | 392702 9815
QNLI | 104743 5463
QQP 363846 40430
RTE 2490 277
STS-B 5749 1500

Table 5: Data statistics (number of sequences) on the
official training and development sets used in the ex-
periments. All tasks are binary classification tasks, ex-
cept for STS-B which is a regression task. Recall that
the test sets are not publicly available, and hence we
use 10% of the official train as development, and the
official development set as our test set. Exact split in-
formation is provided in the code README.

A.3 Task-Specific Layer-wise redundancy

Tables 7a and 7a provide detailed results used to
produce the illustrations in Figure 4.

Figures 7, 8 and 9 show the layer-wise task-
specific redundancy for individual classes within
POS, SEM and Chunking respectively. We do not
present these fine-grained plots for CCG (over 1000
classes) or sequence classification tasks (binary
classification only).

A.4 Task-Specific Neuron-level Redundancy

Tables 8a and 8b provide the per-task detailed re-
sults along with reduced accuracies after running
task-specific neuron-level redundancy analysis.

A.5 Application: Efficient Feature Selection

A.5.1 Transfer Learning Detailed Results

Tables 9 and 10 show the detailed per-task results
for our proposed feature selection algorithm.

A.5.2 Pretrained model timing analysis

The average runtime per instance was computed
by dividing the total number of seconds taken to
run the forward pass for all batches by the total
number of sentences. All computation was done
on an NVidia GeForce GTX TITAN X, and the
numbers are averaged across 3 runs. Figures 10 and
11 shows the results of various number of layers
(with the selected layer highlighted for each task).

A.5.3 Training time analysis

Figures 12, 13 and 14 show the runtimes of the
various steps of the proposed efficient feature se-

4920

http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
http://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Dr. Talcott lod.un of _ from th._:l:mituu and the medical schools of Harvard University and Boston University .
led n-ot_!:- the -cnne-t Institute and the medical schools of Harvard University and Boston University .
led -o! researchers from the-cumz Institute and the 1 al schools of ln:vnd--nd Bo-ton_ .

v RRRRTERREH vith e svvane . [58] rove [0 - e R G) SRR o
e a8 v AR - s AR e [6H < [RRE we
v RERTEBRER i = b . [0 hove o, - e] cev 8 v R oo

i
=
!

Figure 6: Redundant neurons as clustered by correlation clustering on two sentences. The dark red and dark blue
refer to high negative and positive activation values respectively.

lection for transfer learning application. Extraction
of features and correlation clustering both scale
linearly as the number of input tokens increases,
while ranking the various features scales linearly
with the number of total features.

A.6 Center Kernel Alignment

For layer-level redundancy, we compare representa-
tions from various layers using linear Center Kernel
Alignment (cka - Kornblith et al. (2019)). Here,
we briefly present the mathematical definitions be-
hind cka. Let Z denote a column centering trans-
formation. As denoted in the paper, zj- represents
the contextualized embedding for some word w; at
some layer /;. Let 2’ represent the contextual em-
beddings over all T" words, i.e. it is of size T' x N
(where N is the total number of neurons). Given

two layers x and y,

X, Y =7z 7z

the CKA similarity is
IXTY |2
cka(z”,2Y) =
IXTXYTY]
where || - || is the Frobenius norm.

4921

Number of Redundant Layers

1113 12 13 13 9 13 12 13 13 12 13 1313 4 12 11 0 9 1213 0 1 0 111312 113 2 0 013 3 7 10 0 11 9 8 2 13 9 5 13
emoecdng Lver [N I [A | | | | | B
et [N NN [[] [[R R | [B
ez | [HHHHEEEEEEEEETEE TN | H HEETE
Layer &] | B B | B
Layer ¢ [[] | O B | P |
Layers [] AT EEETEEEN
Layer & EEETE ENEE EEEEEEEn
Layer7 [[] EEEETEEEEEEEE
Layers [[] EEEETEEE"EEEN
Layer© L[] ENEET AT En
Layer 10 [[]] ENEETEEETEETE
Layertt [EEEEEETEETTEN EEEE EINEETEEETETTE
etz [HHEET IR EE T EER EEEEE EINEETEEETET T
no- BE -985u8=235%9958528p88FefBeso3088EbYEEE.
(a) BERT
Number of Redundant Layers

813101310 9 12 6 1112 9 5 1313 4 13 8 13 111012 7 5 7 121212 9 1 4 11 012 51010 0 7 110 9 8 10 9 12
emosoize [MEEE WE EEN EEE EEE | EEEN
wot AHEAEEEEEEEEEEEEEEEEEEE EEEEN N N N EEEN
Layerz [| i BN Hll EEEEE BN B EEEE L]
tavers [H AN NN]
wers [EE N EE B EEEEEE
Lyers [HHEE NN L]
tavers [H B BN B EEEEE
wer [H H EN EEEE EE
e [i EEEE EEEEEE
tayers [H EEEN Il BN
werro [i EEEE | | | |
Laver 11 [0 i EEEE || | |
Layer 12
25e5e88880E2LE

(b) XLNet

Figure 7: Layer-wise task specific redudancy for POS task. Redundant layers are represented by the colored blocks.

Number of Redundant Layers
0121311 9 111113131312 7 010 15 013 19 81012116 119 913103 13 9 6§ 65§ 013 0 510 9 612 9 111213 8 111310 910 56 9 0 6 111012 1 0 13 1

Embedding Layer
Layer 1
Layer 2
Layer 3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

ENEEEEEEN -
[1 [[[]
« INNEEEEEEEEEE

o INENEEEEEEEEN

e | [L[] []

EMp
ENG
Ens

(a) BERT

Number of Redundant Layers
5 110 0 81212 9 612126 9 0 110 6 613 5 0 8 116 6 412 11012121212 9 5§ 7 013 0 4103 112 41010 11 7 9 9 11 4 6 4 413 0 12 11 7 10 1113 12

Embeccirotaer [l M N || (|] || | | | |
[[|] | [] || || || | |

Layer 1
Layer 2
Layer3
Layer 4
Layer 5
Layer 6
Layer 7
Layer 8
Layer 9
Layer 10
Layer 11
Layer 12

(b) XLNet

Figure 8: Layer-wise task specific redudancy for SEM task. Redundant layers are represented by the colored
blocks.

4922

Threshold | POS SEM CCG Chunking | SST-2 MRPC MNLI QNLI QQP RTE STS-B | Average

0.0 | 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984
00| 957% 92.0% 89.8% 94.5% 90.5% 85.8% 81.7% 90.3% 91.2% 70.0% 89.5% | 88.3%
0.1 | 6841 6809 6844 6749 7415 9441 9398 8525 8993 9647 8129 8072
0.1 954% 923% 90.3% 94.8% 89.8% 863% 81.7% 902% 91.2% 69.3% 89.7% | 88.3%
0.2 | 4044 4045 4052 4008 6207 8486 8376 7225 7697 8705 6377 6293
02]959% 929% 90.6% 95.0% 90.6% 86.8% 81.7% 90.1% 91.2% 69.0% 89.6% | 88.5%
03| 2556 2566 2570 2573 4994 7328 7049 6131 6413 7157 4949 4935
03]962% 93.1% 91.3% 95.1% 90.6% 86.0% 81.8% 89.9% 91.1% 671% 89.5% | 88.3%
04| 1729 1752 1729 1709 3812 5779 5681 4961 5077 5587 3674 3772
04 962% 933% 91.4% 95.2% 904% 86.5% 81.7% 89.4% 91.0% 67.5% 89.3% | 88.4%

0.5 | 1215 1190 1221 1217 2746 4420 4289 3747 3789 4241 2721 2800
05(964% 932% 91.6% 94.9% 90.3% 863% 81.6% 89.6% 91.1% 664% 89.0% | 88.2%
06| 876 869 873 876 1962 3287 3041 2712 2767 3170 1962 2036
0.6 | 96.2% 93.3% 91.5% 94.4% 90.0% 855% 81.8% 89.7% 91.1% 66.8% 88.8% | 88.1%
0.7 792 789 792 795 1404 2258 2025 1867 1907 2315 1419 1488
0.7 [962% 93.2% 91.6% 94.1% 89.8% 863% 81.7% 893% 91.1% 69.0% 87.8% | 88.2%
0.8 | 764 758 762 748 982 1367 1239 1191 1226 1531 982 1050
0.8]96.1% 93.2% 91.3% 94.0% 89.2% 85.0% 80.6% 883% 90.0% 62.8% 82.6% | 86.7%
09| 443 378 429 357 778 812 798 797 814 854 785 659

09] 95.6% 91.8% 89.9% 91.0% 56.5% 703% 532% 80.0% 77.6% 592% 325% | 72.5%

(a) BERT
Threshold | POS SEM ~ CCG Chunking | SST2 MRPC MNLI QNLI QQP RTE STS-B | Average

0.0 | 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984 9984
00 [962% 91.8% 90.6% 93.5% |932% 86.5% 789% 89.1% 81.4% 69.7% 89.0% | 87.8%
0.1 | 9019 9021 9046 8941 7435 9206 7913 8056 5844 9931 9125 | 9006.75
0.1[963% 922% 90.7% 939% | 93.0% 86.5% 803% 89.2% 89.7% 71.8% 89.0% | 88.4%
0.2 | 5338 5392 5346 5302 6257 7685 6668 7393 4952 9244 8011 | 5344.5
021962% 923% 90.5% 939% |93.0% 86.8% 804% 89.9% 902% 70.4% 88.9% | 88.4%
03| 3646 3651 3660 3606 5206 6241 5988 6613 4482 7635 6407 | 3640.75
031962% 925% 91.0% 938% | 929% 86.8% 80.8% 89.8% 90.1% 71.5% 88.7% | 88.5%
04 | 2592 2571 2599 2573 4181 4896 5252 5583 3987 5996 4932 | 2583.75
04 1963% 92771% 90.8% 93.7% | 93.1% 88.0% 81.0% 89.7% 90.1% 70.4% 88.5% | 88.6%
05| 1754 1746 1756 1758 3207 3675 4172 4426 3271 4573 3669 1753.5
05(965% 928% 913% 944% |932% 87.7% 808% 89.6% 90.1% 71.8% 88.3% | 88.8%
0.6 | 1090 1085 1091 1072 2355 2549 2905 3248 2370 3346 2666 | 1084.5
06 96.7% 93.0% 91.8% 938% |93.1% 88.0% 81.0% 90.4% 90.0% 70.4% 88.4% | 88.8%

0.7 | 833 833 830 824 1663 1735 1883 2224 1627 2348 1859 830

0.7 196.6% 93.0% 919% 932% |92.0% 882% 79.9% 90.1% 89.7% 7T1.1% 81.7% | 88.5%
08| 773 775 773 762 1127 1108 1189 1399 1091 1469 1232 | 770.75
08 [965% 929% 919% 93.0% | 924% 855% 773% 89.4% 81.4% 693% 84.5% | 87.3%
09 | 470 412 471 414 799 790 805 839 791 832 801 441.75

09 [96.0% 91.5% 91.0% 905% | 84.4% 75.0% 658% 79.7% 88.3% 63.9% 46.6% | 79.3%

(b) XLNet

Table 6: Accuracies and number of neurons across all tasks after running correlation clustering. Recall that the
clustering is run without any task specific labels, and the evaluation is done across all tasks to analyze the efficacy
of correlation clustering as a method to remove redundant neurons.

4923

POS SEM CCG Chunking | SST-2 MRPC MNLI QNLI QQP RTE STS-B

Oracle | 952% 92.0% 90.1% 94.6% 90.6% 86.0% 81.7% 902% 91.2% 69.3% 89.7%
1% Loss | 94.2% 91.1% 89.2% 93.6% 89.7% 852% 80.9% 89.3% 90.2% 68.6% 88.8%

Embedding | 89.6% 81.5% 70.0% 717.5% 509% 68.4% 31.8% 49.5% 632% 52.7% 0.0%
Layer1 | 93.1% 87.6% 78.9% 82.1% 784% 689% 428% 59.7% T1.4% 52.7% 6.0%
Layer2 | 953% 91.7% 86.6% 91.0% 80.2% T713% 450% 612% 733% 56.0% 10.4%
Layer3 | 95.5% 92.3% 88.0% 92.0% 80.6% 69.6% 54.0% T44% T72% 549% 54.5%
Layer4 | 96.0% 93.0% 89.6% 94.0% 81.2% 755% 61.8% 813% 80.1% 55.6% 84.9%
Layer5 | 96.0% 93.2% 90.4% 94.0% 823% 762% 659% 829% 84.4% 59.6% 85.8%
Layer6 | 96.3% 934% 91.6% 94.9% 86.2% T1.5% 71.6% 832% 858% 62.1% 86.4%
Layer7 | 96.2% 93.3% 91.9% 95.1% 88.6% 19.4% T49% 83.8% 869% 625% 86.8%
Layer 8 | 96.0% 931% 919% 948% | 90.6% 77.5% 764% 844% 87.1% 63.5% 87.1%
Layer9 | 958% 929% 91.6% 94.5% |90.5% 833% 79.8% 84.8% 871.7% 632% 87.0%

Layer 10 | 95.6% 92.5% 91.2% 941% | 90.6% 82.6% 80.3% 86.1% 89.0% 64.3% 87.3%
Layer 11 | 954% 923% 909% 939% |904% 858% 81.7% 898% 91.0% 664% 88.9%
Layer 12 | 95.1% 92.0% 90.2% 932% |901% 873% 82.0% 904% 911% 66.1% 89.7%

(a) BERT
POS SEM CCG Chunking | SST2 MRPC MNLI QNLI QQP RTE STS-B

Oracle | 959% 92.5% 90.8% 94.2% 924% 86.5% 789% 88.7% 872% T1.1% 88.9%
1% Loss | 95.0% 91.5% 89.9% 93.3% 91.5% 857% 78.1% 87.8% 864% 70.4% 88.0%

Embedding | 89.5% 82.6% 70.5% 77.0% 509% 68.4% 32.7% 50.5% 632% 52.77% 0.6%
Layer1 | 96.3% 929% 88.7% 90.8% 79.6% 70.6% 442% 589% T72.0% 473% 8.8%
Layer2 | 96.7% 93.6% 91.0% 93.4% 81.1% 70.1% 451% 58.6% 73.8% 458% 11.0%
Layer3 | 96.8% 93.5% 91.8% 94.2% 84.7% 11.1% 61.6% 742% 82.4% 473% 81.1%
Layer4 | 96.7% 93.4% 921% 94.2% 883% 76.0% 63.7% T4.1% 85.0% 53.1% 82.8%
Layer5 | 96.6% 93.2% 924% 93.9% 88.6% 794% 684% 813% 892% 62.1% 84.9%
Layer6 | 96.3% 92.6% 92.0% 94.2% 90.1% 83.1% 739% 833% 899% 63.5% 85.9%
Layer7 | 96.1% 923% 91.9% 94.0% |929% 853% 791% 881% 899% 67.1% 86.7%
Layer8 | 958% 919% 91.6% 93.5% |93.6% 87.7% 80.7% 90.0% 89.2% 650% 87.6%
Layer9 | 953% 91.6% 91.4% 93.1% | 942% 875% 801% 90.3% 88.4% 69.3% 88.2%

Layer 10 | 949% 912% 90.8% 92.1% | 93.8% 86.5% 80.1% 90.4% 88.9% 71.8% 88.2%
Layer 11 | 94.6% 90.8% 90.2% 91.1% | 945% 86.8% 80.1% 90.5% 88.5% 71.8% 88.5%
Layer 12 | 92.0% 87.4% 86.0% 85.9% |938% 86.5% 808% 90.6% 89.3% 71.1% 88.5%

(b) XLNet

Table 7: Task specific layer wise results across all tasks. The oracle is trained on all 13 layers combined. Bold
numbers highlight layers for each task that maintain 99% of the Oracle’s performance

Task ‘ Oracle #Neurons Reduced Accuracy Task ‘ Oracle #Neurons Reduced Accuracy
POS | 95.7% 290 94.3% POS | 96.1% 280 95.6%
SEM | 92.2% 330 90.8% SEM | 92.2% 290 91.1%
CCG | 89.9% 330 88.7% CCG | 90.2% 690 89.8%
Chunking | 94.4% 750 93.8% Chunking | 94.1% 660 93.0%
Word Average | 93.1% 425 91.9% Word Average | 93.2% 480 92.4%
SST-2 | 90.6% 30 88.4% SST-2 | 92.9% 70 91.3%
MRPC | 86.3% 190 85.0% MRPC | 85.8% 170 85.0%
MNLI | 81.7% 30 81.8% MNLI | 79.0% 90 77.9%
QNLI | 90.3% 40 89.1% QNLI | 88.3% 20 88.5%
QQP | 91.2% 10 90.8% QQP | 87.4% 20 88.0%
RTE | 69.7% 320 68.6% RTE | 70.4% 400 71.1%
STS-B | 89.6% 290 88.3% STS-B | 88.9% 300 86.6%
Sentence Average ‘ 85.6% 130 84.6% Sentence Average ‘ 84.7% 152 84.1%

(a) BERT (b) XLNet

Table 8: Accuracies after running linguistic correlation analysis and extracting the minimal set of neurons from
all 9984 neurons

4924

Number of Redundant Layers

10 0 56 110 5§ 1113110 9 810 10 2 117 0 7 12
e POS SEM CCG Chunking
ii:;i Oracle 952% 92.0% 90.1% 94.6%
Layera Neurons 9984
o g LS 94.8% 912% 89.2% 94.0%
Layer 7 Eé Layers 3 3 8 7
ot CCFS 939% 90.1% 902% 93.7%
Layer 10 Neurons 300 400 400 600
Layer 11
Layer 12 % Reduct. | 97% 96%| 96%] 94%.
5672528k fb238 288 o Oracle | 959% 925% 908% 942%
v “ ST h _ | Neurons 9984
o
(a) BERT Z| Ls 963% 92.9% 90.3% 93.5%
110 718 6 7138 0 M1010 75 06 = | Layers 2 2 3 3
e CCFS 95.6% 91.9% 89.5% 91.8%
Layer 2 Neurons 300 400 300 600
o | % Reduct. | 97%| 96%, 97%] 94%,
Layer 5
Zjef Table 9: Results of sequence labeling tasks using
Layers LayerSelector(LS) with performance threshold=
e 1 and CCFS with performance threshold= 1. Oracle
ayer L .
Layer 17 is using a concatenation of all layers. Layers shows
Layer 12 . the number of the selected layer. Neurons are the fi-
§ éf 324 28 £ § $ s §s H NS NS nal number of neurons (features) used for classification.
Geer ref e T % Reduct. shows the percentage reduction in neurons
(b) XLNet compared to the full network.

Figure 9: Layer-wise task specific redudancy for
Chunking task. Redundant layers are represented by
the colored blocks.

1.30
MNLI MRPC
0.85 B 114 QNLI _STS-B RTE
Z 1.
_ CCG MRPC ATE < cca l
g 074 Chunking SST-2— MNLI g 098 —chunking Qqp
£ g
3 064 | pos QN % 081 [POS SST-2
3] QQP <
S SEM STS-B 5 SEM
w 053 & o 0.65
£ [}
g E
o 043 T 049
[} =1
£ T
£ 032 % 0.33
T o
§, 0.21 Z 016
Z 041 0.00
1 2 3 4 5 6 7 8 9 10 11 12
0.00 Number of Layers Selected
1 2 3 4 5 6 7 8 9 10 11 12

Number of Layers Selected

Figure 11: Average runtime per instance computed
across all sequence classification tasks for XLNet. Se-
quence classification tasks all have a near 2x speed
up, while most sequence labeling tasks have a 1.08x
speedup.

Figure 10: Average runtime per instance computed
across all sequence classification tasks for BERT. Se-
quence classification tasks all have a near 2x speed
up, while most sequence labeling tasks have a 1.08x
speedup.

4925

SST-2 MRPC MNLI QNLI QQP RTE STS-B

Oracle 90.6% 86.0% 81.7% 902% 912% 69.3% 89.7%
Neurons 9984

E LS 88.2% 86.0% 81.6% 89.9% 909% 69.3% 89.1%

gé Layers 8 12 12 12 12 13 12
CCFS 87.0% 86.3% 81.3% 89.1% 89.9% 65.7% 88.6%
Neurons 30 100 30 10 20 30 400
% Reduction ‘ 99.7%]) 99.0%) 99.7%]) 99.9%) 99.8%] 99.9%) 96.0%]
Oracle 92.4% 86.5% 78.9% 88.7% 872% 71.1% 88.9%
Neurons 9984

g LS 88.2% 86.0% 79.9% 88.8% 89.3% 71.1% 88.1%

Q Layers 6 9 8 8 6 11 9
CCFS 87.5% 89.0% 78.4% 88.3% 88.8% 69.0% 87.2%
Neurons 50 100 50 200 100 100 400

% Reduction | 99.5%] 99.0%) 99.5%| 98.0%| 99.0%| 99.0% 96.0%.

Table 10: Results of sequence classification tasks using LayerSelector(LS) with performance threshold= 1
and CCF'S with performance threshold= 1. Oracle is using a concatenation of all layers. Layers shows the number
of the selected layer. Neurons are the final number of neurons (features) used for classification. % Reduct. shows
the percentage reduction in neurons compared to the full network.

1400.0
1200.0
1000.0

800.0

Time (seconds)

600.0

»
=)

400.0
200.0 3.5
0.0 - : : : 3.0
0 12500 25000 37500 50000 62500 75000 87500 100000
Number of input samples g 25
g
o
o
. . g >
Figure 12: Runtime vs number of examples when ex- & 2°
. . . £
tracting contextual embeddings using BERT F 15 o
>
10 [o
100.0
0.5
80.0 : : 0.0 : : : : : :
H : : : : 4000 5000 6000 7000 8000 9000 10000

Number of Input Features (Neurons)

@
o
=)

Figure 14: Runtime vs number of features when per-
forming feature ranking using the weights of a trained
classifier

Time (Seconds)

N
o
o

20.0

o | - |
0 12500 25000 37500 50000 62500 75000 87500 100000

Number of input samples

Figure 13: Runtime vs number of examples when per-
forming correlation clustering

4926

