
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4865–4880,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4865

Analyzing Individual Neurons in Pre-trained Language Models

Nadir Durrani Hassan Sajjad Fahim Dalvi Yonatan Belinkov*

{ndurrani,hsajjad,faimaduddin}@hbku.edu.qa
Qatar Computing Research Institute, HBKU Research Complex, Doha 5825, Qatar

*MIT Computer Science and Artificial Intelligence Laboratory and Harvard
John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, USA

belinkov@csail.mit.edu

Abstract

While a lot of analysis has been carried to
demonstrate linguistic knowledge captured by
the representations learned within deep NLP
models, very little attention has been paid
towards individual neurons. We carry out
a neuron-level analysis using core linguistic
tasks of predicting morphology, syntax and se-
mantics, on pre-trained language models, with
questions like: i) do individual neurons in pre-
trained models capture linguistic information?
ii) which parts of the network learn more about
certain linguistic phenomena? iii) how dis-
tributed or focused is the information? and iv)
how do various architectures differ in learning
these properties? We found small subsets of
neurons to predict linguistic tasks, with lower
level tasks (such as morphology) localized in
fewer neurons, compared to higher level task
of predicting syntax. Our study reveals inter-
esting cross architectural comparisons. For ex-
ample, we found neurons in XLNet to be more
localized and disjoint when predicting proper-
ties compared to BERT and others, where they
are more distributed and coupled.

1 Introduction

Transformer-based neural language models have
constantly pushed the state-of-the-art in down-
stream NLP tasks such as Question Answering,
Textual Entailment, etc. (Rajpurkar et al., 2016;
Wang et al., 2018). Central to this revolution is the
contextualized embedding, where each word is as-
signed a vector based on the entire input sequence,
allowing it to capture not only a static semantic
meaning but also a contextualized meaning.

Previous work on analyzing neural networks
showed that while learning rich NLP tasks such as
machine translation and language modeling, these
deep models capture fundamental linguistic phe-
nomena such as word morphology, syntax and vari-
ous other relevant properties of interest (Shi et al.,

2016; Adi et al., 2016; Belinkov et al., 2017a,b;
Dalvi et al., 2017; Blevins et al., 2018).
More recently Liu et al. (2019) and Tenney et al.
(2019) used probing classifiers to analyze pre-
trained neural language models on a variety of se-
quence labeling tasks and demonstrated that contex-
tualized representations encode useful, transferable
features of language. While most of the previous
studies emphasize and analyze representations as a
whole, very little work has been carried to analyze
individual neurons in deep NLP models.

Studying individual neurons can facilitate under-
standing of the inner workings of neural networks
(Karpathy et al., 2015; Dalvi et al., 2019; Suau
et al., 2020) and have other potential benefits such
as controlling bias and manipulating system’s be-
haviour (Bau et al., 2019), model distillation and
compression (Rethmeier et al., 2020), efficient fea-
ture selection (Dalvi et al., 2020), and guiding ar-
chitectural search.

In this work, we put the representations learned
within pre-trained transformer models under the mi-
croscope and carry out a fine-grained neuron level
analysis with respect to various linguistic proper-
ties. We target questions such as: i) do individual
neurons in pretrained models capture linguistic in-
formation? ii) which parts of the network learn
more about certain linguistic phenomena? iii) how
distributed or focused is the information? and iv)
how do various architectures differ in learning these
properties?

A typical methodology in previous work on an-
alyzing representations trains probing classifiers
using the representations learned within a neural
model, to predict the understudied task. We also
use a probing classifier approach to analyze indi-
vidual neurons. Since neurons are multivariate in
nature and work in groups, we additionally use
elastic-net regularization that encourages individ-
ual and group of neurons to play a role in the train-



4866

ing of the classifier. Given a trained classifier, we
consider the weights assigned to each neuron as a
measure of their importance with respect to the un-
derstudied linguistic task. We use probes with high
selectivity (Hewitt and Liang, 2019) to ensure that
our results reflect the property of representations
and not the probe’s capacity to learn.

We choose 4 pre-trained models: ELMo (Pe-
ters et al., 2018a), its transformer variant T-ELMo
(Peters et al., 2018b), BERT (Devlin et al., 2019)
and XLNet (Yang et al., 2019) – covering a var-
ied set of modeling choices, including the building
blocks (recurrent networks versus Transformers),
optimization objective (auto-regressive versus non-
autoregressive), and model depth and width. Our
cross architectural analysis yields the following
insights:

• Information across networks is distributed, but
it is possible to extract a very small subset of
neurons to predict a linguistic task with the
same accuracy as using the entire network.

• Low level tasks such as predicting morphol-
ogy require fewer neurons compared to high
level tasks such as predicting syntax.

• Some phenomena (e.g. Verbs) are distributed
across many neurons while others (e.g. Inter-
jections) are localized in a fewer neurons.

• Lower layers contain more word-level spe-
cialized neurons, and higher layers contain
neurons specialized in syntax-level informa-
tion.

• BERT is the most distributed model with re-
spect to all properties while XLNet exhibits
focus with the most disjoint set of neurons
and layers designated for different linguistic
properties.

2 Methodology

A common approach for probing neural network
components against linguistic properties is to train
a linear classifier using the activations generated
from the trained neural network as static features.
The underlying assumption is that if a simple linear
model can predict a linguistic property, then the
representations implicitly encode this information.

Probe: We go a level deeper and identify neu-
rons within the learned representations to carry out

a more fine-grained neuron1 level analysis. We use
a logistic regression classifier with elastic-net regu-
larization (Zou and Hastie, 2005). The weights of
the trained classifier serve as a proxy to select the
most relevant features2 within the learned represen-
tations, to predict a linguistic property. Formally,
consider a pre-trained neural language model M
with L layers: {l1, l2, . . . , lL}. Given a dataset
D = {w1, w2, ..., wN} with a corresponding set of
linguistic annotations T = {tw1 , tw2 , ..., twN }, we
map each word wi in the data D to a sequence of
latent representations: D M7−→ z = {z1, . . . , zn}.
The representations can either be extracted from
the entire model or just from an individual layer.
The model is trained by minimizing the following
loss function:

L(θ) = −
∑
i

logPθ(twi |wi) + λ1‖θ‖1 + λ2‖θ‖22

where Pθ(twi |wi) is the probability that word i is
assigned property twi . The weights θ ∈ RD×T are
learned with gradient descent. Here D is the di-
mensionality of the latent representations zi and T
is the number of tags (properties) in the linguistic
tag set, which the classifier is predicting. The terms
λ1‖θ‖1 and λ2‖θ‖22 correspond to L1 and L2 regu-
larization. This combination, known as elastic-net,
strikes a balance between identifying very focused
localized features (L1) versus distributed neurons
(L2). We use a grid search algorithm described in
Search, to find the most appropriate set of lambda
values. But let us describe the neuron ranking algo-
rithm first.

Neuron Ranking Algorithm: Once the classi-
fier has been trained, our goal is to retrieve individ-
ual or a group of neurons (some subset of features
of the latent representation) that are the most rele-
vant for predicting a particular linguistic property T
of interest. We use the neuron ranking algorithm as
described in Dalvi et al. (2019). Given the trained
classifier θ ∈ RD×T , the algorithm extracts a rank-
ing of the D neurons in the model M. For each
label3 t in task T, the weights are sorted by their
absolute values in descending order. To select N
most salient neurons w.r.t. the task T, an iterative
process is carried. The algorithm starts with a small

1In our terminology, a neuron is one dimension in a high-
dimensional representation, even when the representation is
the output of a complex operation such as a transformer block.

2We use features and neurons interchangeably in the paper.
3We use label and sub-property interchangeably.



4867

percentage of the total weight mass and selects the
most salient neurons for each sub-property (e.g.
Nouns in POS tagging) until the set reaches the
specified size N .

Search: The search criteria is driven through ab-
lation of weights in the trained classifier. Once the
classifier is trained, we select M4 top and bottom
features according to our ranked list (obtained us-
ing neuron ranking algorithm described above) and
zero-out the remaining features. We then compute
score for each lambda set (λ1, λ2) as:

S(λ1, λ2) = α(At −Ab)− β(Az −Al)

where At is the accuracy of the classifier retain-
ing top neurons and masking the rest, Ab is the
accuracy retaining bottom neurons, Az is the ac-
curacy of the classifier trained using all neurons
but without regularization, and Al is the accuracy
with the current lambda set. The first term ensures
that we select a lambda set where accuracies of
top and bottom neurons are further apart and the
second term ensures that we prefer weights that
incur a minimal loss in classifier accuracy due to
regularization.5 We set α and β to be 0.5 in our
experiments. This formulation enables the search
to be automated, compared to Dalvi et al. (2019)
where the lambdas were selected manually, which
we found to be cumbersome and error-prone.

Minimal Neuron Selection: Once we have ob-
tained the best regularization lambdas, we follow a
3-step process to extract minimal neurons for any
downstream task: i) train a classifier to predict the
task using all the neurons (call it Oracle), ii) obtain
a neuron ranking based on the ranking algorithm
described above, iii) choose the top N neurons
from the ranked list and retrain a classifier using
these, iv) repeat step 3 by increasing the size of
N ,6 until the classifier obtains an accuracy close
(not less than a specified threshold δ) to the Oracle.

Control Tasks: While there is a plethora of work
demonstrating that contextualized representations
encode a continuous analogue of discrete linguis-
tic information, a question has also been raised
recently if the representations actually encode lin-
guistic structure or whether the probe memorizes

4M is set to 20% of the network in our experiments
5For some lambdas, for example with high value of L1,

the classifier prefers sparsity, i.e. selects fewer very focused
neurons but performs very badly on the task.

6We increment by adding 1% neuron at every step.

the understudied task. We use Selectivity as a crite-
rion to put a “linguistic task’s accuracy in context
with the probe’s capacity to memorize from word
types” (Hewitt and Liang, 2019). It is defined as
the difference between linguistic task accuracy and
control task accuracy. An effective probe is rec-
ommended to achieve high linguistic task accuracy
and low control task accuracy. The control tasks
for our probing classifiers are defined by mapping
each word type xi to a randomly sampled behavior
C(xi), from a set of numbers {1 . . . T} where T
is the size of tag set to be predicted in the linguis-
tic task. The sampling is done using the empiri-
cal token distribution of the linguistic task, so the
marginal probability of each label is similar. We
compute Selectivity by training classifiers using all
and the selected neurons.

3 Experimental Setup

Pre-trained Neural Language Models: We
present results with 4 pre-trained models: ELMo
(Peters et al., 2018a), and 3 transformer architec-
tures: Transformer-ELMo (Peters et al., 2018b),
BERT (Devlin et al., 2019) and XLNet (Yang et al.,
2019). The ELMo model is trained using a bidirec-
tional recurrent neural network (RNN) with 3 lay-
ers each of size 1024 dimensions. Its transformer
equivalent (T-ELMo) is trained with 7 layers but
with the same hidden layer size. The BERT model
is trained as an auto-encoder with a dual objec-
tive function of predicting masked words and next
sentence in auto-encoding fashion. We use base
version (13 layers and 768 dimensions). Lastly
we included XLNet-base which is trained with the
same parameter settings (number and size of hid-
den layers) as BERT, but with a permutation based
auto-regressive objective function.

Language Tasks: We evaluated our method on
4 linguistic tasks: POS-tagging using the Penn
TreeBank (Marcus et al., 1993), syntax tagging
(CCG supertagging)7 using CCGBank (Hocken-
maier, 2006), syntactic chunking using CoNLL
2000 shared task dataset (Tjong Kim Sang and
Buchholz, 2000), and semantic tagging using the
Parallel Meaning Bank data (Abzianidze et al.,
2017). We used standard splits for training, de-

7CCG captures global syntactic information locally at the
word level by assigning a label to each word annotating its
syntactic role in the sentence. The annotations can be thought
of as a function that takes and return syntactic categories (like
an NP: Noun phase).



4868

velopment and test data (See Appendix A.1)

Classifier Settings: We used linear probing clas-
sifier with elastic-net regularization, using a cat-
egorical cross-entropy loss, optimized by Adam
(Kingma and Ba, 2014). Training is run with shuf-
fled mini-batches of size 512 and stopped after 10
epochs. The regularization weights are trained us-
ing grid-search algorithm.8 For sub-word based
models, we use the last activation value to be the
representative of the word as prescribed for the em-
beddings extracted from Neural MT models (Dur-
rani et al., 2019) and pre-trained Language Models
(Liu et al., 2019). Linear classifiers are a popular
choice in analyzing deep NLP models due to their
better interpretability (Qian et al., 2016; Belinkov
et al., 2020). Hewitt and Liang (2019) have also
shown linear probes to have higher Selectivity, a
property deemed desirable for more interpretable
probes. Linear probes are particularly important
for our method as we use the learned weights as a
proxy to measure the importance of each neuron.

4 Evaluation

4.1 Ablation Study

First we evaluate our rankings as obtained by the
neuron selection algorithm presented in Section 2.
We extract a ranked list of neurons with respect
to each property set (linguistic task T ) and ablate
neurons in the classifier to verify the rankings. This
is done by zeroing-out all the activations in the test,
except for the selectedM% neurons. We select top,
random and bottom 20%9 neurons to evaluate our
rankings. Table 1 shows the efficacy of our rank-
ings, with low performance (prediction accuracy)
using only the bottom or random neurons versus us-
ing only the top neurons. The accuracy of random
neurons is high in some cases (for example CCG, a
task related to predicting syntax) showing when the
underlying task is complex, the information related
to it is more distributed across the network causing
redundancy.

4.2 Minimal Neuron Set

Now that we have established correctness of the
rankings, we apply the algorithm incrementally
to select minimal neurons for each linguistic task

8See Appendix A.2 for hyperparameters selected for each
task.

9The choice of 20% is arbitrary. We did not experiment
much with it as this was merely to select best lambdas and to
demonstrate the efficacy of rankings.

BERT XLNet T-ELMo ELMo

POS

All 96.04 96.13 96.39 96.48
Top 90.16 92.28 91.96 83.01
Random 28.45 58.17 48.40 30.80
Bottom 16.86 44.64 21.11 15.56

SEM

All 92.09 92.64 91.94 93.29
Top 84.32 90.70 84.16 81.23
Random 64.28 72.14 66.15 75. 82
Bottom 59.02 25.37 36.14 58.32

Chunking

All 95.01 94.15 93.43 93.14
Top 89.01 89.16 87.63 82.51
Random 75.83 75.26 79.40 70.23
Bottom 66.82 46.66 48.11 64.39

CCG

All 92.16 92.55 91.70 91.19
Top 75.13 76.48 71.31 68.19
Random 71.11 63.71 68.23 41.17
Bottom 59.13 62.42 67.11 30.32

Table 1: Ablation Study: Selecting all, top, random
and bottom 20% neurons and zeroing-out remaining to
evaluate classifier accuracy on blind test (averaged over
3 runs). See Appendix A.4 for dev results.

that obtain a similar accuracy (we use a threshold
δ = 0.5) as using the entire network (all the fea-
tures). Identifying a minimal set of top neurons en-
ables us to highlight: i) parts of the learned network
where different linguistic phenomena are predom-
inantly captured, ii) how localized or distributed
information is with respect to different properties.

Table 2 summarizes the results. Firstly we show
that in all the tasks, selecting a subset of top N%
neurons and retraining the classifier can obtain a
similar (sometimes even better) accuracy as using
all the neurons (Acca) for classification as static
features. For lexical tasks such as POS or SEM
tagging, a very small number of neurons (roughly
400 i.e 4% of features in BERT and XLNet) was
found to be sufficient for achieving an accuracy
(Acct) similar to oracle (Acca). More complex
syntactic tasks such as Chunking and CCG tag-
ging required larger sets of neurons (up to 2365
– one third of the network in T-ELMo) to accom-
plish the same. It is interesting to see that all the
models, irrespective of their size, required a com-
parable number of selected neurons, in most of
the cases. On the POS and SEM tagging tasks,
besides T-ELMo all other models use roughly the
same number of neurons. T-ELMo required more
neurons in SEM tagging to achieve the task. This



4869

BERT XLNet T-ELMo ELMo

Neua 9984 9984 7168 3072

POS

Neut 400/4% 400/4% 430/6% 368/12%
Acca 96.04 96.13 96.39 96.48
Acct 95.86 96.49 96.07 96.22

Sela 14.45 23.49 22.65 19.82
Selt 31.68 31.82 37.31 38.51

SEM

Neut 400/4% 400/4% 716/10% 307/10%
Acca 92.09 92.64 91.94 93.29
Acct 92.12 92.62 91.97 93.17

Sela 5.77 14.03 12.78 11.18
Selt 27.17 26.55 23.87 32.28

Chunking

Neut 1000/10% 1000/10% 860/12% 983/32%
Acca 95.01 94.62 93.43 93.14
Acct 94.99 94.17 93.37 93.08

Sela 16.30 22.77 24.42 18.13
Selt 29.19 28.42 30.95 26.21

CCG

Neut 1500/15% 1500/15% 2365/33% 1014/33%
Acca 92.16 92.55 91.7 91.19
Acct 92.36 92.39 91.39 90.95

Sela 7.33 14.02 11.99 11.48
Selt 15.06 24.15 18.32 17.88

Table 2: Selecting minimal number of neurons for each
downstream NLP task. Accuracy numbers reported on
blind test-set (averaged over three runs) – Neua = Total
number of neurons, Neut = Top selected neurons, Acca
= Accuracy using all neurons, Acct = Accuracy using
selected neurons after retraining the classifier using se-
lected neurons, Sel = Difference between linguistic task
and control task accuracy when classifier is trained on
all neurons (Sela) and top neurons (Selt).

could imply that knowledge of lexical semantics in
T-ELMo is distributed in more neurons. In an over-
all trend, ELMo generally needed fewer neurons
while T-ELMo required more neurons compared
to the other models to achieve oracle performance.
Both these models are much smaller than BERT
and XLNet. We did not observe any correlation,
comparing results with the size of the models.

Control Tasks: We use Selectivity to further
demonstrate that our probes (trained using the en-
tire representation and selected neurons) do not
memorize from word types but learned the under-
lying linguistic task. Recall that an effective probe
is recommended to achieve high linguistic task ac-
curacy and low control task accuracy. The results

BERT XLNet T-ELMo ELMo

Neua 9984 9984 7168 3072

POS

Neut 250/2.5% 250/2.5% 215/3% 153/5%
Acca 96.04 96.13 96.39 96.48
Acct 93.70 95.72 94.92 94.45

SEM

Neut 250/2.5% 400/4% 286/4% 307/5%
Acca 92.09 92.64 91.94 93.29
Acct 91.44 90.92 90.17 93.17

Chunking

Neut 600/6% 600/6% 430/6% 614/20%
Acca 95.01 94.62 93.43 93.14
Acct 93.53 92.83 92.28 91.79

CCG

Neut 698/7% 734/8% 716/10% 675/22%
Acca 92.16 92.55 91.70 91.19
Acct 91.73 91.11 89.79 89.08

Table 3: Selecting minimal number of neurons for each
downstream NLP task with a looser threshold δ = 2.
Accuracy numbers reported on blind test-set (averaged
over three runs) – Neua = Total number of neurons,
Neut = Top selected neurons, Acca = Accuracy using
all neurons, Acct = Accuracy using selected neurons
after retraining the classifier using selected neurons.

(see Table 2) show that selectivity with top neu-
rons (Selt) is much higher than selectivity with
all neurons Sela. It is evident that using all the
neurons may contribute to memorization whereas
higher selectivity with selected neurons indicates
less memorization and efficacy of our neuron se-
lection. We achieve high selectivity when selecting
400 neurons as in the case of POS and SEM. The
chunking and CCG tasks require a lot more neu-
rons with CCG requiring up to 33% of the network.
Here, the low selectivity indicates that while the
information about CCG is distributed into several
neurons, a set of random neurons may also be able
to achieve a decent performance.

Discussion: Identifying neurons that are salient
to a task has various potential applications such
as task-specific model compression, by removing
the irrelevant neurons with respect to the task or
task-specific fine-tuning based on selected neurons.
It is however tricky how to model this, for example
one complexity is that zeroing out non-salient neu-
rons in the lower layers directly affects any salient
neurons in the subsequent layers. A rather direct



4870

application to our work is efficient feature-based
transfer learning, which has shown to be a viable
alternative to the fine-tuning approach (Peters et al.,
2019). Feature-based approach uses contextualized
embeddings learned from pre-trained models as
static feature vectors in the down-stream classifi-
cation task. Classifiers with large contextualized
vectors are not only cumbersome to train, but also
inefficient during inference. They have also been
shown to be sub-optimal when supervised data is
insufficient (Hameed, 2018). BERT-large, for ex-
ample, is trained with 19,200 (25 layers × 768
dimensions) features. Reducing the feature set to
a smaller number can lead to faster training of the
classifier and efficient inference. Earlier (in Table
2) we obtained minimal set of neurons with a very
tight threshold of δ = 0.5. By allowing a loser
threshold, say δ = 2, we can reduce the set of
minimal neurons to improve the efficiency even
more. See Table 3 for results. For more on this,
we refer interested readers to look at Dalvi et al.
(2020), where we explored this more formally, ex-
panding our study to the sentence-labeling GLUE
tasks (Wang et al., 2018).

5 Analysis

5.1 Layer-wise Distribution

Previous work on analyzing deep neural networks
analyzed how individual layers contribute towards
a downstream task (Liu et al., 2019; Kim et al.,
2020; Belinkov et al., 2020). Here we observe
how the neurons, selected from the entire network,
spread across different layers of the model. Such an
analysis gives an alternative view of which layers
contribute predominantly towards different tasks.
Figure 1 presents the results. In most cases, lexi-
cal tasks such as learning morphology (POS tag-
ging) and word semantics (SEM tagging) are dom-
inantly captured by the neurons at lower layers,
whereas the more complicated task of modeling
syntax (CCG supertagging) is taken care of at the
final layer. An exception to this overall pattern is
the BERT model. Top neurons in BERT spread
across all the layers, unlike other models where
top neurons (for a particular task) are contributed
by fewer layers. This reflects that every layer in
BERT possesses neurons that specialize in learning
particular language properties, while other models
have designated layers that specialize in learning
those language properties. Different from other
models, neurons in the embedding layer show min-

imum contribution in XLNet consistently across
the tasks. Let us analyze the results with respect to
each linguistic task.

POS Tagging: Every layer in BERT and ELMo
contributed towards the top neurons, while the dis-
tribution is dominated by lower layers in XLNet
and T-ELMo, with an exception of XLNet not
choosing any neurons from the embedding layer.

SEM Tagging: Similar to POS, all layers of
BERT contributed to the list of top neurons. How-
ever, the middle layers showed the most contribu-
tion (see layer numbers 4–7 in Figure 1e). This is
in line with Liu et al. (2019) who found middle and
higher middle layers to give optimal results for the
semantic tagging task. On XLNet, T-ELMo and
ELMo, the first layer after the embedding layer got
the largest share of the top neurons of SEM. This
trend is consistent across other tasks, i.e., the core
linguistic information is learned earlier in the net-
work with an exception of BERT, which distributes
information across the network.

Chunking Tagging: The overall pattern re-
mained similar in the task of chunking. Notice how-
ever, a shift in pattern – the contribution from lower
layers decreased compared to previous tasks, in the
case of BERT. For example, in the SEM task, top
neurons were dominantly contributed from lower
and middle layers, in chunking middle and higher
layers contributed most. This could be attributed to
the fact that chunking is a more complex syntactic
task and is learned at relatively higher layers.

CCG Supertagging: Compared to chunking,
CCG supertagging is a richer syntactic tagging task,
almost equivalent to parsing (Bangalore and Joshi,
1999). The complexity of the task is evident in our
results as there is a clear shift in the distribution of
top neurons moving from middle to higher layers.
The only exception again is the BERT model where
this information is well spread across the network,
but still dominantly preserved in the final layers.

Discussion: Our results are in line with and rein-
force the layer-wise analysis presented in Liu et al.
(2019). However, unlike their work and all other
work on layer-wise probing analysis, which trains a
classifier on each layer individually to compare the
results, our method trains a single classifier on all
layers concatenated to analyze which layers con-
tribute most to the task based on the most relevant
selected features. This makes the playing field even



4871

(a) POS – BERT (b) POS – XLNet (c) POS – T-ELMo (d) POS – ELMo

(e) SEM – BERT (f) SEM – XLNet (g) SEM – T-ELMo (h) SEM – ELMo

(i) Chunking – BERT (j) Chunking – XLNet (k) Chunking – T-ELMo (l) Chunking – ELMo

(m) CCG – BERT (n) CCG – XLNet (o) CCG – T-ELMo (p) CCG – ELMo

Figure 1: How top neurons spread across different layers for each task? X-axis = Layer number, Y-axis = Number
of neurons selected from that layer

and results in a sharper analysis. For example, Liu
et al. (2019) showed layer 1 in Transformer-ELMo
to give the best result on the task of predicting POS
tags; however, layers 2 and 3 almost give similar
accuracy (see Appendix D1 in their paper). Based
on these results, one cannot confidently claim that
the task of POS is predominantly captured at layer
1. However, our method clearly shows this result
(see Figure 1c).

5.2 Localization versus Distributedness
Next we study how localized or distributed dif-
ferent properties are within a linguistic task (for
example nouns or verbs in POS tagging, location
in semantic tagging), and across different architec-
tures. Remember that the ranking algorithm ex-
tracts neurons for each label t (e.g. LOC:location
or EVE:event categories in semantic tagging) in
task T , sorted based on absolute weights. The final
rankings are obtained by selecting from each label
using the neuron ranking algorithm as described in
Section 2. This allows us to analyze how localized
or distributed a property is, based on the number of
neurons that are selected for each label in the task.

Figure 2: Number of neurons per label: Some proper-
ties (e.g., interjections) are localized in fewer neurons,
while others (e.g., nouns) are more distributed. Y-axis
= number of neurons per label

Property-wise: We found that while many prop-
erties are distributed, i.e., a large group of neurons
is used to predict a label, some properties such
as functional or unambiguous words that do not
require contextual information are learned using
fewer neurons. For example, UH (interjections)
or the TO particle required fewer neurons across
architectures compared to NNPS (proper noun; plu-
ral) in the task of POS tagging (Figure 2). Similarly



4872

(a) POS Tagging (b) Chunking Tagging

Figure 3: Top neurons in XLNet are more localized towards individual properties compared to other architectures

EQA (equating property, e.g., as tall as you) is han-
dled with fewer neurons compared to ORG (orga-
nization property). We observed a similar behavior
in the task of chunking, with I-PRT (particles in-
side of a chunk) requiring fewer neurons across
different architectures. On the contrary, B-VP (be-
ginning of verb phrase) required plenty many.

Layer-wise: Previously we analyzed each lin-
guistic task in totality. We now study whether indi-
vidual properties (e.g., adjectives) are localized or
well distributed across layers in different architec-
tures. We observed interesting cross architectural
similarities, for example the neurons that predict
the foreign words (FW) property were predomi-
nantly localized in final layers (BERT: 13, XLNET:
11, T-ELMo: 7, ELMo:3) of the network in all
the understudied architectures. In comparison, the
neurons that capture common class words such as
adjectives (JJ) and locations (LOC) are localized
in lower layers (BERT: 0, XLNET: 1, T-ELMo:
0, ELMo:1). In some cases, we did find variance,
for example personal pronouns (PRP) in POS tag-
ging and event class (EXC) in semantic tagging
were handled at different layers across different
architectures. See Appendix A.7 for all labels.

Architecture-wise: We found that top neurons
in XLNet are more localized towards individual
properties compared to other architectures where
top neurons are shared across multiple properties.
We demonstrate this in Figure 3. Notice how the
number of neurons for different labels10 is much
smaller in the case of XLNet, although roughly
the same number of total neurons (400 for POS
tagging and 960 for chunking on average; see Table

10Figure 3 only displays selected properties, but the pattern
holds across all properties. See Appendix A.7.

2) were required by all pre-trained models to carry
out a task. This means that in XLNet neurons
are exclusive towards specific properties compared
to other architectures where neurons are shared
between multiple properties. Such a trait in XLNet
can be potentially helpful in predicting the behavior
of the system as it is easier to isolate neurons that
are designated toward specific phenomena.

6 Related Work

Rise of neural network has seen a subsequent rise of
interpretability of these models. Researchers have
explored visualization methods to analyze learned
representations (Karpathy et al., 2015; Kádár et al.,
2017), attention heads (Clark et al., 2019; Vig,
2019) of language compositionality (Li et al., 2016)
etc. While such visualizations illuminate the inner
workings of the network, they are often qualitative
in nature and somewhat anecdotal.

A more commonly used approach tries to pro-
vide a quantitative analysis by correlating parts of
the neural network with linguistic properties, for
example by training a classifier to predict a fea-
ture of interest (Adi et al., 2016; Conneau et al.,
2018). Please refer to Belinkov and Glass (2019)
for a comprehensive survey of work done in this
direction. Liu et al. (2019) used probing classifiers
for investigating the contextualized representations
learned from a variety of neural language models
on numerous word level linguistic tasks. A similar
analysis was carried by Tenney et al. (2019) on a
variety of sub-sentence linguistic tasks. We extend
this line of work to carry out a more fine-grained
neuron level analysis of neural language models.

Our work is most similar to Dalvi et al. (2019)
who conducted neuron analysis of representations
learned from sequence-to-sequence machine trans-



4873

lation models. Our work is different from them in
that i) we carry out analysis on a wide range of ar-
chitectures which are deeper and more complicated
than RNN-based models and illuminate interesting
insights, ii) we automated the grid-search criteria
to select the regularization parameters, compared
to manual selection of lambdas, which is cumber-
some and error-prone. In contemporaneous work,
Suau et al. (2020) used max-pooling to identify
relevant neurons (aka Expert units) in pre-trained
models, with respect to a specific concept (for ex-
ample word-sense).

A pitfall to the approach of probing classifiers is
whether the probe is faithfully reflecting the prop-
erty of the representation or just learned the task?
Hewitt and Liang (2019) defined control tasks to
analyze the role of training data and lexical mem-
orization in probing experiments. Voita and Titov
(2020) proposed an alternative that measures Mini-
mal Description Length of labels given representa-
tions. It would be interesting to see how a probe’s
complexity in their work (code length) compares
with the number of selected neurons according to
our method. The results are consistent at least in
the ELMo POS example, where layer 1 was shown
to have the shortest code length in their work. In
our case, most top neurons are selected from layer 1
(see Figure 1d for example). Pimentel et al. (2020)
discussed the complexity of the probes and argued
for using highest performing probes for tighter es-
timates. However, complex probes are difficult to
analyze. Linear models are preferable due to their
explainability; especially in our work, as we use
the learned weights as a proxy to get a measure of
the importance of each neuron. We used linear clas-
sifiers with control tasks as described in Hewitt and
Liang (2019). Although we mainly used probing
accuracy to drive the neuron selection in this work,
and Selectivity only to demonstrate that our results
reflect the property learned by representations and
not probe’s capacity to learn – an interesting idea
would be to use selectivity itself to drive the inves-
tigation. However, it is not trivial how to optimize
for selectivity as it cannot be controlled/tuned di-
rectly – for example, removing some neurons may
decrease accuracy but may not change selectivity.
We leave this exploration for future work.

Probing classifiers require supervision for the lin-
guistic tasks of interest with annotations, limiting
their applicability. Bau et al. (2019) used unsuper-
vised approach to identify salient neurons in neural

machine translation and manipulated translation
output by controlling these neurons. Recently, Wu
et al. (2020) measured similarity of internal repre-
sentations and attention across prominent contex-
tualized representations (from BERT, ELMo, etc.).
They found that different architectures have similar
representations, but different individual neurons.

7 Conclusion

We analyzed individual neurons across a variety
of neural language models using linguistic correla-
tion analysis on the task of predicting core linguis-
tic properties (morphology, syntax and semantics).
Our results reinforce previous findings and also
illuminate further insights: i) while the informa-
tion in neural language models is massively dis-
tributed, it is possible to extract a small number
of features to carry out a downstream NLP task,
ii) the number of extracted features varies based
on the complexity of the task, iii) the neurons that
learn word morphology and lexical semantics are
predominantly found in the lower layers of the net-
work, whereas the ones that learn syntax are at the
higher layers, with the exception of BERT, where
neurons were spread across the entire network, iv)
closed-class words (for example interjections) are
handled using fewer neurons compared to poly-
semous words (such as nouns and adjectives), v)
features in XLNet are more localized towards in-
dividual properties as opposed to other architec-
tures where neurons are distributed across many
properties. A direct application of our analysis is
efficient feature-based transfer learning from large-
scale neural language models: i) identifying that
most relevant features for a task are contained in
layer x reduces the forward-pass to that layer, ii)
reducing the feature set decreases the time to train a
classifier and also its inference. We refer interested
readers to see our work presented in Dalvi et al.
(2020) for more details.

Acknowledgements

We thank the anonymous reviewers for their feed-
back on the earlier draft of this paper. This re-
search was carried out in collaboration between
the Qatar Computing Research Institute (QCRI)
and the MIT Computer Science and Artificial In-
telligence Laboratory (CSAIL). Y.B. was also sup-
ported by the Harvard Mind, Brain, and Behavior
Initiative (MBB).



4874

References
Lasha Abzianidze, Johannes Bjerva, Kilian Evang,

Hessel Haagsma, Rik van Noord, Pierre Ludmann,
Duc-Duy Nguyen, and Johan Bos. 2017. The paral-
lel meaning bank: Towards a multilingual corpus of
translations annotated with compositional meaning
representations. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, EACL ’17, pages 242–
247, Valencia, Spain.

Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv preprint arXiv:1608.04207.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2).

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In International Conference on
Learning Representations.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2017a. What do Neu-
ral Machine Translation Models Learn about Mor-
phology? In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), Vancouver. Association for Computational
Linguistics.

Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Has-
san Sajjad, and James Glass. 2020. On the linguistic
representational power of neural machine translation
models. Computational Linguistics, 45(1):1–57.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
Transactions of the Association for Computational
Linguistics, 7:49–72.

Yonatan Belinkov, Lluı́s Màrquez, Hassan Sajjad,
Nadir Durrani, Fahim Dalvi, and James Glass.
2017b. Evaluating Layers of Representation in Neu-
ral Machine Translation on Part-of-Speech and Se-
mantic Tagging Tasks. In Proceedings of the 8th In-
ternational Joint Conference on Natural Language
Processing (IJCNLP).

Terra Blevins, Omer Levy, and Luke Zettlemoyer. 2018.
Deep RNNs encode soft hierarchical syntax. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 14–19, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D. Manning. 2019. What does BERT
look at? an analysis of BERT’s attention. In Pro-
ceedings of the 2019 ACL Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for
NLP, pages 276–286, Florence, Italy. Association
for Computational Linguistics.

Alexis Conneau, German Kruszewski, Guillaume Lam-
ple, Loı̈c Barrault, and Marco Baroni. 2018. What
you can cram into a single vector: Probing sentence
embeddings for linguistic properties. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (ACL).

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, D. Anthony Bau, and James Glass. 2019.
What is one grain of sand in the desert? analyzing
individual neurons in deep nlp models. In Proceed-
ings of the Thirty-Third AAAI Conference on Artifi-
cial Intelligence (AAAI, Oral presentation).

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, Yonatan
Belinkov, and Stephan Vogel. 2017. Understanding
and Improving Morphological Learning in the Neu-
ral Machine Translation Decoder. In Proceedings
of the 8th International Joint Conference on Natural
Language Processing (IJCNLP).

Fahim Dalvi, Hassan Sajjad, Nadir Durrani, and
Yonatan Belinkov. 2020. Analyzing redundancy in
pretrained transformer models. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP-2020), Online.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Nadir Durrani, Fahim Dalvi, Hassan Sajjad, Yonatan
Belinkov, and Preslav Nakov. 2019. One size does
not fit all: Comparing NMT representations of dif-
ferent granularities. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1504–1516, Minneapolis, Minnesota.
Association for Computational Linguistics.

Shilan Hameed. 2018. Filter-wrapper combination and
embedded feature selection for gene expression data.
International Journal of Advances in Soft Comput-
ing and its Applications, 10:90–105.

John Hewitt and Percy Liang. 2019. Designing and
interpreting probes with control tasks. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 2733–2743, Hong
Kong, China. Association for Computational Lin-
guistics.

Julia Hockenmaier. 2006. Creating a CCGbank and a
wide-coverage CCG lexicon for German. In Pro-
ceedings of the 21st International Conference on

http://www.aclweb.org/anthology/J99-2004
http://www.aclweb.org/anthology/J99-2004
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://openreview.net/forum?id=H1z-PsR5KX
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://aclanthology.coli.uni-saarland.de/pdf/P/P17/P17-1080.pdf
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.1162/tacl_a_00254
https://doi.org/10.18653/v1/P18-2003
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/W19-4828
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/N19-1154
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275


4875

Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
ACL ’06, pages 505–512, Sydney, Australia.

Akos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2017. Representation of linguistic form and func-
tion in recurrent neural networks. Computational
Linguistics, 43(4):761–780.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

Taeuk Kim, Jihun Choi, Daniel Edmiston, and Sang
goo Lee. 2020. Are pre-trained language models
aware of phrases? simple but strong baselines for
grammar induction.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in NLP. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 681–691, San Diego, California. As-
sociation for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018a. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), New
Orleans, Louisiana. Association for Computational
Linguistics.

Matthew Peters, Mark Neumann, Luke Zettlemoyer,
and Wen-tau Yih. 2018b. Dissecting contextual
word embeddings: Architecture and representation.
In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1499–1509, Brussels, Belgium. Association
for Computational Linguistics.

Matthew E. Peters, Sebastian Ruder, and Noah A.
Smith. 2019. To tune or not to tune? adapting pre-
trained representations to diverse tasks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), Florence, Italy. As-
sociation for Computational Linguistics.

Tiago Pimentel, Josef Valvoda, Rowan Hall Maudslay,
Ran Zmigrod, Adina Williams, and Ryan Cotterell.
2020. Information-theoretic probing for linguistic
structure. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4609–4622, Online. Association for Computa-
tional Linguistics.

Peng Qian, Xipeng Qiu, and Xuanjing Huang. 2016.
Analyzing Linguistic Knowledge in Sequential
Model of Sentence. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing, pages 826–835, Austin, Texas. Associa-
tion for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Nils Rethmeier, Vageesh Kumar Saxena, and Isabelle
Augenstein. 2020. Tx-ray: Quantifying and explain-
ing model-knowledge transfer in (un-)supervised
NLP. In Proceedings of the Thirty-Sixth Conference
on Uncertainty in Artificial Intelligence, UAI 2020,
virtual online, August 3-6, 2020, page 197. AUAI
Press.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP ’16,
pages 1526–1534, Austin, TX, USA.

Xavier Suau, Luca Zappella, and Nicholas Apos-
toloff. 2020. Finding experts in transformer models.
CoRR, abs/2005.07647.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das,
and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In International Con-
ference on Learning Representations.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In Fourth Conference on Computational Nat-
ural Language Learning and the Second Learning
Language in Logic Workshop.

Jesse Vig. 2019. A multiscale visualization of atten-
tion in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages

http://arxiv.org/abs/2002.00737
http://arxiv.org/abs/2002.00737
http://arxiv.org/abs/2002.00737
https://doi.org/10.18653/v1/N16-1082
https://doi.org/10.18653/v1/N16-1082
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://www.aclweb.org/anthology/J93-2004
https://www.aclweb.org/anthology/J93-2004
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/W19-4302
https://doi.org/10.18653/v1/2020.acl-main.420
https://doi.org/10.18653/v1/2020.acl-main.420
https://aclweb.org/anthology/D16-1079
https://aclweb.org/anthology/D16-1079
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://www.auai.org/uai2020/proceedings/197_main_paper.pdf
http://www.auai.org/uai2020/proceedings/197_main_paper.pdf
http://www.auai.org/uai2020/proceedings/197_main_paper.pdf
http://arxiv.org/abs/2005.07647
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://www.aclweb.org/anthology/W00-0726
https://www.aclweb.org/anthology/W00-0726
https://doi.org/10.18653/v1/P19-3007
https://doi.org/10.18653/v1/P19-3007


4876

37–42, Florence, Italy. Association for Computa-
tional Linguistics.

Elena Voita and Ivan Titov. 2020. Information-
theoretic probing with minimum description length.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

John Wu, Hassan Belinkov, Yonatan Sajjad, Nadir Dur-
rani, Fahim Dalvi, and James Glass. 2020. Simi-
larity Analysis of Contextual Word Representation
Models. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics
(ACL), Seattle. Association for Computational Lin-
guistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems 32: Annual Con-
ference on Neural Information Processing Systems
2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 5754–5764.

Hui Zou and Trevor Hastie. 2005. Regularization and
variable selection via the elastic net. Journal of the
Royal Statistical Society, Series B, 67:301–320.

https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding


4877

A Appendices

A.1 Data and Representations

We used standard splits for training, development
and test data for the 4 linguistic tasks (POS, SEM,
Chunking and CCG super tagging) that we used
to carry out our analysis on. The splits to prepro-
cess the data are available through git repository11

released with Liu et al. (2019). See Table 4 for
statistics. We obtained the understudied pre-trained
models from the authors of the paper, through per-
sonal communication.

Task Train Dev Test Tags

POS 36557 1802 1963 44
SEM 36928 5301 10600 73
Chunking 8881 1843 2011 22
CCG 39101 1908 2404 1272

Table 4: Data statistics (number of sentences) on train-
ing, development and test sets using in the experiments
and the number of tags to be predicted

A.2 Hyperparameters

We use elastic-net based regularization to control
the trade-off between selecting focused individual
neurons versus group of neurons while maintaining
the original accuracy of the classifier without any
regularization. We do a grid search on L1 and L2

ranging from values 0 . . . 1e−7. See Table 5 for
the optimal values for each task across different
architectures.

BERT XLNet T-ELMo ELMo

L1 , L2 = λ1, λ2
POS .001, .01 .001, .01 .001, .001 .001, .0001
SEM .001, .01 .001, .01 .001, .001 .001, .0001
Chunk 1e−4, 1e−5 1e−4, 1e−4 .001, .001 .001, .01
CCG 1e−5, 1e−6 1e−5, 1e−6 1e−4, 1e−6 1e−5, 1e−6

Table 5: Best elastic-net lambdas parameters for each
task

A.3 Infrastructure and Run Time

Our experiments were run on NVidia GeForce GTX
TITAN X GPU card. Grid search for finding op-
timal lambdas is expensive when optimal number
of neurons for the task are unknown. Running
grid search would take O(MN2) where M = 100

11https://github.com/nelson-liu/
contextual-repr-analysis

BERT XLNet T-ELMo ELMo

POS

All 96.10 96.38 96.61 96.45
Top 90.32 93.07 92.13 85.03
Rand 29.43 57.32 49.14 32.18
Bot 17.99 45.61 23.01 17.36

SEM

All 92.63 92.16 92.40 93.35
Top 85.17 90.91 84.13 83.01
Rand 65.12 71.11 65.11 74.18
Bot 58.19 26.11 35.99 57.11

Chunking

All 95.11 94.19 93.93 93.85
Top 90.13 90.03 88.13 83.12
Rand 74.12 75.63 78.19 71.48
Bot 64.13 45.43 47.16 65.12

CCG

All 92.23 92.43 91.66 91.23
Top 75.61 76.31 71.22 68.09
Rand 70.01 63.11 68.03 41.37
Bot 61.12 62.31 67.99 30.12

Table 6: Ablation Study: Selecting all, top, random
(rand) and bottom (bot) 20% neurons and zeroing-out
remaining to evaluate classifier accuracy on dev test
(averaged over three runs).

(if we try increasing number of neurons in each
step by 1%) and N = 0, 0.1, . . . 1e−7. We fix the
M = 20% to find the best regularization parame-
ters first reducing the grid search time to O(N2)
and find the optimal number of neurons in a subse-
quent step with O(M). The overall running time
of our algorithm therefore is O(M + N2). This
varies a lot in terms of wall-clock computation,
based on number of examples in the training data,
number of tags to be predicted in the downstream
task. Including a full forward pass over the pre-
trained model to extract the contextualized vector,
and running the grid search algorithm to find the
best hyperparameters and minimal set of neurons
took on average 12 hours ranging from 3 hours (for
POS with ELMo experiment) to 18 hours (for CCG
with BERT).

A.4 Ablation Study

We reported accuracy numbers on ablating top, ran-
dom and bottom neurons in the trained classifier,
on blind test-set in the main body. In Table 6, we
report results on development tests.

https://github.com/nelson-liu/contextual-repr-analysis
https://github.com/nelson-liu/contextual-repr-analysis


4878

BERT XLNet T-ELMo ELMo

Neua 9984 9984 7168 3072

POS

Neut 400/4% 400/4% 430/6% 368/12%
Acca 96.10 96.38 96.61 96.45
Acct 96.48 96.52 96.33 96.07

Sela 15.51 23.43 22.69 19.12
Selt 31.81 31.62 37.61 38.52

SEM

Neut 400/4% 400/4% 716/10% 307/10%
Acca 92.63 92.16 92.40 93.35
Acct 92.19 92.59 92.17 93.21

Sela 5.82 14.01 12.19 11.37
Selt 27.19 26.46 23.97 32.33

Chunking

Neut 1000/10% 1000/10% 860/12% 983/32%
Acca 95.11 94.19 93.93 93.85
Acct 95.07 94.13 93.61 93.48

Sela 16.33 22.87 24.31 18.09
Selt 29.32 28.19 31.05 26.38

CCG

Neut 1500/15% 1500/15% 2365/33% 1014/33%
Acca 92.23 92.43 91.66 91.23
Acct 92.13 92.49 91.89 91.09

Sela 7.48 14.21 11.42 11.99
Selt 15.91 24.82 18.31 17.34

Table 7: Selecting minimal number of neurons for each
downstream NLP task. Accuracy numbers reported on
dev test (averaged over three runs) – Neua = Total num-
ber of neurons, Neut = Top selected neurons, Acca =
Accuracy using all neurons, Allt = Accuracy using se-
lected neurons after retraining the classifier using se-
lected neurons, Sel = Difference between linguistic task
and control task accuracy when classifier is trained on
all neurons (Sela) and top neurons (Selt).

A.5 Minimal Neuron Set

We reported minimal number of neurons required
to obtain oracle accuracy in the main body, along
with the results on Selectivity. In Table 7, we report
results on development tests.

A.6 Localized versus Distributed Labels

In Section 5.1 we only showed number of features
learned for selected labels in each task. Figure 4
shows results for all the tags across different tasks.
The results show that some tags are localized and
captured by a focused set of neurons while others
are distributed and learned within a large set of
neurons.

A.7 XLNet versus Others
Notice in Figure 4 that neurons required by each
label in XLNet (red bars) are strikingly small com-
pared to other architectures specifically T-ELMo
(yellow bars). This is interesting given the fact that
total number of neurons required by some of the
tasks are very similar. For example task of POS tag-
ging required 400 neurons for BERT and XLNet,
320 for ELMo and 430 in T-ELMo. This means
that neurons in XLNet are mutually exclusive to-
wards the properties whereas in other architectures
neurons are shared across multiple properties. Due
to large tag set (1272 tags) in CCG super tagging,
it is not possible to include it among figures.

A.8 Layer-wise Distribution
In Section 5.2 we showed labels are captured dom-
inantly at which layers for a few labels. In Figure
5c we show all labels and which layers they are
predominantly captured at, across different archi-
tectures.



4879

(a) POS Tagging

(b) SEM Tagging

(c) Chunking Tagging

Figure 4: Number of neurons per label across architectures



4880

(a) POS Tagging

(b) SEM Tagging

(c) Chunking Tagging

Figure 5: Layer that predominately captures each label


