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Abstract

We propose a method for unsupervised parsing
based on the linguistic notion of a constituency
test. One type of constituency test involves
modifying the sentence via some transforma-
tion (e.g. replacing the span with a pronoun)
and then judging the result (e.g. checking if it
is grammatical). Motivated by this idea, we de-
sign an unsupervised parser by specifying a set
of transformations and using an unsupervised
neural acceptability model to make grammat-
icality decisions. To produce a tree given a
sentence, we score each span by aggregating
its constituency test judgments, and we choose
the binary tree with the highest total score.
While this approach already achieves perfor-
mance in the range of current methods, we fur-
ther improve accuracy by fine-tuning the gram-
maticality model through a refinement proce-
dure, where we alternate between improving
the estimated trees and improving the gram-
maticality model. The refined model achieves
62.8 F1 on the Penn Treebank test set, an abso-
lute improvement of 7.6 points over the previ-
ous best published result.

1 Introduction

When developing a phrase structure grammar for
a language, one powerful tool that linguists use
is constituency tests. Given a sentence and some
span within it, one type of constituency test in-
volves modifying the sentence via some transfor-
mation (e.g. replacing the span with a pronoun) and
then judging the result (e.g. checking if it is gram-
matical). If a span passes constituency tests, then
linguists have evidence that it is a constituent. Mo-
tivated by this idea, as well as recent advancements
in neural acceptability (grammaticality) models via
pre-training (Warstadt et al., 2018; Devlin et al.,
2019; Liu et al., 2019), in this paper we propose a
method for unsupervised parsing that operational-
izes the way linguists use constituency tests.

Focusing on constituency tests that are judged
via grammaticality, we begin by specifying a set
of transformations that take as input a span within
a sentence and output a new sentence (Section 3).
Given these transformations, we then describe how
to use a (potentially noisy) grammaticality model
for parsing (Section 4). Specifically, we score the
likelihood that a span is a constituent by applying
the constituency tests and averaging their grammat-
icality judgments, i.e. the probability that the trans-
formed sentence is grammatical under the model.
We then parse via minimum risk decoding, where
we score each binary tree by summing the scores of
its contained spans, with the interpretation of maxi-
mizing the expected number of constituents. Impor-
tantly, this scoring system accounts for false pos-
itives and negatives because it allows some spans
in the tree to have low probability if the model is
confident about the rest of the tree.

To learn the grammaticality model, we note
that given gold trees, we can train the model to
accept constituency test transformations of gold
constituents and reject those of gold distituents.
On the other hand, given the model parameters,
we can estimate trees via the parsing algorithm
in Section 4. Therefore, we learn the model via
alternating optimization. First, we learn an ini-
tial model by fine-tuning BERT on unlabeled data
to distinguish between real sentences and distrac-
tors produced by random corruptions like shuffling
(Section 5). Then, we refine the model by alter-
nating between (1) producing trees, and (2) max-
imizing/minimizing the scores of predicted con-
stituents/distituents in those trees (Section 6).

To evaluate the effectiveness of our approach, we
compare to existing methods for unsupervised pars-
ing (Section 7). Our refined model achieves 62.8
F1 averaged over four random restarts on the Penn
Treebank (PTB) test set, an absolute improvement
of 7.6 points over the previous best published result,
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showing that constituency tests provide powerful in-
ductive bias. Analyzing our parser (Section 8), we
find that despite its strong numbers, it makes some
mistakes that we might expect from the parser’s
reliance on this class of constituency tests, like
attaching modifying phrases incorrectly. As one
possible solution to these shortcomings, we use our
method to induce the unsupervised recurrent neural
network grammar (URNNG) (Kim et al., 2019b)
following the approach in Kim et al. (2019a), where
we use our induced trees as supervision to initialize
the RNNG model and then perform unsupervised
fine tuning via language modeling. The resulting
model achieves 67.9 F1 averaged over four ran-
dom restarts, approaching the supervised binary
tree RNNG with a gap of 4.9 points.

2 Related Work

Grammar induction. There has been a long his-
tory of research on grammar induction. Here, we
touch on just a couple threads of work most re-
lated to our method. Early works focused on build-
ing probabilistic context-free grammars (PCFGs)
but found that inducing them with expectation-
maximization (EM) did not produce meaningful
trees (Carroll and Charniak, 1992). We highlight
some themes since then that have produced suc-
cessful unsupervised parsers.

Directly modeling spans rather than mediating
structure through a grammar: In contrast with pre-
vious work based on probabilistic grammars, the
constituent-context model of Klein and Manning
(2002) proposed a different probabilistic formula-
tion that modeled the constituency of each span di-
rectly, where each span yielded words conditioned
on whether or not it was a constituent. Parsing then
proceeded via minimum risk decoding (Smith and
Eisner, 2006), where they chose the tree containing
the maximum expected number of constituents.

Explicitly defining criteria for what it means to
be a constituent: Rather than designing a genera-
tive model over sentences and trees, Clark (2001)
proposed that constituents could be identified based
on their span statistics, e.g. the mutual information
between the left and right contexts of the span.

Finding external signals of constituency: To per-
form noun compound bracketings (“[ liver cell ]
line” vs “liver [ cell line ]”), Nakov and Hearst
(2005) extracted a series of features from Web text,
like the frequency of “liver-cell line” vs “liver cell-
line.” With a similar idea of extracting signal from

Web text, Spitkovsky et al. (2010) found evidence
for constituency from HTML markup, e.g. hyper-
links and italicized phrases.

Designing neural latent variable models: Many
works have taken the approach of designing a neu-
ral language model with tree-valued latent variables
and optimizing it via EM, some of which can also
be seen as probabilistic grammars parameterized
by neural networks. For example, the compound
PCFG (Kim et al., 2019a), found that the origi-
nal PCFG is sufficient to induce trees if it uses a
neural parameterization, and they further enhanced
the model via latent sentence vectors to reduce the
independence assumptions. Another model, the
unsupervised recurrent neural network grammar
(URNNG) (Kim et al., 2019b), uses variational in-
ference over latent trees to perform unsupervised
optimization of the RNNG (Dyer et al., 2016), an
RNN model that defines a joint distribution over
sentences and trees via shift and reduce operations.
Unlike the PCFG, the URNNG makes no inde-
pendence assumptions, making it more expressive
but also harder to induce from scratch. Shen et al.
(2018) proposed the Parsing-Reading-Predict Net-
work (PRPN), where the latent tree structure deter-
mines the flow of information in a neural language
model, and they found that optimizing for language
modeling produced meaningful latent trees. On
the other hand, the Deep Inside-Outside Recursive
Autoencoder (DIORA) (Drozdov et al., 2019) com-
putes a representation for each node in a tree by
recursively combining child representations follow-
ing the structure of the inside-outside algorithm,
and it optimizes an autoencoder objective such that
the representation for each leaf in the tree remains
unchanged after an inside and outside pass.

Extracting trees from neural language models:
The Ordered Neuron (ON) model (Shen et al.,
2019) modifies the LSTM to enforce a hierarchy of
long- to short-term neurons, with the idea that the
forget operation should naturally occur at phrase
boundaries. After training on language modeling,
they parse by recursively finding splitpoints based
on each neuron’s decision of where to forget. More
recently, Kim et al. (2020) extract trees from pre-
trained transformers. Using the model’s represen-
tations for each word in the sentence, they score
fenceposts (positions between words) by comput-
ing distance between the two adjacent words, and
they parse by recursively splitting the tree at the
fencepost with the largest distance.
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Name Applied to “A [ B ] C” Example

Clefting it {is, was} B that A C it {is, was} the london market that by midday , was in full retreat
Coordination A B and B C by midday , the london market and the london market was in full retreat
Substitution A {it, ones, did so} C by midday , {it, ones, did so} was in full retreat
Front Movement B , A C the london market , by midday , was in full retreat
End Movement A C B by midday , was in full retreat the london market

Table 1: The constituency tests we use in this paper, using the span “by midday , [ the london market ] was in full
retreat” as an example.

Name Description

Shuffle Choose a random subset of words in the sentence and randomly permute them.
Swap Choose two words and swap them.
Drop Choose a random subset of words in the sentence and drop them.
Span Drop Choose a random contiguous span of words and drop it.
Span Movement Choose a random contiguous span of words and move it to the front or back.
Bigram Generate a sentence of the same length using a bigram language model trained on the source corpus.

Table 2: The corruptions we use to train the initial grammaticality model using unlabeled data, where the model
must determine whether a given sentence is real or corrupted.

Neural grammaticality models. Pre-training has
recently produced large gains on a wide range
of tasks, including the task of judging whether a
sentence is grammatical (Devlin et al., 2019; Liu
et al., 2019). Most works evaluate on the Cor-
pus of Linguistic Acceptability (CoLA) (Warstadt
et al., 2018), which compiles acceptable and un-
acceptable sentences from linguistics publications.
The paper also investigates the question of whether
grammaticality can be learned from unlabeled data,
where fake sentences are generated via either ran-
dom shuffling or an LSTM language model, and
the model must determine whether a given sentence
is real or fake. They find that real/fake models per-
form comparably to supervised models trained on
the CoLA training set. Lau et al. (2017) also investi-
gate unsupervised acceptability models, where they
instead augment language models with a variety of
acceptability measures, e.g. perplexity renormal-
ized to remove the influence of unigram frequency.
They find that such models achieve an encourag-
ing level of agreement with crowd-sourced human
judgments.

3 Constituency Tests

We begin by specifying a set of constituency tests.
The constituency tests we focus on involve trans-
formation functions c : (sent, i, j) 7→ sent′ that
take in a span and output a new sentence, and a
judgment function g : sent 7→ {0, 1} that judges

the resulting transformed sentence. A span
(sent, i, j) passes a constituency test if the judg-
ment function approves of the transformed sen-
tence, or g(c(sent, i, j)) = 1. Then, parsing via
constituency tests involves specifying a set of trans-
formation functions (this section), learning the
judgment function (Sections 5 and 6), and aggregat-
ing these test results to produce a tree (Section 4).

We will focus on constituency tests that are
judged via grammaticality because it is feasible
to learn a grammaticality model using unlabeled
data. We describe the set of transformations in
Table 1. As future work, modeling semantic preser-
vation could also prove fruitful as a way to correct
some false positives, e.g. “stock [ prices rose after
the announcement ]”→ “stock it.”

Because we specify constituency tests, while the
parser is unsupervised in that it doesn’t use labeled
data, it is not tabula rasa in that we provide it with
linguistically-inspired inductive bias, in contrast
with past methods that may have less inductive bias
or encode it more implicitly. To induce more and
specify less, another interesting line of future work
would involve inducing the tests as well.

4 Parsing Algorithm

With this set of transformations, in this section we
describe how to parse sentences using a (potentially
noisy) grammaticality model. In the supervised set-
ting, Stern et al. (2017) and Kitaev and Klein (2018)
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showed that independently scoring each span and
then choosing the tree with the best total score
produced a very accurate and simple parser, while
Klein and Manning (2002) showed a similar result
in the unsupervised setting. Therefore, we also use
a span-based approach.

We will use gθ : sent 7→ [0, 1] to denote the
grammaticality model with parameters θ, which
outputs the probability that a given sentence is
grammatical. First, we score each span by av-
eraging the grammaticality judgments of its con-
stituency tests, or

sθ(sent, i, j) =
1

|C|
∑
c∈C

gθ(c(sent, i, j)),

whereC denotes the set of constituency tests. Then,
we score each tree by summing the scores of its
spans and choose the highest scoring binary tree
via CKY, or

t∗(sent) = arg max
t∈T (len(sent))

∑
(i,j)∈t

sθ(sent, i, j),

where T (len(sent)) denotes the set of binary
trees with len(sent) leaves. If we interpret the
score sθ(sent, i, j) as estimating the probability
that the span (sent, i, j) is a constituent, then this
formulation corresponds to choosing the tree with
the highest expected number of constituents, i.e.
minimum risk decoding (Smith and Eisner, 2006).
This scoring system accounts for noisy judgments,
which lead to false positives and negatives, by al-
lowing some spans to have low probability if the
model is confident about the rest of the tree.

If we want sθ(sent, i, j) to estimate the poste-
rior probability that the span is a constituent given
the judgments of its constituency tests, or

P((sent, i, j) is a constituent |
{gθ(c(sent, i, j)) : c ∈ C}),

then we might want to do something more sophis-
ticated than taking the average. However, we find
that the average performs well while being both
parameter-less and simple to interpret, so we leave
this avenue of exploration to future work.

5 Initializing the Grammaticality Model

In this section and the next, we describe how
we learn the grammaticality model. Given gold
trees, we can train the model to accept constituency
test transformations of gold constituents and reject

those of gold distituents. On the other hand, given
model parameters, we can estimate trees using the
parsing algorithm in Section 4. Therefore, we first
initialize the model (this section), and we then re-
fine it via alternating optimization (Section 6).

Previously, Warstadt et al. (2018) found that
LSTM grammaticality models trained with super-
vision versus those trained on a real/fake task
achieved similar correlation with human judgments
when evaluating on the Corpus of Linguistic Ac-
ceptability (CoLA), a dataset with examples of ac-
ceptable and unacceptable taken from linguistic
publications. Given an unlabeled corpus of sen-
tences and a set of corruptions, the real/fake task
involves predicting whether a given sentence is real
or corrupted. Motivated by their result, we train
our model via a real/fake task but a wider range of
corruptions, as described in Table 2.

Rather than training from scratch, we fine-tune
the RoBERTa model (Liu et al., 2019), a BERT
variant pre-trained on masked word prediction and
next sentence prediction. As our unlabeled sen-
tences, we use 5 million sentences from English
Gigaword (Graff and Cieri, 2003), and we do not
perform any early stopping. We report optimization
hyperparameters in the appendix.

Comparing the real/fake RoBERTa model to
a supervised version, we find that the former
achieves 0.21 MCC (Matthews Correlation Coef-
ficient) on the CoLA development set, while the
latter achieves 0.73 MCC, in contrast with the find-
ing in Warstadt et al. (2018) that real/fake and su-
pervised LSTMs achieved similar accuracy (both
around 0.2 to 0.3 MCC).1 This gap is not totally
surprising given how high the supervised RoBERTa
numbers are. However, when used for parsing via
constituency tests, the real/fake RoBERTa model
outperforms the supervised model by about 6 F1
(before refinement), likely because invalid con-
stituency tests look more like random corruptions
than examples from the CoLA training set, which
are taken from linguistics publications.

6 Refining the Grammaticality Model

While the unrefined grammaticality model achieves
48.2 F1, which is in the range of current methods
(Table 3), we further improve accuracy via alternat-
ing optimization, which proceeds as follows:

1. Using the span-based algorithm in Section 4,
parse a batch B of sentences to produce trees.

1We did not optimize the corruption set for CoLA MCC.
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2. Use these trees as pseudo-gold labels to up-
date the span judgments. Specifically, for each
sentence, minimize the loss function∑

(i,j)∈t∗(sent)

log(sθ(sent, i, j))

+
∑

(i,j) 6∈t∗(sent)

log(1− sθ(sent, i, j)),

i.e. binary cross-entropy on each span with
inclusion into the predicted tree as the label,
summed over the sentences in the batch.

Note that the span scores sθ(sent, i, j)) are
derived from grammaticality judgments of
constituency tests, so the only parameters are
those in the grammaticality model. There-
fore, this step can be thought of as increas-
ing the grammaticality judgment of every con-
stituency test applied to every predicted con-
stituent, while decreasing the judgments for
predicted distituents.

3. Repeat for the next batch of sentences.

This step can be thought of as encouraging self-
consistency between the model’s grammaticality
judgments and the trees that result from them. For
example, CKY might choose a tree where a few
of the spans are considered invalid if the model is
confident about the other spans in the tree. The
refinement procedure would then increase the prob-
ability of these initially invalid spans, which might
help the model catch spans that it initially missed.
We see evidence of this effect in Section 8. In ad-
dition, there is an inherent mismatch between the
real/fake task that the model was trained on and
the constituency test judgment task it is being used
for. For example, many of the sentences resulting
from constituency tests are far out of distribution
from sentences seen during training. Therefore,
this step can also be thought of as helping the gram-
mar model adapt to its new setting.

One problem, however, is that the loss function
takes a gradient through the grammaticality judg-
ments of all of the constituency tests for every span
in the sentence. This computation takes up too
much memory, given that a length-30 sentence has
about 400 spans and thus about 3000 constituency
tests. Therefore, to reduce memory usage, for every
sentence we only take the gradient through 16 of
the constituency tests, chosen randomly.

While early stopping would likely improve per-
formance, we instead perform refinement for a

PTB F1
Model Mean Max

PRPN† (Shen et al., 2018) 37.4 38.1
URNNG (Kim et al., 2019b) – 45.4
ON† (Shen et al., 2019) 47.7 49.4
Neural PCFG† (Kim et al., 2019a) 50.8 52.6
DIORA (Drozdov et al., 2019) – 58.9
Compound PCFG† (Kim et al., 2019a) 55.2 60.1

Left Branching 8.7
Balanced 18.5
Right Branching 39.5

Ours (before refinement) 48.2
Ours (after refinement) 62.8 65.9

Oracle Binary Trees 84.3

Table 3: Unlabeled sentence-level F1 on the PTB test
set without punctuation or unary chains. “Before refine-
ment” denotes the parser using the acceptability model
after real/fake training, which we only run once. Start-
ing from this initial model, we report the mean and
maximum score out of 4 random restarts of refinement.
Baseline numbers are taken from Kim et al. (2019a).
After refinement, the parser outperforms the previous
best method by 7.6 points.
† denotes models trained without punctuation.

fixed number of iterations because we don’t have
access to labeled data. Specifically, we perform
refinement for one epoch on 5000 sentences from
the PTB training set (sections 2 to 21), combined
with the 2416 sentences in the PTB test set (sec-
tion 23). We find that the training curve is relatively
consistent across runs. We use the same optimiza-
tion parameters as the ones for the real/fake task,
as described in the Appendix.

7 Results

7.1 F1 on the Penn Treebank

For evaluation, we report the F1 score with respect
to gold trees in the Penn Treebank test set (sec-
tion 23). Following prior work (Kim et al., 2019a;
Shen et al., 2018, 2019), we strip punctuation and
collapse unary chains before evaluation, and we
calculate F1 ignoring trivial spans. The averaging
is sentence-level rather than span-level, meaning
that we compute F1 for each sentence and then aver-
age over all sentences. Because most unsupervised
parsing methods only consider fully binary trees,
we include the oracle binary tree ceiling, produced
by taking the (often flat) gold trees and binarizing
them arbitrarily.
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PTB F1
Model Initial (Max) +URNNG

PRPN 47.9 51.6
ON 50.0 55.1
Neural PCFG 52.6 58.7
Compound PCFG 60.1 66.9

Ours (after refinement) 65.9 71.3

Supervised Binary RNNG 71.9 72.8

Table 4: Unlabeled sentence-level F1 on the PTB test
set without punctuation or unary chains. Following
the experimental setup in Kim et al. (2019a), “Initial
(Max)” denotes the induced trees resulting from run-
ning the method four times and selecting the best re-
sult. Next, we use the induced trees as supervision for
RNNG and then run unsupervised RNNG fine-tuning,
denoted by the “+URNNG” column. “Supervised Bi-
nary RNNG” denotes training the RNNG on binarized
gold trees. Baseline numbers are taken from Kim et al.
(2019a). When selecting the best parser out of four
runs, our method combined with URNNG approaches
the supervised binary RNNG, with a gap of 1.5 points.
Departing from the setup of Kim et al. (2019a), we also
induced URNNG three more times using the other three
runs, which resulted in a mean score of 67.9 across the
four runs and a minimum of 61.1.

Table 3 displays the resulting F1 numbers for our
method compared to existing unsupervised parsers,
where we report mean, maximum, and minimum
out of four random restarts. Before refinement, at
48.2 F1, the parser is already in the range of exist-
ing methods. After refinement, the parser achieves
62.8 F1 averaged over four runs, outperforming the
previous best result by 7.6 points.2

7.2 Inducing URNNG

Kim et al. (2019a) found that while URNNG (de-
scribed in Section 2) fails to outperform right-
branching trees on average when trained from
scratch, it achieves very good performance when
initialized using another method’s induced trees.
Specifically, they first train RNNG using the in-
duced trees from another method as supervision.
Then, they perform unsupervised fine-tuning with
a language modeling objective. They find that this
procedure produces substantial gains when com-
bined with existing unsupervised parsers.

Following their experimental setup, we use our
2While other methods do not report the minimum, our

minimum score was 60.4 F1. We also evaluate in the setting
where the test set sentences are not available during refinement,
and we find similar results (mean: 62.8, max: 64.6, min: 61.5).

Before After Best parser
refinement (best parser) + URNNG

SBAR 0.229 0.661 0.853
NP 0.604 0.794 0.843
VP 0.325 0.682 0.808
PP 0.571 0.862 0.844
ADJP 0.664 0.626 0.556
ADVP 0.620 0.639 0.546

F1 48.2 65.9 71.3

Table 5: Recall by label, or the fraction of gold con-
stituents predicted to be constituents by each model,
along with F1 (calculated over all spans). We re-
port numbers for the parser before refinement, the best
parser out of four runs of refinement, and URNNG in-
duced from the best parser. Refinement and URNNG
both produce large improvements for all categories ex-
cept ADJPs and ADVPs.

best parser out of four runs to parse both the PTB
training set and test set, and we induce URNNG
using these predicted trees. We use the default pa-
rameters in the Kim et al. (2019b) github, which
we report in the Appendix. Table 4 shows the re-
sulting F1 on the PTB test set. After URNNG, we
achieve 71.3 F1, approaching the performance of
the supervised binary RNNG + URNNG with a gap
of 1.5 points. However, selecting the best parser
out of four requires labeled data, so we also induce
URNNG from each of the three other parsers. We
find that the mean score across the four runs is 67.9.
To close the gap between the max and mean across
the four runs, ensembling might be an effective
approach; we leave this direction to future work.

One possible reason for why URNNG helps is
that the URNNG model makes no independence
assumptions, making it very expressive but also
also difficult to induce from scratch. Therefore, we
can think of this method as removing some of the
independence assumptions and other biases of the
original model once they have sufficiently guided
the unsupervised training.

8 Analysis

8.1 Recall by Label

First, we compute recall by label for the parser
before refinement, after refinement, and after re-
finement + URNNG, displayed in Table 5. Before
refinement, the parser is strongest in ADJPs and
ADVPs and weakest for VPs and SBARs. Refine-
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Figure 1: Example trees (a) before refinement, (b) after refinement, (c) after refinement + URNNG, and (d) gold,
where we use the first PTB train sentence whose F1 was within 1 of the average. Each non-trivial span is labeled
with its score under the model, i.e. the average grammaticality of its constituency tests. Each span is labeled blue
if it is present in the gold, dashed blue if it is consistent (ignoring punctuation), and thick red if it is crossing. After
refinement (tree b), the parser makes two mistakes: attaching “are” to the subject, and attaching the phrase “around
March ... Commission approval” one level too high. After refinement + URNNG (tree c), the only mistake is
attaching the phrase “subject to ... Commission approval” at the top level, which produces four crossing brackets.

ment causes all categories except ADJP and ADVP
to receive a boost of about 0.3 in recall. Afterward,
URNNG produces a boost for SBAR and VP, result-
ing in the four categories being above 0.8, except
with ADJP and ADVP still both around 0.55. In
Section 8.3, we analyze the sources of these mis-
takes in more detail and find that the model is less
effective in identifying ADJPs that serve as NP
adjuncts (e.g. “[ most recent ] news”).

8.2 Analyzing the Constituency Tests

To better understand how well each category is cov-
ered by constituency tests, in Table 6 we display the
recall per phrase type for each test, along with F1
computed over all spans. Using each test, we judge
each span in the PTB development set individu-
ally by thresholding the grammaticality judgment
at 0.5, and for each phrase type we report the frac-

tion that pass the test. Before refinement, the tests
behave roughly as expected. Coordination fires
consistently for all phrase types but also half the
distituents, while the NP and VP proforms fire for
NPs and VPs respectively. Clefting and movement
are more mixed, with clefting sometimes firing for
all phrase types except VP, and movement some-
times firing for SBARs, PPs, and ADVPs. Inter-
estingly, the individual F1 numbers are all quite
low at around 10-20 F1, even though the parser
achieves 48.1 F1, suggesting that the constraint of
outputting a well-formed tree provides substantial
information. After refinement, all of the tests have
better F1, potentially because refinement allows
the grammar model to use the well-formedness
constraint to improve its span judgments (see Sec-
tion 6). In particular, we find that coordination
no longer has false positives, and clefting exhibits
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Clefting Proform Substitution Movement Coord-
is was ones did so it front end ination

Before Refinement

SBAR 0.294 0.260 0.113 0.130 0.146 0.279 0.319 0.942
NP 0.353 0.347 0.458 0.178 0.555 0.055 0.048 0.934
VP 0.091 0.089 0.067 0.479 0.127 0.060 0.144 0.944
PP 0.427 0.412 0.238 0.165 0.154 0.308 0.606 0.906
ADJP 0.383 0.361 0.286 0.241 0.346 0.127 0.172 0.911
ADVP 0.396 0.395 0.143 0.185 0.198 0.290 0.307 0.893

Distituent 0.066 0.063 0.184 0.098 0.123 0.033 0.052 0.456

F1 20.8 20.9 10.9 13.2 17.8 12.3 13.6 16.1

After Refinement

SBAR 0.237 0.223 0.237 0.770 0.374 0.250 0.225 0.539
NP 0.718 0.712 0.571 0.428 0.539 0.063 0.035 0.792
VP 0.105 0.118 0.171 0.707 0.359 0.108 0.083 0.601
PP 0.744 0.741 0.202 0.730 0.332 0.354 0.531 0.707
ADJP 0.543 0.556 0.219 0.324 0.263 0.217 0.108 0.686
ADVP 0.565 0.582 0.187 0.627 0.338 0.353 0.292 0.655

Distituent 0.031 0.032 0.052 0.060 0.045 0.012 0.026 0.086

F1 51.1 50.9 29.5 38.6 37.4 18.6 15.0 43.1

Table 6: For each constituency test and each phrase
type XP, we report the fraction of XPs in the PTB de-
velopment set that pass the constituency test, where we
judge each span individually and threshold the gram-
maticality judgment at 0.5. We also report F1 (calcu-
lated over all spans). Before refinement, coordination
consistently fires for all categories but also for almost
half of the distituents. The other tests behave roughly
as expected; for example, the NP proforms (“ones” and
“it”) fire for NPs, while the VP proform (“did so”) fires
for VPs. After refinement, coordination no longer fires
for distituents, and all of the tests have higher F1. In ad-
dition, the proforms now fire for a much wider range of
phrase types. See the appendix for a grayscale version.

greatly improved recall. We also see that the pro-
form substitution tests now fire for a wider range
of phrase types; for example, “did so” now fires
for 70% of SBARs, VPs, PPs, and ADVPs, even
though it was originally a VP substitution.

8.3 Common Mistakes
In Table 7, we show the most common crossing
brackets predicted by the parser, where for analy-
sis we categorize the brackets by part-of-speech.
We find that the model after refinement commonly
makes the following mistakes, and we suggest pos-
sible explanations for each:

1. Bracketing the verb with the subject:

[ they ’re ] squaring off

As shown in Table 6, there is less support for
VPs via consituency tests. This observation is
also reflected in the example trees in Figure 1,
where the VPs have consistently lower scores.
Therefore, while the parser usually chooses to
bracket VPs (achieving 0.682 recall, as shown

Common mistakes after refinement
Percentage ∆ in # mistakes

Parts of speech Example of mistakes after URNNG

PRP VBD/P/Z [ they ’re ] squaring off 1.72% -81.0%
IN NN(S) [ in letters ] to the agency 1.07% -57.6%
CD NN(S) about [ 1,200 cars ] 1.06% +4.4%
IN DT NN(S) [ in an effort ] to streamline 0.99% -74.7%
TO VB [ to work ] a lot 0.93% -95.0%

Common mistakes after refinement + URNNG
Percentage ∆ in # mistakes

Parts of speech Example of mistakes after URNNG

CD NN(S) about [ 1,200 cars ] 1.51% +4.4%
JJ NN(S) socially [ responsible companies ] 0.69% +47.0%
IN NN(S) [ in letters ] to the agency 0.61% -57.6%
NN(S) IN NN(S) [ plenty of reasons ] to stay 0.57% -27.3%
NNP VBD/P/Z Mr. [ Lane said ] 0.47% -21.2%

Table 7: The five most common crossing brackets cate-
gorized by part-of-speech, computed on the first 5,000
sentences in the PTB training set. We also report per-
centage of crossing predicted brackets (i.e. mistakes)
that fall under that category, as well as the change in the
number of mistakes after adding URNNG. We group
(VBD, VBP, VBZ) (past, present, present 3rd-person)
and (NN, NNS) (noun, noun plural). We find that the
model commonly makes the following mistakes: (1)
bracketing the verb with the subject, (2) in a nested PP,
attaching the inner PP outside, (3) grouping the cardi-
nal or adjective with the noun instead of with its adverb,
and (4) bracketing “to + infinitive.” After URNNG,
each of the mistakes are corrected except (3).

in Table 5), there seem to be cases in which it
prefers the [ subject verb ] bracketing.

2. In a nested PP, attaching the inner PP outside
the outer PP:

[ in letters ] to the agency

The spans resulting from incorrect attach-
ments still tend to produce grammatical con-
stituency tests (e.g. “they argue [ in letters ] to
the agency that ...” → “in letters , they argue
to the agency that ...”).

3. Grouping cardinals and adjectives with the
noun, instead of with the adverb:

about [ 1,200 cars ]

This span passes some constituency tests, like
“about {it, ones},” while none of the tests ex-
cept coordination accept “about 1,200.”

4. Bracketing “to + infinitive”:

they want [ to work ] a lot

Infinitive VPs (e.g. “work a lot”) typically
don’t pass any of our tests except coordination,
while “to + infinitive” is often replaceable by
a noun proform, like “they want it a lot.”
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After URNNG, the VP errors (1 and 4) are cor-
rected almost completely, while the PP attachment
error also decreases in frequency by about half. In
contrast, the ADJP error (3) is exacerbated, with
[ CD NN ] and [ JJ NN ] incorrect bracketings in-
creasing by 4.4% and 47.0% (Table 7). Therefore,
URNNG is effective in correcting many but not all
of the parser’s systematic errors, suggesting paths
for future improvement, e.g. by adding tests that
fire for currently missing brackets.

8.4 Example Trees

Finally, to qualitatively understand the parser’s per-
formance, in Figure 1 we display the trees before
refinement, after refinement, and after refinement +
URNNG for the sentence “Both funds are expected
to begin operation around March 1 , subject to Se-
curities and Exchange Commission approval.” To
produce a representative example, we selected this
sentence by choosing the first sentence in PTB train
whose F1 was within 1 of the average. Comparing
the trees before and after refinement, the parser cor-
rects two mistakes, “[ around March ] 1” and “[ to
Securities and Exchange Commission ] approval,”
which both involve bracketing the preposition with
part of its NP complement. As a result, ignoring
punctuation and binarization, the parser after re-
finement makes only two mistakes: attaching “are”
to the subject, and attaching the phrases “around
March” and “subject to ... Commission approval”
one level too high. After URNNG, the first mis-
take is corrected, such that the only mistake is in
the attachment of “subject to ... Commission ap-
proval” (but because it attaches this phrase very
high, this mistake produces four crossing brackets).
This example provides some characterization of
each step’s improvement to the predicted trees.

9 Conclusion

In this paper, we showed that using constituency
tests to parse sentences is an effective approach,
achieving strong performance for unsupervised
parsing. Furthermore, we used the interpretabil-
ity of constituency tests to highlight and explain
the parser’s strengths and shortcomings, like the
“[ subject verb ]” and “adverb [ adjective noun ]”
misbracketings, revealing potential next steps for
improvement. Therefore, we see parsing via con-
stituency tests as a promising new approach with
both strong results and many open questions.
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A Appendix

A.1 Optimization Hyperparameters and
Other Training Details

For both real/fake training and refinement, we use
a learning rate of 3 × 10−5 with Adam (Kingma
and Ba, 2015) hyperparameters β = (0.9, 0.999),
ε = 10−6 and linear learning rate warmup for the
first 10% of the training data. For real/fake training,
each batch contains 32 real and 32 fake sentences,
while for refinement we parse a batch of 32 sen-
tences for each gradient step. We did not perform
any hyperparameter search.

We fine-tuned the RoBERTa base model, which
has 125M parameters, and we performed classifi-
cation for sentences by applying a linear layer and
softmax to the [CLS] embedding.

For real/fake training, we used a single Nvidia
K80 with 12GB RAM, which took about 3 days
to run for 5 million sentences. For refinement, we
either used a single Quadro 8000 with 48GB RAM,
which took about 1 day to run, or a single Nvidia
K80, which took about 6 days to run.

For URNNG, we used the default hyperparame-
ters in the Kim et al. (2019b) github. Specifically,
we used a batch size of 16, and we performed 18
epochs of supervised RNNG training with a learn-
ing rate of 0.0001, and 10 epochs of unsupervised
fine-tuning with a learning rate of 0.1. Other op-
timization details can be found in the original pa-
per (Kim et al., 2019b). We used a single Quadro
6000 with 24GB RAM, which took about 3 days.

As our data, we used the first 5M sentences
from the English Gigaword corpus (Graff and Cieri,
2003) for real/fake training, and we used the stan-
dard train/development/test splits (sections 02-21,
22, 23) of the Penn Treebank for parsing (Marcus
et al., 1993), which have 39832, 1700, and 2416
examples, respectively. Both datasets are already
tokenized. For preprocessing, we converted all let-
ters to lowercase and removed quotation marks and
any ending punctuation.

A.2 Some Ablations of the Refinement
Procedure

Having analyzed the output of our parser, next we
describe some ablations to determine how much of
the performance is due to constituency tests versus
the refinement procedure.

First, if we ablate the refinement procedure (Ta-
ble 3), the initial parser still performs quite well –
it is much better than right-branching and relatively

Clefting Proform Substitution Movement Coord-
is was ones did so it front end ination

Before Refinement

SBAR 0.294 0.260 0.113 0.130 0.146 0.279 0.319 0.942
NP 0.353 0.347 0.458 0.178 0.555 0.055 0.048 0.934
VP 0.091 0.089 0.067 0.479 0.127 0.060 0.144 0.944
PP 0.427 0.412 0.238 0.165 0.154 0.308 0.606 0.906
ADJP 0.383 0.361 0.286 0.241 0.346 0.127 0.172 0.911
ADVP 0.396 0.395 0.143 0.185 0.198 0.290 0.307 0.893

Distituent 0.066 0.063 0.184 0.098 0.123 0.033 0.052 0.456

F1 20.8 20.9 10.9 13.2 17.8 12.3 13.6 16.1

After Refinement

SBAR 0.237 0.223 0.237 0.770 0.374 0.250 0.225 0.539
NP 0.718 0.712 0.571 0.428 0.539 0.063 0.035 0.792
VP 0.105 0.118 0.171 0.707 0.359 0.108 0.083 0.601
PP 0.744 0.741 0.202 0.730 0.332 0.354 0.531 0.707
ADJP 0.543 0.556 0.219 0.324 0.263 0.217 0.108 0.686
ADVP 0.565 0.582 0.187 0.627 0.338 0.353 0.292 0.655

Distituent 0.031 0.032 0.052 0.060 0.045 0.012 0.026 0.086

F1 51.1 50.9 29.5 38.6 37.4 18.6 15.0 43.1

Table 8: A grayscale version of Table 6, where higher
numbers are shaded with darker shades of gray.

close in performance to current methods. We can
also try ablating the constituency tests. Specifi-
cally, following the suggestion of an anonymous
reviewer, we randomly initialized a Roberta-based
span classification parser and performed refine-
ment of the span scores (Section 6). The resulting
parser did not achieve very high accuracy (initial
F1: 11.95, final F1: 12.33; F1 is computed includ-
ing punctuation). These ablations suggest that con-
stituency tests are the main driving force behind
our method. We discuss a few possible reasons
below.

First, because the refinement method has the ef-
fect of enforcing self-consistency, the initialization
is important, and constituency tests are important
for the initialization.

Next, the refinement procedure itself also relies
heavily on constituency tests because the gradi-
ent step involves maximizing the grammaticality
of constituency tests for spans within the imputed
trees. In particular, all span judgments originate
from grammaticality judgments, and the only pa-
rameters are those in the grammaticality model.
Therefore, the procedure exploits the fact that gram-
maticality and constituency are linked.


