
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 4742–4753,
November 16–20, 2020. c©2020 Association for Computational Linguistics

4742

Methods for Numeracy-Preserving Word Embeddings

Dhanasekar Sundararaman1, Shijing Si1, Vivek Subramanian1,
Guoyin Wang2, Devamanyu Hazarika3, Lawrence Carin1

1 Duke University
2 Amazon Alexa AI

3 National University of Singapore
dhanasekar.sundararaman@duke.edu

Abstract

Word embedding models are typically able to
capture the semantics of words via the distri-
butional hypothesis, but fail to capture the nu-
merical properties of numbers that appear in
a text. This leads to problems with numerical
reasoning involving tasks such as question an-
swering. We propose a new methodology to
assign and learn embeddings for numbers. Our
approach creates Deterministic, Independent-
of-Corpus Embeddings (referred to as DICE)
for numbers, such that their cosine similarity
reflects the actual distance on the number line.
DICE outperforms a wide range of pre-trained
word embedding models across multiple exam-
ples of two tasks: (i) evaluating the ability to
capture numeration and magnitude; and (ii) to
perform list maximum, decoding, and addition.
We further explore the utility of these embed-
dings in downstream applications by initializ-
ing numbers with our approach for the task of
magnitude prediction. We also introduce a reg-
ularization approach to learn model-based em-
beddings of numbers in a contextual setting.

1 Introduction

Word embeddings capture semantic relationships
between words by operationalizing the distribu-
tional hypothesis (Harris, 1954; Firth, 1957). They
can be learned either non-contextually (Mikolov
et al., 2013b; Pennington et al., 2014; Bojanowski
et al., 2017) or contextually (Devlin et al., 2018;
Peters et al., 2018). Non-contextual embeddings
have worked well on various language understand-
ing and semantic tasks (Rumelhart et al., 1988;
Mikolov et al., 2013a,b). More recently, they have
also been used as pre-trained word embeddings to
aid more sophisticated contextual models for solv-
ing rigorous natural language processing (NLP)
problems, including translation, paraphrasing, and
sentence-similarity tasks (Kiros et al., 2015; Wiet-
ing et al., 2015).

While word embeddings effectively capture se-
mantic relationships between words, they are less
effective at capturing numeric properties associated
with numbers. Though numbers represent a signif-
icant percentage of tokens in a corpus, they are
often overlooked. In non-contextual word embed-
ding models, they are treated like any other word,
which leads to misinterpretation. For instance, they
exhibit unintuitive similarities with other words and
do not contain strong prior information about the
magnitude of the number they encode. In sentence
similarity and reasoning tasks, failure to handle
numbers causes as much as 29% of contradictions
(De Marneffe et al., 2008). In other data-intensive
tasks where numbers are abundant, like neural ma-
chine translation, they are masked to hide the trans-
lation models inefficiency in dealing with them
(Mitchell and Lapata, 2009).

There are a variety of tests proposed to measure
the efficiency of number embeddings. For instance,
Naik et al. (2019) shows that GloVe (Pennington
et al., 2014), word2vec (Mikolov et al., 2013b),
and fastText (Joulin et al., 2016; Bojanowski et al.,
2017) fail to capture numeration and magnitude
properties of a number. Numeration is the property
of associating numbers with their corresponding
word representations (“3” and “three”) while mag-
nitude represents a number’s actual value (3 < 4).
Further, Wallace et al. (2019) proposes several tests
for analyzing numerical reasoning of number em-
beddings that include list maximum, decoding, and
addition.

In this paper, we experimentally demonstrate
that if the cosine similarity between word embed-
dings of two numbers reflects their actual distance
on the number line, the resultant word embeddings
are useful in downstream tasks. We first demon-
strate how Deterministic, Independent-of-Corpus
Embeddings (DICE) can be constructed such that
they almost perfectly capture properties of numera-

4743

tion and magnitude. These non-contextual embed-
dings also perform well on related tests for numer-
acy (Wallace et al., 2019).

To demonstrate the efficacy of DICE for down-
stream tasks, we explore its utility in two experi-
ments. First, we design a DICE embedding ini-
tialized Bi-LSTM network to classify the mag-
nitude of masked numbers in the 600K dataset
(Chen et al., 2019). Second, given the popular-
ity of modern contextual model-based embeddings,
we devise a regularization procedure that emulates
the hypothesis proposed by DICE and can be em-
ployed in any task-based fine-tuning process. We
demonstrate that adding such regularization helps
the model internalize notions of numeracy while
learning task-based contextual embeddings for the
numbers present in the text. We find promising
results in a numerical reasoning task that involves
numerical question answering based on a sub-split
of the popular SQuAD dataset (Rajpurkar et al.,
2016).
Our contribution can be summarized as follows:

• We propose a deterministic technique to learn
numerical embeddings. DICE embeddings
are learned independently of corpus and effec-
tively capture properties of numeracy.

• We prove experimentally that the resultant em-
beddings learned using the above methods im-
prove a model’s ability to reason about num-
bers in a variety of tasks, including numera-
tion, magnitude, list maximum, decoding, and
addition.

• We also demonstrate that properties of DICE
can be adapted to contextual models, like
BERT (Devlin et al., 2018), through a novel
regularization technique for solving tasks in-
volving numerical reasoning.

2 Related Work

The major research lines in this area have been
dedicated to (i) devising probing tests and curating
resources to evaluate the numerical reasoning abili-
ties of pre-trained embeddings, and (ii) proposing
new models that learn these properties.

Naik et al. (2019) surveyed a number of non-
contextual word embedding models and high-
lighted the failure of those models in capturing
two essential properties of numbers – numeration
and magnitude. Chen et al. (2019) created a novel

dataset named Numeracy-600k, a collection of ap-
proximately 600,000 sentences from market com-
ments with a diverse set of numbers representing
age, height, weight, year, etc. The authors use
neural network models, including a GRU, BiGRU,
CRNN, CNN-capsule, GRU-capsule, and BiGRU-
capsule, to classify the magnitude of each num-
ber. Wallace et al. (2019) compares and contrasts
the numerical reasoning ability of a variety of non-
contextual as well as contextual embedding models.
The authors also proposed three tests – list maxi-
mum, decoding, and addition – to judge the numer-
ical reasoning ability of embeddings of numerals.
They infer that word embedding models that per-
form the best on these three tests have captured the
numerical properties of numbers well. Therefore,
we consider these proposed tests in our evaluation.
(Spithourakis and Riedel, 2018) used a variety of
models to distinguish numbers from words, and
demonstrated that this ability reduces model per-
plexity with neural machine translation. Weiss et al.
(2018) found that neural networks are capable of
reasoning numbers with explicit supervision.

Numerically Augmented QANet
(NAQANet) (Dua et al., 2019) was built by
adding an output layer on top of QANet (Yu et al.,
2018) to predict answers based on addition and
subtraction over numbers in the DROP dataset.
Our work, in contrast, offers a simple methodology
that can be added to any model as a regularization
technique. Our work is more similar to Jiang et al.
(2019), where embedding of a number is learned
as a simple weighted average of its prototype
embeddings. Such embeddings are used in tasks
like word similarity, sequence labeling and have
been proven to be effective.

3 Methods

To overcome NLP models inefficiency in dealing
with numbers, we consider our method DICE to
form embeddings. To begin, we embed numerals
and word forms of numbers as vectors ei ∈ RD,
where i indexes numerals identified within a cor-
pus. We first preprocess by parsing the corpora
associated with each of our tasks (described be-
low) for numbers in numeral and word forms to
populate a number vocabulary. Then, the dimen-
sionality of the embeddings required for that task
is fixed. We explicitly associate the embeddings of
a numeral and word forms of numbers to have the
same embedding.

4744

(a) DICE-2 embedding (b) DICE-D embedding (c) Addition of DICE vectors

Figure 1: Proposed DICE embeddings. Vectors are colored according to numeral magnitude. Note that addition of
two numbers in this embedding is performed by a shift, scaling, and rotation. Scaling depends only on the vector
being added, as illustrated in sub-figure (c) in which the two black lines, corresponding to identical ej , have the
same length.

3.1 DICE embeddings

In designing embeddings that capture the aforemen-
tioned properties of numeration and magnitude, we
consider a deterministic, handcrafted approach (de-
picted in Figures 1a and 1b). This method relies on
the fact that tests for both numeration and magni-
tude are concerned with the correspondence in simi-
larity between numbers in token space and numbers
in embedding space. In token space, two numbers
x, y ∈ R, in numeral or word form (with the latter
being mapped to its corresponding numeral form
for comparison), can be compared using absolute
difference, i.e.:

dn(x, y) = |x− y| (1)

The absolute value ensures that two numbers are
treated as equally distant regardless of whether
x ≥ y or y ≥ x. On the other hand, two em-
beddings x,y ∈ RD are typically compared via
cosine similarity, given by:

se(x,y) =
xTy

||x||2||y||2
= cos(θ) (2)

de(x,y) = 1− cos(θ) (3)

where θ is the angle between x and y and de(x,y)
is their cosine distance. Normalization by the vec-
tor lengths ensures that the metric is independent
of the lengths of the two vectors.

Note that numerals are compared in terms of
distance while their embeddings are compared by
similarity. As cosine distance increases, the angle
between x and y increases monotonically. A dis-
tance of zero is achieved when x and y are oriented

in the same direction. When x ⊥ y, the cosine dis-
tance is 1; and when x and y are antiparallel, cosine
distance is 2.

We seek a mapping (x, y) 7→ (x,y) such that de
monotonically increases as dn increases. We first
bound the range of numbers for which we wish to
compute embeddings by [a, b] ⊂ R and, without
loss of generality, restrict x and y to be of unit
length (i.e., ||x||2 = ||y||2 = 1). Since the cosine
function decreases monotonically between 0 and
π, we can simply employ a linear mapping to map
distances sn ∈ [0, |a− b|] to angles θ ∈ [0, π]:

θ(sn) =
sn
|a− b|

π (4)

This mapping achieves the desired direct relation-
ship between sn and de. Since there are infinitely
many choices for x and y with angle θ, we sim-
ply fix the direction of the vector corresponding to
the numeral a. Numbers that fall outside [a, b] are
mapped to a random angle in [−π, π]. In the cor-
pora we considered, a and b are chosen such that
numbers outside [a, b] represent a small fraction of
the total set of numbers (approximately 2%).

We employ this mapping to generate numeral
embeddings in RD. Figure 1a shows determinis-
tic, independent-of-corpus embeddings of rank 2
(DICE-2). In this approach we represent angles as
vectors in R2 using the polar-to-Cartesian coordi-
nate transformation:

[r, θ] 7→ [x1, x2] = [r cos(θ), r sin(θ)]v (5)

where we choose r = 1 without loss of general-
ity. We then sample a random matrix M ∈ RD×D

where D ≥ 2 and mij ∼ N (0, 1) and perform a
QR decomposition on M to obtain a matrix Q

4745

Model OVA SC BC
Random 0.04 48.92 49.34

Glove 6B-200D 15.88 62.21 83.94
Glove 6B-300D 18.41 62.92 83.98

Glove-840B-300D 5.18 55.58 91.86
FastText-Wiki 13.94 59.96 96.15
FastText-CC 7.83 53.89 85.40
Skip-gram-5 8.85 55.40 96.42

Skip-gram-Dep 3.32 51.99 94.60
DICE-D (ours) 95.63 99.66 99.64

Table 1: Performance (% accuracy) on numeracy tests.

whose columns qi, i = 1, . . . , D constitute an
orthonormal basis for RD. The DICE-2 embed-
ding e ∈ RD of each numeral is then given by
e = Q1:2v, where the subscript on Q indicates
taking the first two columns of Q.

In Figure 1b we consider DICE-D, in which
we generate vectors in RD by applying a polar-
to-Cartesian transformation in D dimensions (Blu-
menson, 1960):

vd =

{
[sin(θ)]d−1 cos(θ), 1 ≤ d < D

[sin(θ)]D, d = D
(6)

where the subscripts indicate the coordinate in v.
We again apply a QR-decomposition on a ran-
dom matrix M generated as above, except here
we project v using all D basis vectors. This allows
for a random rotation of the embeddings to avoid
bias due to choosing ea1 = 1, eai = 0 ∀i 6= 1.
We employ DICE-D embeddings throughout this
paper as word embeddings are practically not 2
dimensional.

4 Experiments

To observe the numerical properties of DICE, we
consider two tasks: Task 1 deals with the numer-
ation (NUM) and magnitude (MAG) properties as
proposed by (Naik et al., 2019); Task 2 performs
list maximum, decoding, and addition as proposed
by (Wallace et al., 2019). We then experiment on
two additional tasks to demonstrate the applications
of DICE.

4.1 Task 1: Exploring Numeracy

In this task, proposed by Naik et al. (2019), there
are three tests for examining each property of
numeration (NUM, 3 = “three”) and magnitude
(MAG, 3 < 4). For each of these tests, target

numbers in its word or numeral form are evaluated
against other numbers as follows:

• One-vs-All (OVA): The distance between the em-
bedding vector of the target and its nearest neigh-
bor should be smaller than the distance between
the target and any other numeral in the data.

• Strict Contrastive (SC): The distance of the em-
bedding vector of the target from its nearest
neighbor should be smaller than its second near-
est neighbor numeral.

• Broad Contrastive (BC): The distance of the em-
bedding vector of the target numeral from its
nearest neighbor should be smaller than its fur-
thest neighbor.

Training Details. We use the Gigaword corpus
obtained from the Linguistic Data Consortium to
populate the list of numbers from the dataset. Pars-
ing was performed using the text2digits1 Python
module. As done by Naik et al. (2019), we employ
D = 300 for the DICE-D embeddings. Embed-
dings of numerals are assigned using the princi-
ple explained in Section 3.1, while the embedding
of words that denote numbers (word form) sim-
ply points to the embedding of that numeral itself.
We then perform the six tests (OVA-NUM / OVA-
MAG, SC-NUM/ SC-MAG, BC-NUM / BC-MAG)
on 130 combinations of numbers for NUM and
31, 860 combinations of numbers for MAG.

Evaluation. Following Naik et al. (2019), we use
accuracy to measure the efficiency of the embed-
dings. These tests require the fulfillment of certain
clauses which are defined in Naik et al. (2019).

Results. Table 1 shows comparisons of the per-
formance of embeddings created by each of the
DICE methods on the MAG tests. Compared to
the baselines, both DICE methods outperform all
commonly employed non-contextual word embed-
ding models in OVA, SC, and BC tests. This is
attributed to the cosine distance property addressed
in the DICE embeddings. Specifically, because the
magnitude of the number is linearly related to its
angle, sweeping through numbers in order guaran-
tees an increase in angle along each axis. Numbers
that are close to each other in magnitude are ro-
tated further but in proportion to their magnitude.
Thus, small and large numbers are ensured to lie

1https://pypi.org/project/text2digits/

4746

List maximum (accuracy) Decoding (RMSE) Addition (RMSE)
Integer range [0, 99] [0, 999] [0, 9999] [0, 99] [0, 999] [0, 9999] [0, 99] [0, 999] [0, 9999]
Random vectors 0.16 0.23 0.21 29.86 292.88 2882.62 42.03 410.33 4389.39
Untrained CNN 0.97 0.87 0.84 2.64 9.67 44.40 1.41 14.43 69.14
Untrained LSTM 0.70 0.66 0.55 7.61 46.5 210.34 5.11 45.69 510.19
Value embedding 0.99 0.88 0.68 1.20 11.23 275.50 0.30 15.98 654.33
Pretrained
Word2Vec 0.90 0.78 0.71 2.34 18.77 333.47 0.75 21.23 210.07
GloVE 0.90 0.78 0.72 2.23 13.77 174.21 0.80 16.51 180.31
ELMo 0.98 0.88 0.76 2.35 13.48 62.20 0.94 15.50 45.71
BERT 0.95 0.62 0.52 3.21 29.00 431.78 4.56 67.81 454.78
Learned
Char-CNN 0.97 0.93 0.88 2.50 4.92 11.57 1.19 7.75 15.09
Char-LSTM 0.98 0.92 0.76 2.55 8.65 18.33 1.21 15.11 25.37
DROP-trained
NAQANet 0.91 0.81 0.72 2.99 14.19 62.17 1.11 11.33 90.01
NAQANet (w/out GloVe) 0.88 0.90 0.82 2.87 5.34 35.39 1.45 9.91 60.70
Ours
DICE-D 0.98 0.87 0.96 0.43 0.83 3.16 0.75 2.79 29.95

Table 2: Experimental results on list maximum, decoding, and addition using the DICE-D method.

near other small and large numbers, respectively,
in terms of cosine distance.

On the NUM tests, DICE achieves perfect ac-
curacy. The primary reason DICE embeddings
perform so well on numeracy tasks is that the pre-
processing steps taken allow us to parse a corpus
for word forms of numbers and explicitly set match-
ing embeddings for both word and numeral forms
of numbers. Each of these embeddings is guaran-
teed to be unique since a number’s embedding is
based on its magnitude, i.e., the larger the magni-
tude, the greater the angle of the embedding, with
a maximum angle of π. This ensures that the nu-
meral form of a number is always able to correctly
identify its word form among all word forms in
the corpus as that with the smallest cosine distance
(which equals zero). Performance on OVA-NUM
is a lower bound on the performance of SC-NUM
and BC-NUM, so those tests are guaranteed to pass
under our approach.

4.2 Task 2: List Maximum, Decoding, and
Addition

This task considers the operations proposed by
(Wallace et al., 2019) – list maximum, decoding,
and addition. List maximum deals with the task
of predicting the maximum number given the em-
bedding of five different numbers. Decoding deals
with regressing the value of a number given its em-
bedding. An additional task involves predicting the
sum of two numbers given their embeddings.

Training Details. The list-maximum test
presents to a Bi-LSTM neural network a set of five
numbers of the same magnitude, and the network
is trained to report the index of the maximum
number. In the decoding test, a linear model and a
feed-forward network are each trained to output
the numeral corresponding to the word form of a
number based on its embedding. Finally, in the
addition test, a feed-forward network is trained
to take in the embeddings of two numbers as
its input and report the sum of the two numbers
as its output. Each test is performed on three
ranges of integers [0, 99], [0, 999], and [0, 9999],
with an 80/20 split of training and testing data
sampled randomly. The neural network is fed
with the embedding of numbers; the task is either
classification (in the case of list maximum) or
prediction of a continuous number (in case of
addition and decoding). We replicate the exact
experimental conditions and perform the three
tests with DICE embeddings. For the sake of
consistency with the tests proposed by (Wallace
et al., 2019), we also only deal with positive in this
experiment.

Evaluation. List maximum again uses accuracy
as its metric while decoding and addition use root
mean squared error (RMSE), since predictions are
continuous.

Results. Given the strong performance of the
DICE-D method on the NUM and MAG tests,
we next consider its performance on tasks involv-

4747

ing neural network models. In their empirical
study, (Wallace et al., 2019) compared a wide
range of models that included a random baseline;
character level models such as a character-CNN
and character-LSTM, which were both untrained
and trained; a so-called value embedding model in
which numbers are embedded as their scalar value;
traditional non-contextual word embedding models
including Word2Vec and GloVe; contextual word
embedding models including ELMo and BERT;
and the Numerically Aware Question Answering
(NAQA) Network, a strong numerical reasoning
model proposed on the Discrete Reasoning over
Paragraphs (DROP) dataset.

We compare the performance of our DICE-D
embedding to that of the other models on each of
the three tasks proposed by (Wallace et al., 2019).
Results are presented in Table 2. We find that our
DICE embedding exceeds the performance of more
sophisticated models by large margins in all but
four cases. In two of those four, our model fell
short by only a few percentage points. We attribute
the success of the DICE-D approach to the fact
that the model is, by design, engineered to handle
numeracy. Just as the value embedding model –
which proved to be reasonably successful in all
three tasks across a wide range of numbers – cap-
tures numeracy through the magnitude of embed-
dings, our model captures numeracy through the
angle corresponding to the embeddings.

The value embedding model, however, breaks
down as the range of the processed numbers grows.
This is likely because, as demonstrated by Trask
et al. (2018), networks trained on numeracy tasks
typically struggle to learn an identity mapping. We
reason that our model outperforms the value embed-
ding model because the network learns to associate
features between the set of inputs such that the in-
put vectors can be scaled, rotated, and translated in
D dimensions to achieve the desired goal.

More precisely, for a neural network to learn ad-
dition, numbers must be embedded such that their
vector embeddings can be consistently shifted, ro-
tated, and scaled to yield the embedding of another
number (see Figure 1c). The choice of embedding
is essential as it may be impractical for a network
to learn a transformation for all embeddings that
obeys this property (without memorization).

DICE is quite similar to the value embedding
system, which directly encodes a number’s value
in its embeddings. However, DICE performs bet-

ter due to its compatibility with neural networks,
whose layers are better suited for learning rotations
and scaling than identity mappings.

Finally, both the value embedding models for a
small number range and the character level mod-
els remain somewhat competitive, suggesting again
that exploring a digit-by-digit embedding of numer-
als may provide a means of improving our model
further.

5 Applications of DICE

5.1 Magnitude Classification
We examine the importance of good initialization
for number embedding vectors (Kocmi and Bojar,
2017), particularly for better contextual understand-
ing. In particular, we experiment on the magnitude
classification task, which requires the prediction
of magnitudes for masked numbers. The task is
based on the 600K dataset proposed by Chen et al.
(2019), which requires classification into one of
seven categories corresponding to powers of 10 in
{0, 1, 2, 3, 4, 5, 6}.

Training Details. We use a bi-LSTM (Hochre-
iter and Schmidhuber, 1997) with soft attention
(Chorowski et al., 2015) to classify the magnitude
of masked numbers. Numerals are initialized with
corresponding DICE embeddings, and the target
number is masked by substituting a random vector.
Each token xn in a sequence of length N is associ-
ated with a forward and backward LSTM cell. The
hidden state hn of each token is given by the sum
of the hidden states of the forward and backward
cells: hn =

←−
h n +

−→
h n. To generate a context

vector c for the entire sentence, we compute atten-
tion scores αn by taking the inner product of each
hidden state hn with a learned weight vector w.
The resulting scores are passed through a softmax
function, and the weights are used to form a convex
combination of the hn that represents the context
c of the sentence. Logits are obtained by taking
the inner product of c with trained embeddings
for each of the seven categories, and cross-entropy
loss is minimized. More details on training can be
found in Appendix A.

Evaluation. Following Chen et al. (2019), we
use micro and macro F1 scores for classifying the
magnitude of a number.

Results. Table 3 shows significant improvements
in the F1 score achieved by the model. To inves-
tigate the effects of dimensions of the embedding

4748

Model Micro-F1 Macro-F1
LR 62.49 30.81
CNN 69.27 35.96
GRU 70.92 38.43
BiGRU 71.49 39.94
CRNN 69.50 36.15
CNN-capsule 63.11 29.41
GRU-capsule 70.73 33.57
BiGRU-capsule 71.49 34.18
BiLSTM with DICE 75.56 46.80

Table 3: Performance (%) on classifying number mag-
nitude on the Numeracy-600k dataset.

Embedding Size Micro-F1 Macro-F1
32 74.63 45.92
64 74.90 45.99
128 75.55 46.36
256 75.56 45.56
512 74.14 46.80

Table 4: Performance (%) of BiLSTM-attention with
DICE model on the Numeracy-600k dataset by varying
the embedding dimensions of input tokens.

and hidden vectors within the LSTM cells on the
performance of the BiLSTM-attention model, we
perform ablation experiments. We vary the em-
bedding size of tokens while keeping other hyper-
parameters constant, and observe the results on
Tables 4. From Table 4 the BiLSTM with DICE
model achieves the best micro-F1 score when the
embedding dimension is 256. However, the macro-
F1 score peaks when the embedding dimension is
512.

These results suggest that while DICE embed-
dings yield superior performance in non-contextual
numerical tasks, such as computing the maximum
and performing basic mathematical operations,
data agnostic embeddings such as DICE may not
be ideal for textual reasoning tasks in which words
surrounding a number provide important informa-
tion regarding the magnitude of the number. Hence,
we introduce a model-based regularization method
that utilizes the DICE principles to learn number
embeddings in 5.2.

5.2 Model-Based Numeracy Embeddings

In the previous section, we demonstrated how
DICE could be explicitly incorporated for numbers
in the text. Here, we propose a methodology that
help models implicitly internalize the properties
of DICE. Our approach involves a regularization
method (an auxiliary loss) that can be adopted in
the fine-tuning of any contextual NLP model, such

as BERT. Auxiliary losses have shown to work well
for a variety of NLP downstream tasks (Shen et al.,
2019).

During the task-specific training of any model,
the proposed auxiliary loss Lnum can be applied
to the input embeddings of numbers available in
a minibatch. For any two contextual numerical
embeddings x,y obtained from the final hidden
layer of the model, the Lnum loss for the pair of
numbers (x, y) is calculated as:

Lnum =

∥∥∥∥ 2 |x− y||x|+ |y|
− dcos(x,y)

∥∥∥∥
2

(7)

where dcos(x,y) = 1 − xTy
‖x‖2‖y‖2

is the co-
sine distance between the embeddings x and y.
In essence, Lnum follows the same motivation as
DICE where cosine distance between the embed-
dings of two numbers are encouraged to be propor-
tional to their (scaled) absolute magnitude distance
on the number line.

Training Details. To evaluate the proposed
Lnum, we test the regularization on the task of
question answering (QA) involving numerical an-
swers. In particular, we take the popular Stanford
Question Answering Dataset (SQuAD 1.1) (Ra-
jpurkar et al., 2016) dataset and create sub-splits
(ranges from [1, 30000]) where the (i) training QA
pairs have answers strictly containing numerical
digits (Sub-split 1, less than 10K examples), and
(ii) training QA pairs have answers containing a
number as one of their tokens, for e.g. “10 apples”
(Sub-split 2, slightly more than 10K examples). We
create these splits to evaluate BERT model’s rea-
soning involving numbers to pick these answers.
We choose BERT-base-uncased as baseline
model and train it on both the datasets. Within each
batch, we calculate Lnum by randomly sampling
a pair of numbers x, y from the available numbers
in the contexts. The corresponding embeddings
of the numbers are x and y, which are extracted
from the last hidden layer of the BERT model. We
then enforce the distance of embeddings to match
the difference between number values by Lnum.
The scores are reported on the development set
(less than 1000 examples) as the test set cannot be
pruned for our purpose. The assumption here is
that the BERT model needs to perform numerical
reasoning to come up with answers for these partic-
ular kinds of QA pairs. The models were trained on
Nvidia Tesla P100 GPU. More details on choosing

4749

According to the same statistics, the average age of
people living in Newcastle is 37.8 (the national
average being 38.6). Many people in the city have
Scottish or Irish ancestors. There is a strong
presence of Border Reiver surnames, such as
Armstrong, Charlton, Elliot, Johnstone, Kerr, Hall,
Nixon, Little and Robson. There are also small but
significant Chinese, Jewish and Eastern European
(Polish, Czech Roma) populations. There are also
estimated to be between 500 and 2,000 Bolivians in
Newcastle, forming up to 1% of the population—
the largest such percentage of any UK city.

Context Question
What is the smallest
number of Bolivians
it's estimated live in
Newcastle?

Answer
500Ground truth:

BERT :

BERT + :ℒnum

between 500
and 2,000

500

A)

Although the reciprocating steam
engine … use, various companies …
alternative to internal combustion
engines. The company Energiprojekt
AB in Sweden … the power of steam.
The efficiency … steam engine reaches
some 27-30% on high-pressure engines.
It is a single-step, 5-cylinder engine (no
compound) with superheated steam and
consumes approx. 4 kg (8.8 lb) of
steam per kWh.

Context Question
How many cylinders
does the Energiprojekt
AB engine have?

Answer

B)

5Ground truth:
BERT :

BERT + :ℒnum

27 - 30 % on high -
pressure engines . it
is a single - step , 5

5

Figure 2: Qualitative examples where BERT + Lnum performed better than BERT-base

hyper-parameter for BERT + Lnum is discussed in
Appendix B.

Evaluation. Exact Match is a binary measure
(i.e., true/false) of whether the predicted output
matches the ground truth answer exactly. This eval-
uation is performed after the string normalization
(uncased, articles removed, etc.). F1 is the har-
monic mean of precision and recall.

Results. Results in Table 5 show that the BERT
model with numeracy objective achieves an im-
provement of 0.48 F1 points when the answers are
purely numerical digits. When the BERT model
is trained on QA pairs with answers containing at
least a number with several words, and evaluated
on pairs with answers containing only numbers,
we see an improvement of 1.12 F1 points over the
baseline model.

The BERT-base model on the original SQuAD
data was finetuned for 3 epochs owing to its com-
plexity. However, we find that 1 epoch is sufficient
to capture the complexity of the pruned SQuAD
data. Table 5 shows BERT + Lnum consistently
performs better than BERT-base across epochs.

Interestingly, BERT-base performs worse when
finetuned with QA pairs containing a mix of words
and numbers as answers (sub-split 2). This informs
us that the baseline model learns to pick numbers
better but fails to do as well when fine-tuned with
a mix of words and numbers. In both the cases,
the evaluation set consists of pruned SQuAD dev
set QA pairs with answers strictly containing nu-
merical digits only. We find that BERT + Lnum
gives the maximum improvement on sub-split 2
data highlighting the efficiency of our regulariza-
tion technique to learn numerical embeddings.

Figure 2 shows some qualitative examples where
the BERT + Lnum performs better than BERT-base
(Sub-split 2). In this analysis, we found that the

Model

E
po

ch
s Sub-split 1 Sub-split 2

F1 Exact F1 Exact

BERT
1 89.75 89.40 89.03 86.50
2 90.71 90.66 90.32 88.09
3 91.12 91.04 90.28 88.02

BERT
1 90.23 90.16 89.90 87.26

+ Lnum
2 91.05 90.92 90.49 88.52
3 91.46 91.29 91.40 89.15

Table 5: F1 scores of BERT-base model on SQuAD 1.1
sub-splits (all scores are statistically significant with a
variance of 0.01). Sub-split 1: both training and test-
ing splits contains only numerical answers; Sub-split
2: train split contains atleast one number in the answer
and testing split contains only numerical answers.

baseline model picks the whole sentence or para-
graph involving the numerical value (Figure 2 B)
as the answer. Our method picks numbers within
the classification span (Figure 2 B) and sometimes
helps the BERT model to accurately pick up cor-
rect numbers (Figure 2 A), contributing to exact
match and F1. More such examples are shown in
Appendix C.

During our experiments, we observed the poten-
tial issue of weak signals from the loss when the
availability of numerical pairs is sparse. In the fu-
ture, our efforts would be to overcome this issue to
ensure further gains.

6 Conclusion

In this work, we methodologically assign and learn
embeddings for numbers to reflect their numerical
properties. We validate our proposed approach with
several experiments that test number embeddings.
The tests that evaluate the numeral embeddings are
fundamentally applicable to all real numbers. Fi-
nally, we introduced an approach to jointly learn
embeddings of numbers and words that preserve
numerical properties and evaluated them on a con-
textual word embedding based model. In our future

4750

work, we would like to extend this idea to unseen
numbers in vocabulary as a function of seen ones.

Acknowledgments

The authors would like to thank Aakanksha Naik
for her help in the early stages of this work, and the
anonymous reviewers as well for their insightful
comments.

References
LE Blumenson. 1960. A derivation of n-dimensional

spherical coordinates. The American Mathematical
Monthly, 67(1):63–66.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Chung-Chi Chen, Hen-Hsen Huang, Hiroya Takamura,
and Hsin-Hsi Chen. 2019. Numeracy-600k: Learn-
ing numeracy for detecting exaggerated information
in market comments. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 6307–6313.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in neural information processing
systems, pages 577–585.

Marie-Catherine De Marneffe, Anna N Rafferty, and
Christopher D Manning. 2008. Finding contradic-
tions in text. In Proceedings of ACL-08: HLT, pages
1039–1047.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2019.
DROP: A reading comprehension benchmark requir-
ing discrete reasoning over paragraphs. In Proc. of
NAACL.

John R Firth. 1957. A synopsis of linguistic theory,
1930-1955. Studies in linguistic analysis.

ZS Harris. 1954. Distributional structure. word, 10
(2-3): 146–162. reprinted in fodor, j. a and katz, jj
(eds.), readings in the philosophy of language.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Chengyue Jiang, Zhonglin Nian, Kaihao Guo, Shanbo
Chu, Yinggong Zhao, Libin Shen, Haofen Wang,
and Kewei Tu. 2019. Learning numeral embeddings.
arXiv preprint arXiv:2001.00003.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems,
pages 3294–3302.

Tom Kocmi and Ondřej Bojar. 2017. An exploration of
word embedding initialization in deep-learning tasks.
arXiv preprint arXiv:1711.09160.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2009. Language mod-
els based on semantic composition. In Proceedings
of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1-Volume 1,
pages 430–439. Association for Computational Lin-
guistics.

Aakanksha Naik, Abhilasha Ravichander, Carolyn
Rose, and Eduard Hovy. 2019. Exploring numeracy
in word embeddings. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 3374–3380.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language process-
ing (EMNLP), pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. arXiv preprint arXiv:1802.05365.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

David E Rumelhart, Geoffrey E Hinton, Ronald J
Williams, et al. 1988. Learning representations
by back-propagating errors. Cognitive modeling,
5(3):1.

Dinghan Shen, Pengyu Cheng, Dhanasekar Sundarara-
man, Xinyuan Zhang, Qian Yang, Meng Tang, Asli
Celikyilmaz, and Lawrence Carin. 2019. Learning
compressed sentence representations for on-device
text processing. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 107–116.

4751

Georgios P Spithourakis and Sebastian Riedel. 2018.
Numeracy for language models: Evaluating and
improving their ability to predict numbers. arXiv
preprint arXiv:1805.08154.

Andrew Trask, Felix Hill, Scott E Reed, Jack Rae,
Chris Dyer, and Phil Blunsom. 2018. Neural arith-
metic logic units. In Advances in Neural Informa-
tion Processing Systems, pages 8035–8044.

Eric Wallace, Yizhong Wang, Sujian Li, Sameer Singh,
and Matt Gardner. 2019. Do nlp models know num-
bers? probing numeracy in embeddings. arXiv
preprint arXiv:1909.07940.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2018.
On the practical computational power of finite pre-
cision rnns for language recognition. arXiv preprint
arXiv:1805.04908.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198.

Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui
Zhao, Kai Chen, Mohammad Norouzi, and Quoc V
Le. 2018. Qanet: Combining local convolution
with global self-attention for reading comprehen-
sion. arXiv preprint arXiv:1804.09541.

4752

A Training details for Magnitude
Classification Experiment

The Bi-LSTM with attention model initialized with
DICE embeddings were trained on the market com-
ments data. The model was trained for a fixed
number of 9 epochs. We found that the micro and
macro F1 scores peaked for a certain epoch and
then flattened out. We picked the best micro and
macro pair the model obtained in that certain epoch.

B Hyperparameter for BERT + Lnum

Our model involves a regularization method (an
auxiliary loss) that can be adopted in the fine-tuning
of BERT. This loss was finetuned with a hyperpa-
rameter λ and added to the existing BERT classi-
fication loss for detecting the correct span. The
hyperparameter search space is between 0, 1. We
sweeped through the values manually within the
search space and found that the best model that
gave the maximum improvement in F1 scores had
a hyperparameter value of 10−3. The values were
sweeped based on the observed performance. The
performance faded as the hyperparameter was set
to a higher value (closer to 1).

C Examples for BERT vs. BERT + Lnum

Figure 3 provides additional samples where BERT
+ Lnum outperformed the baseline BERT model.
Similar to previous observations, our regularized
approach is able to pinpoint the correct number as
opposed to selecting a substring via pattern match-
ing.

4753

The principal Treaties that form the European Union
began … institutions were established through the
Treaty of Rome 1957 and the Maastricht Treaty 1992
(now: TFEU). Minor amendments were made during
the 1960s and 1970s. Major amending treaties … the
Single European Act 1986, to further the
development of a more social Europe in the Treaty of
Amsterdam 1997, and … EU institutions in the
Treaty of Nice 2001 and the Treaty of Lisbon 2007.
Since its establishment, … the UK, Ireland, Denmark
and Norway in 1972 …, Greece in 1979, Spain and
Portugal 1985, Austria, Finland, Norway and Sweden
in 1994 …, the Czech Republic, Cyprus, … Slovakia
and Slovenia in 2004 …

Context Question

In what years did Spain
and Portugal join the
European Union?

Answer

1985Ground truth:

BERT :

BERT + :ℒnum

greece in 1979 , spain
and portugal 1985

1985

C)

One of the things Tesla developed
at that laboratory in 1887 was an
induction motor that ran on
alternating current, … high-
voltage transmission. The motor
used … turn the motor (a
principle Tesla claimed to have
conce ived i n 1882) . Th i s
innova t ive e lec t r ic motor,
patented in May 1888, was a
simple self-starting design that
did not need a commutator, …
constantly servicing and replacing
mechanical brushes.

Context Question

When did Tesla make
the induction motor?

Answer

1887Ground truth:

BERT :

BERT + :ℒnum

May 1888

1887

D)

The second main legislative body is the Council,
which is composed of different ministers of the
member states. … (a distinct body) that the TEU
article 15 defines as providing the 'necessary impetus
for its development and shall define the general
political directions and priorities’. … The minister
must have the authority to represent and bin the
member states in decisions. When voting takes place
it is weighted … dominated by larger member states.
In total there are 352 votes, … , if not consensus.
TEU article 16(4) and TFEU article 238(3) define
this to mean at least 55 per cent of the Council
members (not votes) representing 65 per cent of the
population of the EU: currently this means around 74
per cent, or 260 of the 352 votes. This is critical
during the legislative process.

Context Question
What are the total
number of votes to be
counted during the
voting process?

Answer

352Ground truth:

BERT :

BERT + :ℒnum

352 votes , but for most
acts there must be a

352

E)
The IPCC Panel is composed of
representatives appointed by
governments and organizations.
… Non Governmental and
Intergovernmental Organizations
may be allowed to attend as
observers. Attendance at the 2003
meeting included 350 government
officials and climate change
experts. The meeting report states
there were 322 persons in
attendance at Sessions with about
seven-eighths of participants
b e i n g f r o m g o v e r n m e n t a l
organizations

Context Question

How many people
attended the 2003
IPCC meeting ?

Answer

350Ground truth:

BERT :

BERT + :ℒnum

350 government
officials and climate

350

F)

Figure 3: Qualitative examples where BERT + Lnum performed better than BERT base.

