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Abstract

Document and discourse segmentation are two
fundamental NLP tasks pertaining to breaking
up text into constituents, which are commonly
used to help downstream tasks such as infor-
mation retrieval or text summarization. In this
work, we propose three transformer-based ar-
chitectures and provide comprehensive com-
parisons with previously proposed approaches
on three standard datasets. We establish a new
state-of-the-art, reducing in particular the er-
ror rates by a large margin in all cases. We
further analyze model sizes and find that we
can build models with many fewer parameters
while keeping good performance, thus facili-
tating real-world applications.

1 Introduction

Text segmentation is a traditional NLP task that
breaks up text into constituents, according to prede-
fined requirements. It can be applied to documents,
in which case the objective is to create logically
coherent sub-document units. These units, or seg-
ments, can be any structure of interest, such as
paragraphs or sections. This task is often referred
to as document segmentation or sometimes simply
text segmentation. In Figure 1 we show one ex-
ample of document segmentation from Wikipedia,
on which the task is typically evaluated (Koshorek
et al., 2018; Badjatiya et al., 2018).

Documents are often multi-modal, in that they
cover multiple aspects and topics; breaking a doc-
ument into uni-modal segments can help improve
and/or speed up down stream applications. For
example, document segmentation has been shown
to improve information retrieval by indexing sub-
document units instead of full documents (Llopis
et al., 2002; Shtekh et al., 2018). Other applications
such as summarization and information extraction
can also benefit from text segmentation (Koshorek
et al., 2018).

Early life and marriage:
Franklin Delano Roosevelt was born on January 30, 1882, in the
Hudson Valley town of Hyde Park, New York, to businessman
James Roosevelt I and his second wife, Sara Ann Delano. (...)
Aides began to refer to her at the time as “the president’s girl-
friend”, and gossip linking the two romantically appeared in the
newspapers.

(...)
Legacy:
Roosevelt is widely considered to be one of the most important
figures in the history of the United States, as well as one of the
most influential figures of the 20th century. (...) Roosevelt has
also appeared on several U.S. Postage stamps.

Figure 1: Illustration of text segmentation on the ex-
ample of the Wikipedia page of President Roosevelt.
The aim of document segmentation is breaking the raw
text into a sequence of logically coherent sections (e.g.,
“Early life and marriage” and “Legacy” in our exam-
ple).

A related task called discourse segmentation
breaks up pieces of text into sub-sentence elements
called Elementary Discourse Units (EDUs). EDUs
are the minimal units in discourse analysis accord-
ing to the Rhetorical Structure Theory (Mann and
Thompson, 1988). In Figure 2 we show examples
of EDU segmentations of sentences. For example,
the sentence “Annuities are rarely a good idea at the
age 35 because of withdrawal restrictions” decom-
poses into the following two EDUs: “Annuities are
rarely a good idea at the age 35” and “because of
withdrawal restrictions”, the first one being a state-
ment and the second one being a justification in the
discourse analysis. In addition to being a key step
in discourse analysis (Joty et al., 2019), discourse
segmentation has been shown to improve a number
of downstream tasks, such as text summarization,
by helping to identify fine-grained sub-sentence
units that may have different levels of importance
when creating a summary (Li et al., 2016).

Multiple neural approaches have been recently
proposed for document and discourse segmenta-
tion. Koshorek et al. (2018) proposed the use of
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Sentence 1:
Annuities are rarely a good idea at the age 35 ‖ because of
withdrawal restrictions
Sentence 2:
Wanted: ‖ An investment ‖ that’s as simple and secure as a
certificate of deposit ‖ but offers a return ‖ worth getting excited
about.

Figure 2: Example discourse segmentations from the
RST-DT dataset (Carlson et al., 2001). In the segmen-
tations, the EDUs are separated by the ‖ character.

hierarchical Bi-LSTMs for document segmenta-
tion. Simultaneously, Li et al. (2018) introduced
an attention-based model for both document seg-
mentation and discourse segmentation, and Wang
et al. (2018) obtained state of the art results on dis-
course segmentation using pretrained contextual
embeddings (Peters et al., 2018). Also, a new large-
scale dataset for document segmentation based
on Wikipedia was introduced by Koshorek et al.
(2018), providing a much more realistic setup for
evaluation than the previously used small scale and
often synthetic datasets such as the Choi dataset
(Choi, 2000).

However, these approaches are evaluated on dif-
ferent datasets and as such have not been compared
against one another. Furthermore they mostly rely
on RNNs instead of the more recent transformers
(Vaswani et al., 2017) and in most cases do not
make use of contextual embeddings which have
been shown to help in many classical NLP tasks
(Devlin et al., 2018).

In this work we aim at addressing these limita-
tions and make the following contributions:

1. We compare recent approaches that were pro-
posed independently for text and/or discourse
segmentation (Li et al., 2018; Koshorek et al.,
2018; Wang et al., 2018) on three public
datasets.

2. We introduce three new model architectures
based on transformers and BERT-style con-
textual embeddings to the document and dis-
course segmentation tasks. We analyze the
strengths and weaknesses of each architecture
and establish a new state-of-the-art.

3. We show that a simple paradigm argued for
by some of the earliest text segmentation algo-
rithms can achieve competitive performance
in the current neural era.

4. We conduct ablation studies analyzing the im-
portance of context size and model size.

2 Literature review

Document segmentation Many early research
efforts were focused on unsupervised text segmen-
tation, doing so by quantifying lexical cohesion
within small text segments (Hearst, 1997; Choi,
2000). Being hard to precisely define and quan-
tify, lexical cohesion has often been approximated
by counting word repetitions. Although compu-
tationally expensive, unsupervised Bayesian ap-
proaches have also been popular (Utiyama and Isa-
hara, 2001; Eisenstein, 2009; Mota et al., 2019).
However, unsupervised algorithms suffer from two
main drawbacks: they are hard to specialize for a
given domain and in most cases do not naturally
deal with multi-scale issues. Indeed, the desired
segmentation granularity (paragraph, section, chap-
ter, etc.) is necessarily task dependent and super-
vised learning provides a way of addressing this
property. Therefore, supervised algorithms have
been a focus of many recent works.

In particular, multiple neural approaches have
been proposed for the task. In one, a sequence label-
ing algorithm is proposed where each sentence is
encoded using a Bi-LSTM over tokens, and then a
Bi-LSTM over sentence encodings is used to label
each sentence as ending a segment or not (Koshorek
et al., 2018). Authors consider a large dataset based
on Wikipedia, and report improvements over un-
supervised text segmentation methods. In another
work, a sequence-to-sequence model is proposed
(Li et al., 2018), where the input is encoded using a
BiGRU and segment endings are generated using a
pointer network (Vinyals et al., 2015). The authors
report significant improvements over sequence la-
beling approaches, however on a dataset composed
of 700 artificial documents created by concatenat-
ing segments from random articles from the Brown
corpus (Choi, 2000). Lastly, Badjatiya et al. (2018)
consider an attention-based CNN-Bi-LSTM model
and evaluate it on three small-scale datasets.

Discourse Segmentation Contrary to document
segmentation, discourse segmentation has histor-
ically been framed as a supervised learning task.
However, a challenge of applying supervised ap-
proaches for this type of segmentation is the fact
that the available dataset for the task is limited
(Carlson et al., 2001). For this reason, approaches
for discourse segmentation usually rely on exter-
nal annotations and resources to help the models
generalize. Early approaches to discourse segmen-
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tation were based on features from linguistic anno-
tations such as POS tags and parsing trees (Soricut
and Marcu, 2003; Xuan Bach et al., 2012; Joty
et al., 2015). The performance of these systems
was highly dependent on the quality of the annota-
tions.

Recent approaches started to rely on end-to-end
neural network models that do not need linguistic
annotations to obtain high-quality results, relying
instead on pretrained models to obtain word or
sentence representations. An example of such work
is by Li et al. (2018), which proposes a sequence-
to-sequence model getting a sequence of GloVe
(Pennington et al., 2014) word embeddings as input
and generating the EDU breaks. Another approach
utilizes ELMO pretrained embeddings in the CRF-
Bi-LSTM architecture and achieves state-of-the-art
results on the task (Wang et al., 2018).

3 Architectures

We propose three model architectures for segmen-
tation. One uses only local context around each
candidate break, while the other two leverage the
full context from the input (by candidate break, we
mean any potential segment boundary).

All our models rely on the same preprocessing
technique and simply feed the raw input into a
word-piece (sub-word) tokenizer (Wu et al., 2016).
We use the word-piece tokenizer implementation
that was open-sourced as part of the BERT release
(Devlin et al., 2018), more precisely its English,
uncased variant, which has a vocabulary size of
30,522 word-pieces.

3.1 Cross-segment BERT

For our first model, we represent each candidate
break by its left and right local contexts, i.e., the se-
quences of word-piece tokens that come before and
after, respectively, the candidate break. The main
motivation for this model is its simplicity; however,
using only local contexts might be sub-optimal,
as longer distance linguistic artifacts are likely to
help locating breaks. Using such a simple model
is a departure from recent trends favoring hierar-
chical models, which are conceptually appealing to
model documents. However, it is also interesting
to note that using local context was a common ap-
proach with earlier text segmentation models, such
as (Hearst, 1997), which were studying semantic
shift by comparing the word distributions before
and after each candidate break.

In Figure 3(a) we illustrate the model. The input
is composed of a [CLS] token, followed by the two
contexts concatenated together, and separated by a
[SEP] token. When necessary, short contexts are
padded to the left or to the right with [PAD] tokens.
[CLS], [SEP] and [PAD] are special tokens intro-
duced by BERT (Devlin et al., 2018). They stand
for, respectively, ”classification token” (since it is
typically for classification tasks, as a representation
of the entire input sequence), ”separator token” and
”padding token”. The input is then fed into a trans-
former encoder (Vaswani et al., 2017), which is ini-
tialized with the publicly available BERTLARGE
model. The BERTLARGE model has 24 layers,
uses 1024-dimensional embeddings and 16 atten-
tion heads. The model is then fine-tuned on each
task. The released BERT checkpoint supports se-
quences of up to 512 tokens, so we keep at most
255 word-pieces for each side. We study the effect
of length of the contexts, and denote the context
configuration by n-m where n and m are the num-
ber of word piece tokens before and after the [SEP]
token.

3.2 BERT+Bi-LSTM

Our second proposed model is illustrated in Fig-
ure 3(b). It starts by encoding each sentence with
BERTLARGE independently. Then, the tensors
produced for each sentence are fed into a Bi-LSTM
that is responsible for capturing a representation of
the sequence of sentences with an indefinite size.

When encoding each sentence with BERT, all
the sequences start with a [CLS] token. If the seg-
mentation decision is made at the sentence level
(e.g., document segmentation), we use the [CLS]
token as input of the LSTM. In cases in where the
segmentation decision is made at the word level
(e.g., discourse segmentation), we obtain BERT’s
full sequence output and use the left-most word-
piece of each word as an input to LSTM. Note that,
because the context is short for the discourse seg-
mentation task, it is fully encoded in a single pass
using BERT. Alternatively, one could encode each
word independently; considering that many words
consist of a single word-piece, encoding them with
a deep transformer encoder would be somewhat
wasteful of computing resources.

With this model, we reduce the BERT’s inputs
to a maximum sentence size of 64 tokens. Keeping
this size small helps reduce training and inference
times, since the computational cost of transformers
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Figure 3: Our proposed segmentation models, illustrating the document segmentation task. In the cross-segment
BERT model (left), we feed a model with a local context surrounding a potential segment break: k tokens to the
left and k tokens to the right. In the BERT+Bi-LSTM model (center) we first encode each sentence using a BERT
model, and then feed the sentence representations into a Bi-LSTM. In the hierarchical BERT model (right), we first
encode each sentence using BERT and then feed the output sentence representations in another transformer-based
model.

(and self-attention in particular) increases quadrat-
ically with the input length. Then, the LSTM is
responsible for handling the diverse and potentially
large sequence of sentences with linear computa-
tional complexity. In practice, we set a maximum
document length of 128 sentences. Longer docu-
ments are split into consecutive, non-overlapping
chunks of 128 sentences and treated as independent
documents.

In essense, the hierarchical nature of this model
is close to the recent neural approaches such as
(Koshorek et al., 2018).

3.3 Hierarchical BERT

Our third model is a hierarchical BERT model
that also encodes full documents, replacing the
document-level LSTM encoder from the BERT+Bi-
LSTM model with a transformer encoder. This
architecture is similar to the HIBERT model used
for document summarization (Zhang et al., 2019),
encoding each sentence independently. The [CLS]
token representations from sentences are passed
into the document encoder, which is then able to re-
late the different sentences through cross-attention,
as illustrated in Figure 3(c).

Due to the quadratic computational cost of trans-
formers, we use the same limits as BERT+Bi-
LSTM for input sequence sizes: 64 word-pieces
per sentence and 128 sentences per document.

To keep the number of model parameters com-
parable with our other proposed models, we use
12 layers for both the sentence and the document
encoders, for a total of 24 layers. In order to use
the BERTBase checkpoint for these experiments,
we use 12 attention heads and 768-dimensional

word-piece embeddings.
We study two alternative initialization proce-

dures:
• initializing both sentence and document en-

coders using BERTBase
• pre-training all model weights on Wikipedia,

using the procedure described in (Zhang
et al., 2019), which can be summarized as a
”masked sentence” prediction objective, anal-
ogously to the ”masked token” pre-training
objective from BERT.

We call this model hierarchical BERT for consis-
tency with the literature.

4 Evaluation methodology

4.1 Datasets

We perform our experiments on datasets commonly
used in the literature. Document segmentation ex-
periments are done on Wiki-727K and Choi, while
discourse segmentation experiments are done on
the RST-DT dataset. We summarize statistics about
the datasets in Table 1.

Wiki-727K The Wiki-727K dataset (Koshorek
et al., 2018) contains 727 thousand articles from a
snapshot of the English Wikipedia, which are ran-
domly partitioned into train, development and test
sets. We re-use the original splits provided by the
authors. While several segmentation granularities
are possible, the dataset is used to predict section
boundaries. The average number of segments per
document is 3.5, with an average segment length
of 13.6 sentences.

We found that the preprocessing methodology
used on the Wiki-727K dataset can have a notice-
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able effect on the final numerical results, in particu-
lar when filtering lists, code snippets and other spe-
cial elements. We used the original preprocessing
script (Koshorek et al., 2018) for a fair comparison.

Choi Choi’s dataset (Choi, 2000) is an early
dataset containing 700 synthetic documents made
of concatenated extracts of news articles. Each
document is made of 10 segments, where each seg-
ment was created by sampling a document from the
Brown corpus and then sampling a random segment
length up to 11 sentences.

This dataset was originally used to evaluate un-
supervised segmentation algorithms, so it is some-
what ill-designed to evaluate supervised algorithms.
We use this dataset as a best-effort attempt to allow
comparison with some of the previous literature.
However, we had to create our own splits as no
standard splits exist: we randomly sampled 200
documents as a test set and 50 documents as a
validation set, leaving 450 documents for training,
following evaluation from Li et al. (2018). Since
the Brown corpus only contains 500 documents,
the same documents are sampled over and over,
necessarily resulting in data leakage between the
different splits. Its use should therefore be discour-
aged in future research.

RST-DT We perform experiments on discourse
segmentation on the RST Discourse Treebank
(RST-DT) (Carlson et al., 2001). The dataset is
composed of 385 Wall Street Journal articles that
are part of the Penn Treebank (Marcus et al., 1994),
and is split into the train set composed of 347 arti-
cles and the test set composed of 38 articles. We
found that the choice of a validation set (held out
from the train set) has a large impact on model
performance. For this reason, we conduct 10-fold
cross validation and report the average over test set
metrics.

Since this dataset is used for discourse segmenta-
tion, all the segmentation decisions are made at the
intra-sentence level (i.e., the context that is used in
the decisions is just a sentence). In order to make
the evaluation consistent with other systems from
the literature we decided to use the sentence splits
that are available in the dataset, even though they
are not human annotated. For this reason, there are
cases in which some EDUs (which were manually
annotated) overlap between two sentences. In such
cases, we merge the two sentences.

Docs Sections Sentences

Wiki-727K Train 582,146 2,025,358 26,988,063
Wiki-727K Dev 72,354 179,676 3,375,081
Wiki-727K Test 73,233 182,563 3,457,771

Choi Train 450 4,500 31,075
Choi Dev 50 500 3,291
Choi Test 200 2,000 14,039

Docs Sentences EDUs

RST-DT Train 347 7,028 19,443
RST-DT Test 38 864 2,346

Table 1: Statistics about the datasets.

4.2 Metrics

Following the trend of many studies on text seg-
mentation (Soricut and Marcu, 2003; Li et al.,
2018), we evaluate our approaches using Precision,
Recall and F1-score with regard to the internal
boundaries of the segments only. In our evalua-
tion we do not include the last boundary of each
sentence/document, because it would be trivial to
categorize it as a positive boundary, which would
lead to an artificial inflation of the results.

To allow comparison with the existing literature,
we also use the Pk metric (Beeferman et al., 1999)
to evaluate our results on the Choi’s dataset (note
that lower Pk scores indicate better performance).
k is set, as is customary, to half the average seg-
ment size over the reference segmentation. The
Pk metric is less harsh than the F1-score in that it
takes into account near misses. It is important to
note that Pk metric is known to suffer from biases,
for example penalizing false negatives more than
false positives and discounting errors close to the
document extremities (Pevzner and Hearst, 2002).

5 Results

In Table 2, we report results from the document
and discourse segmentation experiments on the
three datasets presented in Section 4.1. We in-
clude several state-of-the-art baselines which had
not been compared against one another before, as
they have been proposed independently over a short
time period: hierarchical Bi-LSTM (Koshorek
et al., 2018), SEGBOT (Li et al., 2018) and Bi-
LSTM+CRF+ELMO (Wang et al., 2018). We also
include the human annotation baseline from (Wang
et al., 2018), providing an additional reference
point on the RST-DT dataset to the trained mod-
els. We estimate standard deviations for our pro-
posed models and were able to calculate them from
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Wiki-727K RST-DT Choi
Precision Recall F1 Precision Recall F1 F1 Pk

Bi-LSTM (Koshorek et al., 2018) 69.3±0.1 49.5±0.2 57.7±0.1 - - - - -
SEGBOT (Li et al., 2018) - - - 91.6 92.8 92.2 - 0.33
Bi-LSTM+CRF (Wang et al., 2018) - - - 92.8 95.7 94.3 - -

Cross-segment BERT 128-128 69.1±0.1 63.2±0.2 66.0±0.1 92.1±0.8 98.0±0.4 95.0±0.5 99.9±0.1 0.07±0.04
BERT+Bi-LSTM 67.3±0.1 53.9±0.1 59.9±0.1 94.4±0.5 96.0±0.4 95.2±0.3 99.8±0.1 0.17±0.06
Hier. BERT 69.8±0.1 63.5±0.1 66.5±0.1 93.8±0.7 96.7±0.5 95.2±0.4 99.5±0.1 0.38±0.09

Human (Wang et al., 2018) - - - 98.3 98.2 98.5 - -

Table 2: Test set results on text segmentation and discourse segmentation for baselines and our models. Where
possible, we estimate standard deviations by bootstrapping the test set 100 times.

the hierarchical Bi-LSTM, whose code and trained
checkpoint were publicly released.

To train our models, we used the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with a 10%
dropout rate as well as a linear warmup procedure.
Learning rates are set between 1e-5 and 5e-6, cho-
sen to maximize the F1-score on the validation sets
from each dataset. For the more expensive mod-
els, and especially on the Wiki-727K dataset, we
trained our models using Google Cloud TPUs.

We can see from the table that our models out-
perform the baselines across all datasets, reducing
the relative error margins from the best baseline by
20%, 16% and 79% respectively on the Wiki-727K,
RST-DT and Choi datasets. The improvements are
statistically significant for all datasets. The errors
are impressively low on the Choi dataset, but it is
important to point out that it is a small-scale syn-
thetic dataset, and as such limited. Since each doc-
ument is a concatenation of extracts from random
news articles, it is an artificially easy task for which
a previous neural baseline achieved an already low
error margin. Moreover, on this dataset, the cross-
segment BERT model obtains very good results
compared to the hierarchical models which do not
attend across the candidate break. This aligns with
the expectation that locally attending across a seg-
ment break is sufficient here, as we expect large
semantic shifts due to the artificial nature of the
dataset.

Hierarchical models, with a sentence encoder
followed by a document encoder, perform well on
the RST-DT dataset. As a reminder, this discourse
segmentation task is about segmenting individual
sentences so there is no notion of document context.
In order to study whether the hierarchical structure
is really necessary for discourse segmentation, we
also trained a model without the Bi-LSTM (that
is, making predictions directly using BERT): this

decreased the F1-score by 0.4%. It is also worth
noting that several known LSTM downsides were
particularly apparent on the Wiki-727K dataset: the
model was harder to train and significantly slower
during both training and inference.

Regarding the hierarchical BERT model, differ-
ent initialization methods were used for the two
document segmentation datasets. On the Choi
dataset, a HIBERT initialization (a model fully pre-
trained end-to-end for hierarchical BERT, similarly
to (Zhang et al., 2019) was necessary to get good
results, due the small dataset size. On the contrary,
we obtained slightly better results initializing both
levels of the hierarchy with BERTBase on the Wiki-
727K dataset, even though the model took longer
to converge. Other initializations, e.g., random for
both levels of the hierarchy or BERTBase at the
lower level and random at the upper level, gave
worse results.

Perhaps the most surprising result from Table 2
is the good performance of our cross-segment
BERT model across all datasets, since it only relies
on local context to make predictions. And while the
BERT checkpoints were pre-trained using (among
other things) the next-sentence prediction task, it
was not clear a priori that our cross-segment BERT
model would be able to detect much more subtle
semantic shifts. To further evaluate the effective-
ness of this model, we tried using longer contexts.
In particular, we considered using a cross-segment
BERT with 255-255 contexts, achieving 67.1 F1,
73.9 recall and 61.5 precision scores. Therefore,
we can see that encoding the full document in a
hierarchical manner using transformers does not
improve over cross-segment BERT on this dataset.
This suggests that BERT self-attention mechanism
applied across candidate segment breaks, with a
limited context, is in this case just as powerful as
separately encoding each sentence and then allow-
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ing a flow of information across encoded sentences.
In the next section we further analyze the impact
of context length on the results from the cross-
segment BERT model.

6 Analyses

In this section we perform additional analyses and
ablation studies to better understand our segmenta-
tion models.

Experiments revolve around the cross-segment
BERT model. We choose this model because it has
several advantages over its alternatives:
• It outperforms all baselines previously re-

ported as state-of-the-art, and its results are
competitive with the more complex hierarchi-
cal approaches we considered.
• It is conceptually close to the original BERT

model (Devlin et al., 2018), whose code is
open-source, and is as such simple to imple-
ment.
• It only uses local document context and there-

fore does not require encoding an entire docu-
ment to segment a potentially small piece of
text of interest.

One application for text segmentation is in assist-
ing a document writer in composing a document,
for example to save them time and effort. The task
proposed by Lukasik and Zens (2018), aligned with
what industrial applications such as Google Docs
Explore provide, was to recommend related entities
to a writer in real time. However, text segmentation
could also help authors in structuring their docu-
ment better by suggesting where a section break
might be appropriate. Motivated by this applica-
tion, we next analyze how much context is needed
to reliably predict a section break.

6.1 Role of trailing context size

For the aforementioned application, it would be
helpful to use as little trailing (after-the-break) con-
text as possible. This way, we can suggest sec-
tion breaks sooner. Reducing the context size also
speeds up the model (as cost is quadratic in se-
quence length). To this end, we study the effect of
trailing context size, going from 128 word-piece
tokens down to 0. For this set of experiments, we
held the leading context size fixed at 128 tokens,
and tuned BERTBASE with a batch size of 1536
examples and a learning rate of 5e-5. The results
for these 128-n experiments are shown in Figure 4.

While the results are intuitive, it is not clear

Right context length (# word-pieces)

F1
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Figure 4: Analysis of the importance of the right con-
text length (solid red line). Dashed blue line denotes
the hierarchical Bi-LSTM baseline encoding the full
context (Koshorek et al., 2018).

whether the performance drops because of smaller
trailing context or because of smaller overall con-
text. To answer this, we ran another experiment
with 256 tokens on the left and 0 tokens on the
right (256-0). With all else being the same, this
256-0 experiment attains F1 score of 20.2. This is
much smaller than 64.0 F1 with 128 tokens on each
side of the proposed break. Clearly, it is crucial
that the model sees both sides of the break. This
aligns with the intuition that word distributions be-
fore and after a true segment break are typically
quite different (Hearst, 1997). However, presenting
the model with just the distributions of tokens on
either side of the proposed break leads to poor per-
formance: in another experiment, we replaced the
running text on either side with a sorted list of 128
most frequent tokens seen in a larger context (256
tokens) on either side, padding as necessary, and
tuned BERTBASE with all else the same. This 128-
128 experiment attains 39.1 F1 score, compared
to 64.0 with 128-128 running text on either side.
This suggests that high-performing models are do-
ing more than just counting tokens on each side to
detect semantic shift.

6.2 Role of Transformer architecture

The best cross-segment BERT model relies on
BERTLarge. While powerful, this model is slow
and expensive to run. For large-scale applications
such as offline analysis for web search or online
document processing such as Google Docs or Mi-
crosoft Office, such large models are prohibitively
expensive. Table 3 shows the effect of model size
on performance. For these experiments, we initial-
ized the training with models pre-trained as in the
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Architecture Parameters F1

L24-H1024-A16 336M 66.0
L12-H768-A12 110M 64.0
L12-H512-A8 54M 63.4
L12-H256-A8 17M 62.3
L6-H256-A8 13M 60.2
L4-H256-A4 11M 58.2
L12-H128-A8 6M 59.2
L6-H128-A8 5M 57.9
L12-H64-A8 2.6M 55.5

Table 3: Effect of model architecture on Wiki-727K re-
sults.

BERT paper (Devlin et al., 2018). The first two
experiments are initialized with BERTLARGE and
BERTBASE respectively.

Overall, the larger the model, the better the per-
formance. These experiments also suggest that, in
addition to the size, the configuration also matters.
A 128-dimensional model with more layers can
outperform a 256-dimensional model with fewer
layers. While the new state-of-the-art is several
standard deviations better than the previous one (as
reported in Table 2), this gain came at a steep cost
in the model size. This is unsatisfactory, as large
size hinders the possibility of using the model at
scale and with low latency, which is desirable for
this application (Wang et al., 2018). In the next
section, we explore smaller models with better per-
formance using model distillation.

6.3 Model distillation

As can be seen from the previous section, perfor-
mance degrades quite quickly as smaller and there-
fore more practical networks are used. An alterna-
tive to the pre-training/fine-tuning approach used
above is distillation, which is a popular technique
to build small networks (Bucila et al., 2006; Hinton
et al., 2015). Instead of training directly a small
model on the segmentation data with binary la-
bels, we can instead leverage the knowledge learnt
by our best network —called in this context the
’teacher’— as follows. First, we record the predic-
tions, or more precisely the output logits, from the
teacher model on the full dataset. Then, a small
’student’ model is trained using a combination of
a cross-entropy loss with the true labels, and a
MSE loss to mimick the teacher logits. The rela-
tive weight between the two objectives is treated as
a hyperparameter.

Distillation results are presented in Table 4. We
can see that the distilled models perform better than

Architecture Parameters F1

L4-H256-A4 11M 63.0
L6-H128-A8 5M 62.5

Table 4: Distillation results on the Wiki-727K dataset.

models trained directly on the training data without
a teacher, increasing F1-scores by over 4 points.
We notice that distillation allows much more com-
pact models to significantly outperform the pre-
vious state-of-the-art. Unfortunately, we cannot
directly compare model sizes with (Koshorek et al.,
2018) since they rely on a subset of the embed-
dings from a public word2vec archive that includes
over 3M vocabulary items, including phrases, most
of which are likely never used by the model. It
is however fair to say their hierarchical Bi-LSTM
model relies on dozens of millions of embedding
parameters (even though these are not fine-tuned
during training) as well as several million LSTM
parameters.

7 Conclusion

In this paper, we introduce three new model ar-
chitectures for text segmentation tasks: a cross-
segment BERT model that uses only local context
around candidate breaks, as well as two hierar-
chical models, BERT+Bi-LSTM and hierarchical
BERT. We evaluated these three models on docu-
ment and discourse segmentation using three stan-
dard datasets, and compared them with other recent
neural approaches. Our experiments showed that
all of our models improve the current state-of-the-
art. In particular, we found that a cross-segment
BERT model is extremely competitive with hierar-
chical models which have been the focus of recent
research efforts (Chalkidis et al., 2019; Zhang et al.,
2019). This is surprising as it suggests that local
context is sufficient in many cases. Due to its sim-
plicity, we suggest at least trying it as a baseline
when tackling other segmentation problems and
datasets.

Naturally these results do not imply that hierar-
chical models should be disregarded. We showed
they are strong contenders and we are convinced
there are applications where local context is not
sufficient. We tried several encoders at the upper-
level of the hierarchy. Our experiments suggest
that deep transformer encoders are useful for en-
coding long and complex inputs, e.g., documents
for document segmentation applications, while Bi-
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LSTMs proved useful for discourse segmentation.
Moreover, RNNs in general may also be useful for
very long documents as they are able to deal with
very long input sequences.

Finally, we performed ablation studies to better
understand the role of context and model size. Con-
sequently, we showed that distillation is an effective
technique to build much more compact models to
use in practical settings.

In future work, we plan to further investigate
how different techniques apply to the problem of
text segmentation, including data augmentation
(Wei and Zou, 2019; Lukasik et al., 2020b) and
methods for regularization and mitigating labeling
noise (Jiang et al., 2020; Lukasik et al., 2020a).
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