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Abstract

There has been an influx of biomedical
domain-specific language models, showing
language models pre-trained on biomedical
text perform better on biomedical domain
benchmarks than those trained on general do-
main text corpora such as Wikipedia and
Books. Yet, most works do not study the
factors affecting each domain language ap-
plication deeply. Additionally, the study of
model size on domain-specific models has
been mostly missing. We empirically study
and evaluate several factors that can affect
performance on domain language applications,
such as the sub-word vocabulary set, model
size, pre-training corpus, and domain transfer.
We show consistent improvements on bench-
marks with our larger BioMegatron model
trained on a larger domain corpus, contribut-
ing to our understanding of domain language
model applications. We demonstrate notice-
able improvements over the previous state-of-
the-art (SOTA) on standard biomedical NLP
benchmarks of question answering, named en-
tity recognition, and relation extraction. Code
and checkpoints to reproduce our experiments
are available at github.com/NVIDIA/NeMo.

1 Introduction

Effectively transferring the success of BERT (De-
vlin et al., 2018) to the biomedical domain, most
notably Lee et al. (2019) (BioBERT) and Beltagy
et al. (2019) (SciBERT) inspired a large number of
similar works last year. For example, Peng et al.
(2019); Alsentzer et al. (2019); Huang et al. (2019)
added clinical text to the PubMed biomedical pre-
training corpus and tested on standard biomedical
and clinical NLP benchmarks. Many other sim-
ilar works appeared at the ACL BioNLP Work-
shop (Demner-Fushman et al., 2019).

More recently, Gu et al. (2020) performed a com-
prehensive study on the pre-training corpus domain,

language model masking method, and adversarial
training, benchmarking on a number of different
datasets for token classification, sequence classifi-
cation, and sequence regression.

Compared to the previous works, we perform a
more detailed study on (1) subword vocabulary, (2)
labeling method, (2) model size, and (3) domain
transfer, showing gains in token classification, se-
quence classification, and question answering.

2 Related Works

A prime example of Language Models (LMs)
in the biomedical domain is BioBERT (Lee
et al., 2019). It is a transformer LM pre-trained
on the PubMed (www.ncbi.nlm.nih.gov/pubmed)
biomedical text corpus comprised of biomedical
literature abstracts. Their pre-training started from
the checkpoint of Devlin et al. (2018) trained on
Wikipedia and Books-Corpus. Independently, Belt-
agy et al. (2019) (SciBERT) pre-trained BERT
from scratch using their vocabulary set on scientific
text corpora, including PubMed abstracts and com-
puter science papers. Both demonstrated increased
performance over the previous non-BERT SOTA on
biomedical benchmarks, including Named Entity
Recognition (NER), Relation Extraction (RE), and
Question Answering (QA). BioBERT and SciB-
ERT report similar results on NER and RE, while
only BioBERT report QA results.

They inspired other follow-up works (Alsentzer
et al., 2019; Huang et al., 2019; Peng et al., 2019),
most notably translating their success to the clini-
cal domain, adding the MIMIC-III (Johnson et al.,
2016) clinical text corpus. Gu et al. (2020) (Pub-
MedBERT) used the PubMed full-text for pre-
training in addition to the abstracts, and use a do-
main vocabulary set learned from PubMed corpus.

Meanwhile, they mostly report similar NER and
RE tests and results, and only BioBERT reports QA

github.com/NVIDIA/NeMo
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results. Additionally, most use a BERTBase with
110M parameters. Peng et al. (2019) report slightly
improved performance on RE using BERTLarge
while reporting worse results on NER, compared
to BERTBase. These results on biomedical tasks do
not benefit from scaling model size to the same de-
gree as standard NLP benchmarks such as GLUE or
SQuAD (Shoeybi et al., 2019; Raffel et al., 2019).

3 Language Model Pre-training

BERTBase & Large We compare our models
to the pre-trained BERTBase & Large models of
BioBERT (Lee et al., 2019) and PubMedBERT (Gu
et al., 2020) (BERTBase) for fine-tuning and eval-
uation. For QA we use the BERTLarge variant of
BioBERT following the authors’ recommendation.

BioMegatron Megatron-LM (Shoeybi et al.,
2019) was introduced for efficient model parallel
training of large LMs, with up to 8.3B parameters.
Shoeybi et al. (2019) showed that rearranging the
order of the layer normalization and the residual
connections is critical to enabling the scaling of the
BERT-style models beyond 336m parameters, and
we use the same architecture.

Megatron-LM also used a larger pre-training
text corpus, comprised of Wikipedia (Devlin et al.,
2018), CC-Stories (Trinh and Le, 2018), Real-
News (Zellers et al., 2019), and OpenWebtext
(Radford et al., 2019). For our LM training,
we use the 4.5 billion-word PubMed abstract set
and the 1.6 billion-word CC0-licensed Commer-
cial Use Collection of the PMC full-text corpus
(www.ncbi.nlm.nih.gov/pmc).

We train three sizes of BioMegatron: with
345 million, 800 million, and 1.2 billion
number of parameters. We compare four
pre-training scenarios in the smallest 345m
model - using BERT-cased/uncased vocabular-
ies, each pre-trained from scratch and fine-
tuned from general domain LM. We also com-
pare two sets of domain vocabularies learned
on PubMed text corpus using SentencePiece
(github.com/google/sentencepiece) library, each
containing 30k and 50k subword units.

We train the larger BioMegatron models with
less variation: 800m models from scratch on
PubMed with BERT -cased/-uncased vocabular-
ies; and 1.2b model starting from general domain
LM checkpoint using BERT-uncased vocabulary.

4 Downstream Benchmark Tasks

We use the most widely used downstream biomedi-
cal benchmark datasets for NER, RE, and QA.

Named Entity Recognition The BC5CDR (Li
et al., 2016) NER dataset annotated disease and
chemical terms with IOB tagging (Ramshaw and
Marcus, 1999). In NCBI-disease (Doğan et al.,
2014), only disease entities are IOB-tagged.

Relation Extraction The ChemProt (Krallinger
et al., 2015) dataset contains sentences from
PubMed abstracts, where chemical-protein interac-
tion types are annotated as five categories. Relation
Extraction is essentially a sequence classification
task, classifying a set of sentences into a category.

Question Answering The BioASQ-7b factoid
task (Tsatsaronis et al., 2015) is a biomedical QA
dataset whose format is similar to the SQuAD
dataset (Rajpurkar et al., 2016). In this task,
context-snippet, question and answer triplets, and
factoid question/answers are evaluated with strict
accuracy (SAcc), lenient accuracy (LAcc), and
mean reciprocal rank (MRR).

5 Results and Discussion

The evaluation results on NER and RE are shown in
Table 1, and QA are shown in Table 2. We perform
entity-level F1 NER using the official CoNLL eval-
uation script translated into Python (github.com/
spyysalo/conlleval.py). RE uses micro-level
F1, and QA uses the BioASQ evaluation script
(github.com/BioASQ/Evaluation-Measures).

5.1 Named Entity Recognition

Figure 1: Examples of tokenization with different sub-
word vocabularies. Under each token, blue and purple
text shows the word-level and subtoken-level labeling,
respectively.

While the NER benchmark datasets appear sat-
urated due to the small sample size, we find that
the subword vocabulary is the most critical factor.

www.ncbi.nlm.nih.gov/pmc
github.com/spyysalo/conlleval.py
github.com/spyysalo/conlleval.py
github.com/BioASQ/Evaluation-Measures
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Benchmark Model #Parameters Vocabulary Prec Rec F1

N
E

R
BC5CDR-chem

BioBERT 110m BERT-cased 90.0 93.4 91.7
PubMedBERT 110m PubMedBERT-vocab (30k) 92.1 93.2 92.6
BioMegatron 345m Bio-vocab-30k 92.1 93.6 92.9
BioMegatron 345m Bio-vocab-50k 92.9 92.0 92.5
BioMegatron 800m BERT-cased 91.3 92.9 92.1
BioMegatron 1.2b BERT-uncased 92.0 90.5 91.3

BC5CDR-disease

BioBERT 110m BERT-cased 85.0 89.4 87.2
PubMedBERT 110m PubMedBERT-uncased (30k) 86.2 88.4 87.3
BioMegatron 345m Bio-vocab-30k 85.2 88.8 87.0
BioMegatron 345m Bio-vocab-50k 86.1 91.0 88.5
BioMegatron 800m BERT-cased 85.8 90.1 87.9
BioMegatron 1.2b BERT-uncased 83.8 89.2 86.4

NCBI-disease

BioBERT 110m BERT-cased 85.0 90.0 87.5
PubMedBERT 110m PubMedBERT-uncased (30k) 85.9 87.7 86.8
BioMegatron 345m Bio-vocab-30k 85.6 88.6 87.1
BioMegatron 345m Bio-vocab-50k 83.7 90.4 87.0
BioMegatron 800m BERT-cased 87.0 88.8 87.8
BioMegatron 1.2b BERT-uncased 83.5 90.1 86.7

R
E ChemProt

BioBERT 110m BERT-cased 76.5 73.3 74.8
PubMedBERT 110m PubMedBERT-uncased (30k) 73.6 77.7 75.6
BioMegatron 345m Bio-vocab-30k 77.8 72.5 75.1
BioMegatron 345m Bio-vocab-50k 74.5 79.7 77.0
BioMegatron 800m BERT-cased 80.4 68.9 74.3
BioMegatron 1.2b BERT-uncased 82.0 65.6 72.9

Table 1: Evaluation results on NER and RE after fine-tuning for 30 epochs with hyper-parameter settings of:
num-fc-layers: {1, 2}; fc-hidden-size: {512, 1024}; fc-dropout: 0.5; max-seq-length: 128;
learning-rate: 5e-5; cross-entropy loss, with Adam optimizer. BioMegatron models are pre-trained from
scratch on PubMed, except 1.2b model which is fine-tuned from a general domain model checkpoint.

Benchmark Model #Parameters Vocabulary SAcc LAcc MRR

Q
A BioASQ-7b-factoid

BioBERT-Base 110m BERT-cased 30.8 64.1 41.1
BioBERT-Large 345m BERT-cased 42.8 62.8 50.1
BioMegatron 345m BERT-uncased 46.2 62.6 52.5
BioMegatron 800m BERT-uncased 45.2 58.6 50.4
BioMegatron 1.2b BERT-uncased 47.4 60.9 52.4

Table 2: Evaluation results on QA after fine-tuning for 30 epochs on checkpoints fine-tuned on SQuAD dataset
with fixed hyper-parameter settings as num-fc-layers: 2; fc-hidden-size: 2048; fc-dropout: 0.1;
max-seq-length: 512; learning-rate: 3e-5; cross-entropy loss, using Adam optimizer. BioMegatron
models are pre-trained from scratch on PubMed, except 1.2b model which is fine-tuned from a general domain
model checkpoint.

Examples of tokenization with different vocabu-
laries are shown in Figure 1. Representing named
entities as single terms is more helpful than break-
ing them into several subtokens. Table 3 shows
the rate named entities break into sub-tokens for
each benchmark training set with different sub-
word vocabularies. PubMedBERT vocabulary set is
good with a low break-out rate while being smaller
in size than our 50k-size vocabulary. A lower
break-out rate with smaller vocabulary size proba-
bly helps achieve better NER performance despite
smaller model size.

There are two ways to label entities for NER
training: (1) labeling the whole entity as a single la-

Sub-word vocabulary BC5-chem BC5-disease
BERT-cased 3.012 2.42
PubMedBERT-uncased (30k) 1.654 1.236
BioMegatron-bio-30k-cased 1.753 1.272
BioMegatron-bio-50k-cased 1.478 1.116

Table 3: The rate of named entities breaking into subto-
kens (#tokens/#words) in NER training sets.

bel, and (2) labeling sub-tokens separately. Figure 1
shows examples of these labeling methods. We find
that these different schemes can result in as much as
∼2% difference in the F1-score on NER evaluation,
possibly indicating that the datasets are too small.
We report NER results by labeling sub-tokens sep-
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arately, except for the NCBI-disease dataset, where
we observe better results with whole-entity labeling
across all models.

5.2 Relation Extraction
Since RE is a classification task, albeit on se-
quences rather than on tokens, the choice of sub-
word vocabulary has a notable effect.

We can also observe that larger models result in
higher precision for lower recall, both for NER and
RE. More hyper-parameter tuning could achieve
higher F1-scores, even the generalization ability of
such result may be questionable.

5.3 Question Answering
Table 2 show evaluation results after fine-tuning on
SQuAD for 10 epochs and BioASQ for 30 epochs
each, following the recipe found to work best by
Lee et al. (2019). We found a large batch size
to be beneficial, as Q&A pairs repeat up to 88
times. We use a batch size of 64 per GPU with data
parallelism on 16 GPUs. Here, using biomedical
vocabularies result in much worse results, possibly
due to its low relevance in the first SQuAD fine-
tuning task.

Larger models tend to perform better in QA,
though it levels off after 345m parameters. The
larger model size effect is more evident when fine-
tuning on BioASQ directly, as shown in Table 4.

Model SAcc LAcc MRR
BioMegatron-345m 33.1 50.4 39.8
BioMegatron-800m 37.7 56.3 45.1
BioMegatron-1.2b 40.6 53.7 45.6

Table 4: Results on BioASQ-7b factoid, without fine-
tuning on SQuAD dataset first. The other models, in-
cluding those using domain vocabularies, could not
achieve any comparable results. A consistent pattern
of improvement over model size noticeable on par with
findings in general domain LM on SQuAD.

5.4 Domain Transfer and Generalization
We examine how well a general- or domain- spe-
cific LM generalizes across domains related to the
model size. Gu et al. (2020) studied the effect of
“domain-specific” vs. “mixed-domain” pre-training,
i.e., pre-training on PubMed from scratch vs. pre-
training starting from a general domain LM (fine-
tuning). They found that pre-training on PubMed
from scratch is better for biomedical NLP bench-
marks, but we analyze its effect with further pre-
training (fine-tuning) steps. In other words, if start-

ing from a general domain LM, does sufficient fine-
tuning make it as good as a fully domain-specific
model? Can such model have any advantage for
cross-domain or cross-discipline generalization?

Benchmark Fine-tuning steps F1

N
E

R

BC5CDR-chem

103 steps 63.2
104 steps 74.3
105 steps 89.7
2 · 105 steps 89.37
3 · 105 steps 91.8
4 · 105 steps 92.1
5 · 105 steps 91.2

BC5CDR-disease

103 steps 39.4
104 steps 63.6
105 steps 79.8
2 · 105 steps 81.2
3 · 105 steps 79.2
4 · 105 steps 81.9
5 · 105 steps 81.8

R
E ChemProt

103 steps 0.00
104 steps 34.1
105 steps 63.4
2 · 105 steps 71.1
3 · 105 steps 70.4
4 · 105 steps 69.7
5 · 105 steps 68.3

Table 5: Comparison of fine-tuning steps for NER
and RE benchmark when pre-training general-domain
Megatron-1.2b model on PubMed. Cross-domain LMs
should be trained sufficiently long on domain text to
achieve comparable performance as LM pre-trained on
domain text only.

Table 5 shows F1-score evaluation on NER
and RE benchmarks using a general-domain
BioMegatron-1.2b with additional fine tuning. It
shows that even for a large LM that was pre-trained
on a large text corpus, it needs sufficient further pre-
training on domain text (PubMed). After sufficient
pre-training on domain text, it can be as good as
an LM pre-trained on domain-text only, except that
vocabulary has more significant effect on NER.

Model SAcc LAcc MRR
Megatron-345m (general LM) 38.5 52.6 43.7
Megatron-1.2b (general LM) 29.3 39.7 32.7

Table 6: Fine-tuning and evaluating on BioASQ-7b
using general domain LMs that was not trained on
PubMed corpus. Larger model does not perform bet-
ter.

Table 6 shows the results of general-domain LMs
fine-tuned on BioASQ-7b-factoid. Larger models
do not perform better, which may indicate overfit-
ting is occuring on the small training set.
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Model SQuAD-v1.1 SQuAD-v2.0
BioMegatron-345m 90.4 84.2
BioMegatron-345m-ft 86.5 77.9
BioMegatron-800m 91.6 86.1
BioMegatron-1.2b-ft 91.8 86.4
BERTLARGE 90.9 81.8
RoBERTa 94.6 89.4
Megatron-3.9b 95.8 91.2

Table 7: Fine-tuning on SQuAD -v1.1/-v2.0 using
BioMegatron and evaluating on F1-score on dev-set.
BioMegatron with ‘-ft’ are pre-trained from general do-
main checkpoints (fine-tuned). Results of other gen-
eral domain LMs are compared: RoBERTa (Liu et al.,
2019), Megatron-LM (Shoeybi et al., 2019).

Table 7 shows the generalization ability of
BioMegatron models on SQuAD datasets. Here, a
large biomedical LM pre-trained on large text cor-
pus performs better than smaller general domain
LMs such as BERTLARGE, even when pre-trained
on the biomedical text.

5.5 Other Domain-Specific Factors

Size and Bias in Biomedical Datasets Anno-
tating biomedical data requires in-depth domain
knowledge. Besides, data often have substantial la-
bel bias as the occurrences of “abnormal” or “find-
ings” are rare by nature. As a result, biomedical
benchmark data tend to be smaller and highly bi-
ased than their general domain counterparts.

Task Dataset # Samples Bias %

NER CONLL-2003 14987 0.18
BC5CDR 5235 0.08

CLS MRPC 3668 0.48
ChemProt 19461 0.27

QA SQuAD-v1.0 87599 0.4
BioASQ-7b 5537 0.02

Table 8: Label bias in general and biomedical bench-
mark dataset. CONLL-2003 (Sang and De Meulder,
2003), MRPC (Dolan et al., 2005), and SQuAD (Ra-
jpurkar et al., 2016) are general domain dataset for
NER, CLS (RE), and QA, respectively, for compar-
ison against biomedical domain dataset. Label bias
is computed as [sum of the #samples of minority
labels]/[#samples of majority label], for NER and
RE (CLS), and [#minimum repeat of the same an-
swer]/[#maximum repeat of the same answer] for QA.

Table 8 shows a comparison of benchmark
datasets for NER, RE (CLS), and QA in the biomed-
ical domain and their general-domain counterparts.
The SQuAD Q&A set is 15 times larger than the
BioASQ data, where the same question-answer

combinations appear up to 88 times in BioASQ.
Question-answer pairs are seldom repeated in
SQuAD data, at most twice. The BC5CDR NER
dataset is 1/3 size of CONLL-2003 and the ratio of
I/O to O tags 0.08, compared to 0.18 for CONLL.

Methods to circumvent data imbalance issues
such as oversampling the minority classes (Chawla
et al., 2002; Chen et al., 2010) and using weighted
cross-entropy gave minor effects on our NER and
RE benchmarks. Recently, Li et al. (2019) pro-
posed dice-loss for data-imbalance issues in NLP,
with SOTA results on NER and QA, which could be
a future avenue to explore for domain LMs. Trans-
fer learning showed effectiveness in the biomedical
QA task. However, it is somewhat unclear how to
apply it to NER and RE tasks.

Model PubMed Corpus #Words
BioBERT abstracts 4.5 billion
PubMedBERT abstracts + full-text 16.8 billion
BioMegatron abstracts + full-text-CC 6.1 billion

Table 9: Pre-training text corpus of each biomedical
LM. We pre-train on PubMed abstracts and full-text
commercial-collection (CC) that are free of copyrights.

Pre-training Corpus and Duration PubMed-
BERT is pre-trained on a much larger text corpus,
as shown in Table 9. It is a performant domain-LM
with a larger pre-training corpus and adequate do-
main vocabulary compared to its model size. We
pre-train our LMs for about one epoch, reaching a
masked-LM loss of about 1.2 (Devlin et al., 2018).
Further pre-training may be helpful, but it is chal-
lenging to have strictly controlled experiments with
many different settings.

6 Conclusion

We review and test several factors that can affect
the performance of domain language models. We
find that a language model targeted for a domain
and application performs best. For example, model
size is a secondary factor to vocabulary set for
token classification task. Larger model size does
not necessarily translate to better performance on a
cross-domain benchmark task.

This probably indicates that there is no master
model that can “do it all”, at least well enough as a
targeted one. The model size is a secondary factor;
larger model size can probably further improve
the performance of a a domain- and application-
specific language model.
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