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Abstract

When speakers describe an image, they tend to
look at objects before mentioning them. In this
paper, we investigate such sequential cross-
modal alignment by modelling the image de-
scription generation process computationally.
We take as our starting point a state-of-the-
art image captioning system and develop sev-
eral model variants that exploit information
from human gaze patterns recorded during lan-
guage production. In particular, we propose
the first approach to image description gener-
ation where visual processing is modelled se-
quentially. Our experiments and analyses con-
firm that better descriptions can be obtained by
exploiting gaze-driven attention and shed light
on human cognitive processes by comparing
different ways of aligning the gaze modality
with language production. We find that pro-
cessing gaze data sequentially leads to descrip-
tions that are better aligned to those produced
by speakers, more diverse, and more natural—
particularly when gaze is encoded with a dedi-
cated recurrent component.

1 Introduction

Describing an image requires the coordination of
different modalities. There is a long tradition of
cognitive studies showing that the interplay be-
tween language and vision is complex. On the one
hand, eye movements are influenced by the task at
hand, such as locating objects or verbally describ-
ing an image (Buswell, 1935; Yarbus, 1967). On
the other hand, visual information processing plays
a role in guiding linguistic production (e.g., Griffin,
2004; Gleitman et al., 2007). Such cross-modal co-
ordination unfolds sequentially in the specific task
of image description (Coco and Keller, 2012)—i.e.,
objects tend to be looked at before being mentioned.
Yet, the temporal alignment between the two modal-
ities is not straightforward (Griffin and Bock, 2000;
Vaidyanathan et al., 2015)

Figure 1: In our approach, an image captioning model
is fed with a sequence of masked images encoding the
gaze fixations of a single human speaker during lan-
guage production. This diagram is a toy illustration.

In this paper, we follow up on these findings
and investigate cross-modal alignment in image de-
scription by modelling the description generation
process computationally. We take a state-of-the-art
system for automatic image captioning (Anderson
et al., 2018) and develop several model variants that
exploit information derived from eye-tracking data.
To train these models, we use a relatively small
dataset of image descriptions in Dutch (DIDEC;
van Miltenburg et al., 2018) that includes informa-
tion on gaze patterns collected during language pro-
duction. We hypothesise that a system that encodes
gaze data as a proxy for human visual attention
will lead to better, more human-like descriptions.
In particular, we propose that training such a sys-
tem with eye-movements sequentially aligned with
utterances (see Figure 1) will produce descriptions
that reflect the complex coordination across modal-
ities observed in cognitive studies.

We develop a novel metric that measures the
level of semantic and sequential alignment between
descriptions and use it in two ways. First, we
analyse cross-modal coordination in the DIDEC
data, finding that the product of content and se-
quentiality better captures cross-modal correlations
than content alone. Second, we test whether our
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models generate captions that capture sequential
alignment. Our experiments show that exploiting
gaze-driven attention helps enhance image caption
generation, and that processing gaze patterns se-
quentially results in descriptions that are better
aligned with those produced by speakers, as well
as being more diverse—both in terms of variabil-
ity per image and overall vocabulary—particularly
when gaze is encoded with a dedicated recurrent
component that can better capture the complex-
ity of the temporal alignment across modalities.
Our data and code are publicly available at https:
//github.com/dmg-illc/didec-seq-gen.

Overall, this work presents the first computa-
tional model of image description generation where
both visual and linguistic processing are modelled
sequentially, and lends further support to cognitive
theories of sequential cross-modal coordination.

2 Related Work

Image captioning Various models have been
proposed to tackle the challenging task of gener-
ating a caption for a visual scene (Bernardi et al.,
2016). Contemporary approaches make use of deep
neural networks and encoder-decoder architectures
(Sutskever et al., 2014). In the influential model
by Vinyals et al. (2015), a Convolutional Neural
Network (CNN) is used to encode the input image
into a feature representation, which is then decoded
by a Long Short-Term Memory network (LSTM;
Hochreiter and Schmidhuber, 1997) that acts as a
generative language model. In recent years, there
have been many proposals to enhance this basic
architecture. For instance, via extracting features
from a lower layer of a CNN, Xu et al. (2015)
obtain representations for multiple regions of an
image over which attention can be applied by the
LSTM decoder. The ‘Bottom-up and Top-down At-
tention’ model by Anderson et al. (2018) further re-
fines this idea by extracting multiple image features
with the help of Faster R-CNN (Ren et al., 2015),
which results in the ability to focus on regions of
different sizes better aligned with the objects in
the image. Other models based on unsupervised
methods (e.g., Feng et al., 2019) and Generative
Adversarial Networks (Chen et al., 2019) have also
been proposed recently.

We take as our starting point the model by An-
derson et al. (2018) for two main reasons: first,
it is among the best-performing architectures on
standard image captioning benchmarks; second,

its underlying idea (i.e., bottom-up and top-down
attention) is explicitly inspired by human visual at-
tention mechanisms (Buschman and Miller, 2007),
which makes it suitable for investigating the impact
of adding human gaze information.

Eye tracking In computer vision, human eye
movements collected with eye-tracking methods
have been exploited to model what is salient in an
image or video for object detection (Papadopoulos
et al., 2014), image classification (Karessli et al.,
2017), image segmentation (Staudte et al., 2014),
region labelling (Vaidyanathan et al., 2015, 2018),
and action detection (Vasudevan et al., 2018). More
relevant for the present study, gaze has also been
used in automatic description generation tasks,
such as video frame captioning (Yu et al., 2017)
and image captioning (Sugano and Bulling, 2016;
Chen and Zhao, 2018; He et al., 2019). In all these
approaches, gaze data from different participants
is aggregated into a static saliency map to repre-
sent an abstract notion of saliency. This aggregated
gaze data is used as supervision to train models that
predict generic visual saliency.

In contrast, in our approach, we model the pro-
duction process of a single speaker by directly in-
putting information about where that speaker looks
at during description production, and compare this
to the aggregation approach. In addition, we ex-
ploit the sequential nature of gaze patterns, i.e., the
so-called scanpath, and contrast this with the use
of static saliency maps. Gaze scanpaths have been
used in NLP for diverse purposes: For example,
to aid part-of-speech tagging (Barrett et al., 2016)
and chunking (Klerke and Plank, 2019); to act as a
regulariser in sequence classification tasks (Barrett
et al., 2018); as well as for automatic word acquisi-
tion (Qu and Chai, 2008) and reference resolution
(Kennington et al., 2015). To our knowledge, the
present study is the first attempt to investigate se-
quential gaze information for the specific task of
image description generation.

3 Data

We utilise the Dutch Image Description and Eye-
Tracking Corpus (DIDEC; van Miltenburg et al.,
2018). In particular, we use the data collected as
part of the description-view task in DIDEC, where
participants utter a spoken description in Dutch
for each image they look at. The gaze of the par-
ticipants is recorded with an SMI RED 250 eye-
tracking device while they describe an image. Over-

https://github.com/dmg-illc/didec-seq-gen
https://github.com/dmg-illc/didec-seq-gen
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all, DIDEC consists of 4604 descriptions in Dutch
(15 descriptions per image on average) for 307 MS
COCO images (Lin et al., 2014). For each de-
scription, the audio, textual transcription, and the
corresponding eye-tracking data are provided.

3.1 Preprocessing

We tokenise the raw captions, lowercase them, and
exclude punctuation marks and information tokens
indicating, e.g., repetitions (<rep>). We then use
CMUSphinx1 to obtain the time intervals of each
word given an audio file and its transcription. See
Appendix A for more details.

Gaze data in DIDEC is classified into gaze events
such as fixations, saccades or blinks. We discard
saccades and blinks (since there is no visual input
during these events) and use only fixations that
fall within the actual image. We treat consecutive
occurrences of such fixations as belonging to the
same fixation window.

3.2 Saliency maps

Using the extracted fixation windows, we create
two types of saliency maps, aggregated and se-
quential, which indicate the prominence of certain
image regions as signalled by human gaze.

Aggregated saliency maps (per image) The ag-
gregated saliency map of an image is computed as
the combination of all participants’ gazes and repre-
sents what is generally prominent given the image
description task. To create it, we first compute the
saliency map of each participant who looked at the
given image. Following Coco and Keller (2015),
for each fixation window of the participant, we
create a Gaussian mask centered at the window’s
centroid with a standard deviation of 1◦ of visual
angle. Given the data collection setup of DIDEC,
this standard deviation corresponds to 44 pixels.
We sum up the masks weighted by relative fixation
durations and normalise the resulting mask to have
values in the range [0, 1]. Finally, we sum up and
normalise the maps of all relevant participants to
obtain the aggregated saliency map per image.

Sequential saliency maps (per image-participant
pair) A sequential saliency map consists of a se-
quence of saliency maps aligned with the words
in a description, and represents the scan pattern
of a given participant over the course of descrip-
tion production. Using the temporal intervals ex-

1https://cmusphinx.github.io/

tracted from the audio files, we align each word
with the image regions fixated by the participant
right before the word was uttered. For each word
wt—using the same method described above for
aggregated maps—we combine all the fixation win-
dows that took place between wt−1 and the onset
of wt and normalise them to obtain a word-level
saliency map.2 This way, we obtain a sequence of
saliency maps per participant description.

3.3 Masked images and image features
The saliency maps are used to keep visible only
the image regions that were highly attended by
participants and to mask the image areas that were
never or rarely looked at (see Figure 1). We create
each masked image by calculating the element-
wise multiplication between the corresponding 2D
saliency map and each RGB channel in the original
image. We then extract image features from the
masked images using ResNet-101 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009). We
take the output of the 2048-d average pooling layer
as the image features to give as input to our models.

4 Evaluation Measures

We propose a novel metric to quantify the degree
of both semantic and sequential alignment between
two sentences. In our study, this metric will be
leveraged in two ways: (1) to analyse cross-modal
coordination in the DIDEC data (Section 5) and
(2) to evaluate our generation models (Section 7).
For context, we first briefly review several existing
metrics for automatic image captioning.

Image Captioning metrics Image caption gen-
eration is evaluated by assessing some kind of sim-
ilarity between the generated caption and one or
more reference captions (i.e., those written by hu-
man annotators). One of the most commonly used
metrics is CIDEr (Vedantam et al., 2015), which
(a) computes the overlapping n-grams between
the generated caption and the entire set of refer-
ence sentences for a given image, and (b) down-
weighs n-grams that are frequent in the entire cor-
pus via tf-idf scores. Thus—regarding semantics
and sequentiality—CIDEr scores can be affected
by word order permutations, but not by the rel-
ative position of words in the entire caption nor

2For the first word, we combine all the fixation windows
that took place before its utterance. Some participants may
look at an image before uttering the first word to obtain its
gist (Oliva and Torralba, 2006). However, we do not encode
these differences in behaviour explicitly.

https://cmusphinx.github.io/
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by the presence of different but semantically sim-
ilar words. Other metrics such as BLEU (which
looks at n-gram precision; Papineni et al., 2002)
and ROUGE-L (which considers n-gram recall; Lin,
2004) suffer from comparable limitations.

METEOR (Banerjee and Lavie, 2005) and
SPICE (Anderson et al., 2016) also make use of
n-grams (or tuples in a scene’s graph, in the case of
SPICE) and take into account semantic similarity
by matching synonyms using WordNet (Pedersen
et al., 2004). This allows for some flexibility, but
can be too restrictive to grasp overall semantic sim-
ilarity. To address this, Kilickaya et al. (2017) pro-
posed using WMD, which builds on word2vec
embeddings (Mikolov et al., 2013); more recently,
several metrics capitalising on contextual embed-
dings (Devlin et al., 2019) were proposed, such
as BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019). However, these metrics
neglect the sequential alignment of sentences.3

SSD We propose Semantic and Sequential Dis-
tance (SSD), a metric which takes into account
both semantic similarity and the overall relative
order of words. Regarding the latter, SSD is re-
lated to Ordering-based Sequence Similarity (OSS;
Gómez-Alonso and Valls, 2008), a measure used
by Coco and Keller (2010) to compare sequences
of categories representing gaze patterns.4 Given
two sequences of words, i.e., a generated sentence
G and a reference sentence R, SSD provides a
single positive value representing the overall dis-
similarity between G and R: the closer the value
to 0, the higher the similarity between the two sen-
tences (note that the value is unbounded). This
single value is the average of two terms, gr and rg,
which quantify the overall distance between G and
R—the sum of their cosine (cos) and positional
(pos) distance—from G to R and from R to G,
respectively. The equation for gr is given below:

gr =
N∑
i=1

cos(Gi, Rs(i)) + pos(Gi, Rs(i)) (1)

where Rs(i) is the semantically closest element to
Gi in R, and cos in our experiments is computed
over word2vec embeddings trained on the 4B-
token corpus in Dutch, COW (Tulkens et al., 2016).

3Moreover, metrics based on contextual embeddings have
been shown to suffer with languages other than English.

4Despite its name, OSS is a distance measure. Note that it
accounts for relative position, but not for semantic similarity.

Figure 2: SSD. Computation of gr (Eq. 1). Sums below
each word in G stand for cos + pos, darker shades of
orange for higher cos distance. Value of gr is the sum
of numbers in red (here 3.76). Best viewed in color.

Figure 2 illustrates how the metric works in prac-
tice. Full details are in Appendix B. For simplicity,
the diagram only shows the computation in the gr
direction. For example, consider the second ele-
ment in G, ‘lovely’. Its closest embedding in R
is ‘nice’ (cos = 0.33). For each of these elements,
we retrieve their position index (i.e., 2 for ‘lovely’
in G and 6 for ‘nice’ in R), compute their posi-
tional distance, and normalise it by the length of
the longest sentence in the pair (here R), obtaining
|2− 6|/9 ≈ 0.44. We then sum up the cosine dis-
tance and the positional distance to obtain a score
for ‘lovely’: 0.33 + 0.44 = 0.77. To obtain the
overall gr value, we add up the scores for all words
in G. We compute rg in a similar manner and ob-
tain SSD as follows: SSD = (gr + rg)/2.

5 Cross-Modal Coordination Analysis

To empirically motivate our generation models, as a
preliminary experiment we investigate the level of
coordination between visual attention and linguistic
production in the DIDEC dataset. In particular,
we test whether scanpath similarity and sentence
similarity are correlated and whether taking into
account the sequential nature of the two modalities
results in higher cross-modal alignment.

We transform gaze data into time-ordered se-
quences of object labels, i.e., scanpaths, (e.g., S =
‘cat’, ‘person’, ‘cat’, ‘table’) using the annotations
of object bounding boxes in the MS COCO image
dataset. On average, scanpaths have a length of
23.4 object labels. As for captions, we simply take
the full sentences and treat them as sequences of
words (e.g., C = ‘a cute cat cuddled by a boy’).
Descriptions contain an average of 12.8 tokens.

Order-sensitive analysis (sequential) For each
image, we take the set of produced descriptions and
compute all pairwise similarities by using SSD (see
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Section 4). Similarly, we take the corresponding
scanpaths and compute all pairwise similarities by
using OSS (Gómez-Alonso and Valls, 2008). We
then calculate Spearman’s rank correlation (one-
tailed) between the two similarity lists. This way,
we obtain a correlation coefficient and p-value for
each of the 307 images in the dataset.

Bag of Words analysis (BoW) We compare the
correlation observed in the order-sensitive analy-
sis with a BoW approach. Here, we represent a
sentence as the average of the word2vec embed-
dings of the words it contains and a scanpath as a
term-frequency vector. We then perform the same
correlation analysis described above.

Random baseline (random) As a sanity check,
using the stricter order-sensitive measures, for each
image we re-compute the correlation between the
two lists of similarities after randomly shuffling the
sentences and corresponding scanpaths per image.
We repeat this analysis 3 times.

Results As shown in Table 1, the highest level of
alignment is observed in the sequential condition,
where a significant positive correlation between
scanpath and sentence similarities is found for 81
images out of 307 (26%). In BoW, the level of
alignment is weaker: a positive correlation is found
for 73 images (24%), with lower maximum cor-
relation coefficients (0.65 vs. 0.49). Substantially
weaker results can be seen in the random condition.
These outcomes are in line with those obtained
by Coco and Keller (2012) in a small dataset of
576 English sentences describing 24 images.

Overall, the results of the analysis indicate that
the product of content and sequentiality better cap-
tures the coordination across modalities compared
to content alone. Yet, the fact that positive correla-
tions are present for only 26% of the images sug-
gests that coordination across modalities is (not sur-
prisingly) more complex than what can be captured
by the present pairwise similarity computation, con-
firming the intricacy of the cross-modal temporal
alignment (Griffin and Bock, 2000; Vaidyanathan
et al., 2015). We take this aspect into account in
our proposed generation models.

6 Models

The starting point for our models is the one by
Anderson et al. (2018).5 The main aspect that dis-

5The original implementation of this model can be
found at: https://github.com/peteanderson80/

sequential BoW random

# positively corr. 81 73 52.3 ± 5.774
% positively corr. 0.26 0.24 0.17 ± 0.015
Spearman’s ρ (min) 0.15 0.15 0.15 ± 0.002
Spearman’s ρ (max) 0.65 0.49 0.50 ± 0.042

Table 1: Results of the correlation analysis: number
and percentage of images with statistically significant
(p<0.05) positive correlations and range of coefficients
in the three conditions. For random, avg. over 3 runs.

tinguishes this model from other image captioning
systems is the use of Faster R-CNN (Ren et al.,
2015) as image encoder, which identifies regions of
the image that correspond to objects and are there-
fore more salient—the authors refer to this type of
saliency detection as “bottom-up attention”. Each
object region i is transformed into an image feature
vector vi. The set of region vectors {v1, . . . , vk} is
utilised in two ways by two LSTM modules: The
first LSTM takes as input the mean-pooled image
feature v (i.e., the mean of all salient regions) at
each time step, concatenated with the two standard
elements of a language model, i.e., the previous
hidden state and an embedding of the latest gener-
ated word. The hidden state of this first LSTM is
then used by an attention mechanism to weight the
vectors in {v1, . . . , vk}—the authors refer to this
kind of attention as “top-down”. Finally, the result-
ing weighted average feature vector v̂t is given as
input to the second LSTM module, which gener-
ates the caption one word at a time. Note that the
set of region vectors {v1, . . . , vk} and the mean-
pooled vector v are constant over the generation
of a caption, while the weights over {v1, . . . , vk}
and hence the weighted average feature vector v̂t
do change dynamically at each time step since they
are influenced by the words generated so far.

We take the original model as our baseline and
modify it to integrate visual attention defined by
gaze behaviour. In particular, we replace the mean-
pooled vector v by a gaze vector g computed from
masked images representing fixation patterns as
explained in Section 3. We do not directly modify
the set of object regions {v1, . . . , vk} present in
the original model (i.e., bottom-up attention is still
present in our proposed models). However, the
top-down attention weights learned by the models

bottom-up-attention. We developed our models
building on the PyTorch re-implementation of the model
available at: https://github.com/poojahira/
image-captioning-bottom-up-top-down.

https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
https://github.com/peteanderson80/bottom-up-attention
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Figure 3: Architecture of the GAZE-SEQ and GAZE-2SEQ models. Dashed lines indicate that the connections to
and from the Gaze LSTM are only present in the GAZE-2SEQ model.

are influenced by the gaze patterns given as input.
Concretely, we test the following model conditions:

• NO-GAZE: The original model as described
above, with exactly the same image feature vec-
tors used by Anderson et al. (2018).

• GAZE-AGG: The mean-pooled vector v in the
original model is replaced with a gaze image
vector g computed on the image masked by the
aggregated gaze saliency map. As explained in
Section 3.2, this corresponds to the combination
of all participants’ fixations per image and hence
remains constant over the course of generation.

• GAZE-SEQ: As depicted in Figure 3, we re-
place v with gt, which are features computed for
the image that was masked by the participant-
specific sequential gaze saliency map at time t.
Hence, gt differs at each time step t. Building
on the results of the correlation analysis, this
sequential condition thus offers a model of the
production process of a speaker where visual
processing and language production are time-
aligned.

• GAZE-2SEQ: Cross-modal coordination pro-
cesses seem to go beyond simplistic content
and temporal alignment (Griffin and Bock,
2000; Vaidyanathan et al., 2015). To allow for
more flexibility, we add an extra gaze-dedicated
LSTM component (labelled ‘Gaze LSTM’ in
Figure 3), which processes the sequential gaze
vector gt and produces a hidden representation
hgt . This dynamic hidden representation goes
through a linear layer and then replaces v at each
time step t.

For the three GAZE models, we also considered
a version where v is concatenated with g or gt as
appropriate, rather than being replaced by the gaze
vectors. Since they did not bring in better results,

we do not discuss them further in the paper.

7 Experiments

We experiment with the proposed models using the
DIDEC dataset and report results per model type.

7.1 Setup

We randomly split the DIDEC dataset at the image
level, using 80% of the 307 images for training,
10% for validation, and 10% for testing. Further
details are available in Appendix C.

Pre-training Since DIDEC is a relatively small
dataset, we pre-train all our models using a trans-
lated version of train/val annotations of MS COCO
2017 version. We translated all the captions in the
training and validation sets of MS COCO from En-
glish to Dutch using the Google Cloud Translation
API.6 We exclude all images present in our DIDEC
validation and test sets from the training set of the
translated MS COCO. We randomly split the orig-
inal MS COCO validation set into validation and
test. The final translated dataset in Dutch used for
pre-training includes over 118k images for training,
and 2.5k images for validation and testing, respec-
tively, with an average of 5 captions per image.

Manual examination of a subset of translated
captions showed that they are of good quality over-
all. Indeed, pre-training the NO-GAZE model with
the translated corpus results in an improvement of
about 21 CIDEr points (from 40.81 to 61.50) in the
DIDEC validation set. Given that the MS COCO
dataset is comprised of written captions compared
to DIDEC, which includes spoken descriptions,
these two datasets can have distinct characteristics.
We expect the transfer learning approach to help
mitigate this by allowing our models to learn the

6https://cloud.google.com/translate/

https://cloud.google.com/translate/
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Model selected with SSD selected with CIDEr
SSD CIDEr BLEU-4 CIDEr SSD BLEU-4

NO-GAZE 5.86 (0.25) 55.04 (4.31) 39.09 (2.16) 52.45 (3.43) 6.09 (0.15) 35.60 (2.56)
GAZE-AGG 5.93 (0.10) 53.39 (3.56) 38.84 (1.70) 55.74 (3.74) 5.97 (0.12) 37.69 (1.71)
GAZE-SEQ 5.82 (0.03) 56.16 (1.62) 39.80 (1.24) 53.59 (2.03) 6.10 (0.14) 36.09 (3.01)
GAZE-2SEQ 5.81 (0.15) 53.55 (1.69) 38.05 (1.88) 52.94 (2.27) 5.93 (0.14) 36.27 (3.04)

Table 2: Test set results (average over 5 runs, with standard deviations in brackets) for the models selected with
SSD and with CIDEr. Scores for BLEU-4 and SSD/CIDEr when not used for model selection are shown for
reference only. For SSD, lower is better; for CIDEr and BLEU-4, higher is better.

features of spontaneous spoken descriptions during
the fine-tuning phase.

All results reported below were obtained with
pre-training (i.e., by initialising all models with
the weights learned by the NO-GAZE model on the
translated dataset and then fine-tuning on DIDEC).

Vocabulary and hyperparameters We use a vo-
cabulary of 21,634 tokens consisting of the union
of the entire DIDEC vocabulary and the translated
MS COCO training set vocabulary. For all model
types, we perform parameter search focusing on
the learning rate, batch size, word embedding di-
mensions and the type of optimiser. The reported
results refer to models trained with a learning rate
of 0.0001 optimising the Cross-Entropy Loss with
the Adam optimiser. The batch size is 64. The im-
age features have 2048 dimensions and the hidden
representations have 1024. The generations for the
validation set were obtained through beam search
with a beam width of 5. Best models were selected
via either SSD or CIDEr scores on the validation
set, with an early-stopping patience of 50 epochs.

More information regarding reproducibility can
be found in Appendix D.

7.2 Results

The results obtained with different models are
shown in Table 2. We report results on the test
set, averaging over 5 runs with different random
seeds. These scores are obtained with the best mod-
els selected on the validation set with either SSD
or CIDEr.7 For reference, we also include scores
for other metrics not used for model selection. This
allows us to check whether scores for other metrics
are reasonably good when the models are optimised
for a certain metric; however, only scores in the
shaded columns allow us to extract conclusions on
the relative performance of different model types.

7We use the library at https://github.com/
Maluuba/nlg-eval to obtain corpus-level BLEU and
CIDEr scores.

On average, the best GAZE models outperform
the NO-GAZE model: 5.81 vs. 5.86 for SSD (lower
is better) and 55.74 vs. 52.45 for CIDEr (higher
is better). This indicates that eye-tracking data en-
codes patterns of attention that can contribute to
the enhancement of image description generation.
Zooming into the different gaze-injected condi-
tions, we find that among the models selected with
SSD, the sequential models perform better than
GAZE-AGG (5.81 and 5.82 vs. 5.93). This shows
that the proposed models succeed (to some extent)
in capturing the sequential alignment across modal-
ities, and that such alignment can be exploited for
description generation. Interestingly, GAZE-2SEQ

is the best-performing gaze model: it has the best
average SSD across runs and the best absolute sin-
gle run (5.70 vs. 5.79 and 5.80 by GAZE-SEQ and
GAZE-AGG, respectively). This suggests that the
higher flexibility and abstraction provided by the
gaze-dedicated LSTM component offers a more
adequate model of the intricate ways in which the
two modalities are aligned.

As for the CIDEr-selected models, on average
the gaze-injected models also perform better than
NO-GAZE. The best results are obtained with GAZE-
AGG (55.74). This is consistent with what CIDEr
captures: it takes into account regularities across
different descriptions of a given image; therefore,
using a saliency map that combines the gaze pat-
terns of several participants leads to higher scores
than inputting sequential saliency maps, which
model the path of fixations of each speaker inde-
pendently. This variability seems to have a nega-
tive effect on CIDEr scores of sequential models,
which are lower than GAZE-AGG; yet higher than
NO-GAZE (53.59 and 52.94 vs. 52.45).

It is worth noting that CIDEr and BLEU-4 scores
obtained with the SSD-selected models are sensi-
ble, which indicates that the generated descriptions
do not suffer with respect to distinct aspects eval-
uated by other metrics when the models are opti-
mised with SSD. Indeed, the highest CIDEr score

https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval
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specificity disfluency compression repetition

NO-G een vrouw die in de keuken staat. . . een foto van een straat met een aantal vogels een rode bus en een bus een straat met auto’s en auto’s
(a woman who is standing in the kitchen. . . ) (a photo of a street with a number of birds) (a red bus and a bus) (a street with cars and cars)

2SEQ een vrouw in een keuken met donuts uh uh uh uh met een aantal vogels twee bussen die geparkeerd staan een straat in de stad met auto’s en auto’s
(a woman in the kitchen with donuts) (uh uh uh uh with some birds) (two buses that are parked) (a street in the city with cars and cars)

Figure 4: Phenomena that are either particular to gaze models (specificity, disfluency, and compression) or common
to all (repetition). Abbreviations NO-G and 2SEQ refer to NO-GAZE and GAZE-2SEQ, respectively.

obtained among models selected via SSD (GAZE-
SEQ: 56.16) is even higher than that obtained by
the best CIDEr-selected one (GAZE-AGG: 55.74).
However, this is likely due to CIDEr being sensi-
tive to lexical differences between the test set and
the validation set used for model selection, which
could lead to slightly different patterns.

8 Analysis

This section presents an analysis of the descriptions
generated by the models on the test set (446 descrip-
tions). We focus on one single run per model.

Cross-modal sequential alignment Given what
SSD captures, our results indicate that the captions
generated by GAZE-2SEQ are better aligned—in
terms of semantic content and order of words—
with the human captions than the ones generated
by non-sequential models. Arguably, this enhanced
alignment is driven by the specific information pro-
vided by the scanpath of each speaker. If this infor-
mation is used effectively by the sequential models,
then we should see more variation in their output.
By definition, the non-sequential models generate
only one single caption per image. Are the sequen-
tial models able to exploit the variation stemming
from the speaker-specific scanpaths? Indeed, we
find that GAZE-2SEQ generates an average of 4.4
different descriptions per image (i.e., 30% of the
generated captions per image are unique).

Furthermore, we conjecture that tighter coordi-
nation between scanpaths and corresponding de-
scriptions should give rise to more variation, since
presumably the scanpath has a stronger causal ef-
fect on the description in such cases. To test this,
we take the 30 images in the test set and divide
them into two groups: (A) images for which a
significant positive correlation was found in the
cross-modal coordination analysis of Section 5; (B)
all the others. These groups include, respectively,
10 and 20 images. As hypothesised, we observe a

higher percentage of unique captions per image in
A (35%) compared to B (27%).

Quantitative analysis We explore whether there
are any quantitative differences across models re-
garding two aspects, i.e., the average length in to-
kens of the captions, and the size of the vocabulary
produced. No striking differences are observed re-
garding caption length: NO-GAZE produces slightly
shorter captions (avg. 7.5) compared to both GAZE-
2SEQ (avg. 7.7) and GAZE-AGG (avg. 8.1). The
difference, however, is negligible. Indeed, it ap-
pears that equipping models with gaze data does
not make sentence length substantially closer to the
length of reference captions (avg. 12.3 tokens).

In contrast, there are more pronounced differ-
ences regarding vocabulary. While GAZE-AGG has
a similar vocabulary size (68 unique tokens pro-
duced) to NO-GAZE (63), GAZE-2SEQ is found to
almost double it, with 109 unique tokens produced.
Though this number is still far from the total size
of the reference vocabulary (813), this trend sug-
gests that a more diverse and perhaps ‘targeted’
language is encouraged when specific image re-
gions are identified through gaze-based attention.
The following qualitative analysis sheds some light
on this hypothesis.

Qualitative analysis Manual inspection of all
the captions generated by the models reveals inter-
esting qualitative differences. First, captions gen-
erated by gaze-injected models are more likely to
refer to objects—even when they are small and/or
in the background—which are image-specific and
thus very relevant for the caption. For example,
when describing the leftmost image in Fig. 4, NO-
GAZE does not mention the word donuts, which
is produced by both GAZE-AGG and GAZE-2SEQ.
Second, gaze-injected models produce language
that seems to reflect uncertainty present in the vi-
sual input. For the second image of Fig. 4, e.g.,
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both GAZE-AGG and GAZE-2SEQ generate disfluen-
cies such as uh (interestingly, several participants’
descriptions include similar disfluencies for this
same image, which suggests some degree of uncer-
tainty at the visual level); in contrast, in the entire
test set no disfluencies are produced by NO-GAZE.

Finally, we find that GAZE-2SEQ is able to pro-
duce captions that somehow ‘compress’ a repetitive
sequence (e.g., a red bus and a bus) into a shorter
one, embedding a number (e.g., two buses that are
parked; see third example in Fig. 4). This phe-
nomenon is never observed in the output of other
models (crucially, not even in GAZE-SEQ). We thus
conjecture that this ability is due to the presence
of the gaze-dedicated LSTM, which allows for a
more abstract processing of the visual input. How-
ever, the presence of gaze data does not fully solve
the issue of words being repeated within the same
caption, as illustrated by the rightmost example in
Fig. 4. Indeed, this weakness is common to all mod-
els, including the best performing GAZE-2SEQ.

9 Conclusions

We tackled the problem of automatically gener-
ating an image description from a novel perspec-
tive, by modelling the sequential visual processing
of a speaker concurrently with language produc-
tion. Our study shows that better descriptions—i.e.,
more aligned with speakers’ productions in terms
of content and order of words—can be obtained
by equipping models with human gaze data. More-
over, this trend is more pronounced when gaze data
is fed sequentially, in line with cognitive theories
of sequential cross-modal alignment (e.g., Coco
and Keller, 2012).

Our study was conducted using the Dutch lan-
guage dataset DIDEC (van Miltenburg et al., 2018),
which posed the additional challenges of dealing
with a small amount of data and a low resource
language. We believe, however, that there is value
in conducting research with languages other than
English. In the future, our approach and new
evaluation measure could be applied to larger eye-
tracking datasets, such as the English dataset by He
et al. (2019). Since different eye-tracking datasets
tend to make use of different gaze encodings and
formats, the amount of pre-processing and anal-
ysis steps required to apply our method to other
resources was beyond the scope of this paper. We
leave testing whether the reported pattern of results
holds across different languages to future work.

Despite the challenges mentioned above, our
experiments show that a state-of-art image caption-
ing model can be effectively extended to encode
cognitive information present in human gaze be-
haviour. Comparing different ways of aligning the
gaze modality with language production, as we
have done in the present work, can shed light on
how these processes unfold in human cognition.
This type of computational modelling could help,
for example, study the interaction between gaze
and the production of filler words and repetitions,
which we have not investigated in detail. Taken
together, our results open the door to further work
in this direction and support the case for computa-
tional approaches leveraging cognitive data.
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Appendices

A Audio-Caption Alignment

In this appendix, we provide details on the pipeline
used to time-align audio and descriptions. After
processing a transcribed caption, we insert it as
a grammar rule into a Java Speech Grammar For-
mat (JSGF) file to be fed into CMUSphinx. As
CMUSphinx supports English by default, we in-
corporated into the tool the phonetic and language
models and the dictionary for Dutch as provided
by the developers of CMUSphinx.8

Some words in our JSGF files were not in the
VoxForge Dutch phonetic dictionary of CMUS-
phinx, which lists lexical items and their corre-
sponding pronunciations in a format similar to
ARPABET, adapted for Dutch.9 To overcome this
problem, we used eSpeak10 to obtain the Interna-
tional Phonetic Alphabet (IPA) transcriptions of
such out-of-vocabulary words. We obtained the
set of IPA symbols existing in the transcriptions
of out-of-vocabulary words and the set of ARPA-
BET symbols in the dictionary. Then, a native
speaker of Dutch, who is also a linguist, manually
produced a mapping from these IPA symbols to

8https://sourceforge.net/projects/
cmusphinx/files/Acoustic%20and%
20Language%20Models/Dutch/

9http://www.speech.cs.cmu.edu/cgi-bin/
cmudict

10http://espeak.sourceforge.net/

dit is een treinstation waar ...

Figure 5: Temporal alignment of words in a transcribed
caption and the corresponding audio file.

ARPABET symbols of Dutch phonemes.11 Given
this mapping, we automatically converted out-of-
vocabulary tokens into the required format and ap-
pended to the dictionary. A similar approach was
also followed for numbers in numeric notation and
certain English words.

For some audio-caption pairs, the tool could
not find an alignment matching the grammar. We
turned off noise- and silence-removal and experi-
mented with parameters related to beam-decoding
in CMUSphinx to allow for a maximal number
of complete alignments. However, we had to ex-
clude some captions where there were unintelligi-
ble words in particular at the beginning or in the
middle of the audio, since such an issue disrupts
the alignment procedure.

Considering possible inter-participant differ-
ences in terms of pronunciation, the quality of au-
dio files, and possible noise in the background of
recordings, we assume that the time intervals of
the words we obtained after these pre-processing
steps are approximate indicators. Although there
might be a few cases where the alignment is not
quite accurate, we find this way of obtaining utter-
ance timestamps reliable in general. An example
audio-caption alignment is shown in Figure 5.

B SSD: Further Details

SSD is the average of two terms, gr and rg, which
quantify the overall distance between a generated
sentence (G) and a reference sentence (R). Eq. 2
(identical to Eq. 1 in Section 4) shows the calcula-
tion from G to R and Eq. 3 from R to G:

gr =

N∑
i=1

cos(Gi, Rs(i)) + pos(Gi, Rs(i)) (2)

rg =
M∑
j=1

cos(Rj, Gs(j)) + pos(Rj, Gs(j)) (3)

N and M refer to number of tokens in G and R,
respectively. Cosine and positional distances are

11The mapping from IPA symbols to ARPABET symbols
is provided in our GitHub repository.
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Type Description SSD gr rg

R een dubbeldekker bus 1.41 2.82 0.00
G een dubbeldekker bus in een stad

R een dubbeldekkerbus in uh in engeland 2.64 2.72 2.55
G een dubbeldekker bus in een stad

R een rustige straat met een bus tegemoetkomend naar <unk> nummer 43 5.87 4.31 7.43
G een dubbeldekker bus die op een weg rijdt

R een bus met lijn 43 die aan het rijden is waarvan uh de bus uit twee <unk> bestaat 8.62 0.43 16.81
G een dubbeldekker bus

Table 3: Examples of SSD scores for several descriptions generated (G) by GAZE-2SEQ compared to the reference
description (R). gr and rg indicate the direction of the calculation. Lower SSD scores are better.

computed between the ith element ofG and another
token, which is the most semantically similar word
to Gi in R. Rs(i) is the most semantically similar
word to Gi and Gs(j) is the most semantically
similar word to Rj :

Rs(i) = argmin
j

(cos(Gi, Rj)) (4)

Gs(j) = argmin
i

(cos(Rj, Gi)) (5)

Table 3 shows some example descriptions gener-
ated by the GAZE-2SEQ model and corresponding
references for a single image. We report the overall
SSD scores along with gr and rg values separately.

C Data Split Statistics

Table 4 lists the number of images belonging
to each split after we divide the DIDEC corpus
(description-view partition) with respect to the im-
ages. In addition, the total number of captions in
each split is provided.

train val test total

Images 247 30 30 307
Captions 3658 444 446 4548

Table 4: Number of images and captions.

The number of human descriptions per image varies
in DIDEC and as we also removed some captions
during preprocessing, images do not have an equal
number of captions. Therefore, we report the aver-
age number of captions per image for each split, as
well as their range, in Table 5.

train val test overall

Avg 14.81 14.80 14.87 14.81
Min 11 12 13 11
Max 16 16 16 16

Table 5: Number of captions per image.

D Reproducibility

We implemented and trained our models in Python
version 3.612 and PyTorch version 0.4.1.13 All
models were run on a computer cluster with De-
bian Linux OS. Each model used a single GPU
GeForce 1080Ti, 11GB GDDR5X, with NVIDIA
driver version: 418.56 and CUDA version: 10.1.

Pre-training with the translated MS COCO
dataset took approximately 5 days. NO-GAZE and
GAZE-AGG took around 1.5 hours and GAZE-SEQ

and GAZE-2SEQ models took 2 hours to fine-tune
over the pre-trained model.

Since the pre-trained model and the fine-tuned
NO-GAZE, GAZE-AGG and GAZE-SEQ models
use essentially the same architecture, they have an
equal number of parameters: 85 million. GAZE-
2SEQ has more parameters due to the addition of
the Gaze LSTM: 100 million.

In all the models, the biases in linear layers were
set to 0 and the weights were uniformly sampled
from the range (-0.1, 0.1). Embedding weights
were initialised uniformly in the range (-0.1, 0.1).
LSTM hidden states were initialised to 0.

Below we give details regarding the manually-
tuned hyperparameters.

D.1 Hyperparameters for Pre-Training
We experimented with learning rate (0.001,
0.0001), dimensions for the word embeddings and

12https://www.python.org/downloads/
release/python-360/

13https://pytorch.org/
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hidden representations (512, 1024) and batch size
(64, 128). The best pre-trained model is selected
based on its CIDEr score on the validation split of
our translated MS COCO dataset, with an early-
stopping patience of 20 epochs. We use a learning
rate of 0.0001 optimising the Cross-Entropy Loss
with the Adam optimiser. The batch size is 128.
The image features have 2048 dimensions and the
hidden representations 1024. The generations for
the validation set are obtained through beam search
with a beam width of 5.

D.2 Hyperparameters for Fine-tuning
We experimented with the same set of hyperpa-
rameters as in pre-training. The details of the hy-
perparameters for the selected models were given
in the main text. We select the models separately
based on CIDEr scores and SSD scores. We train
each model type with their selected configuration
with 5 different random seeds to set the random
behaviour of PyTorch and NumPy. We also turn
off the cuDNN benchmark and also set cuDNN to
deterministic.


