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Abstract

Transformer-based pre-training models like
BERT have achieved remarkable performance
in many natural language processing tasks.
However, these models are both computation
and memory expensive, hindering their deploy-
ment to resource-constrained devices. In this
work, we propose TernaryBERT, which ternar-
izes the weights in a fine-tuned BERT model.
Specifically, we use both approximation-based
and loss-aware ternarization methods and em-
pirically investigate the ternarization granular-
ity of different parts of BERT. Moreover, to re-
duce the accuracy degradation caused by the
lower capacity of low bits, we leverage the
knowledge distillation technique (Jiao et al.,
2019) in the training process. Experiments on
the GLUE benchmark and SQuAD show that
our proposed TernaryBERT outperforms the
other BERT quantization methods, and even
achieves comparable performance as the full-
precision model while being 14.9x smaller.

1 Introduction

Transformer-based models have shown great power
in various natural language processing (NLP) tasks.
Pre-trained with gigabytes of unsupervised data,
these models usually have hundreds of millions of
parameters. For instance, the BERT-base model has
109M parameters, with the model size of 400+MB
if represented in 32-bit floating-point format, which
is both computation and memory expensive during
inference. This poses great challenges for these
models to run on resource-constrained devices like
cellphones. To alleviate this problem, various meth-
ods are proposed to compress these models, like
using low-rank approximation (Ma et al., 2019; Lan
et al., 2020), weight-sharing (Dehghani et al., 2019;
Lan et al., 2020), knowledge distillation (Sanh
et al., 2019; Sun et al., 2019; Jiao et al., 2019),
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Figure 1: Model Size vs. MNLI-m Accuracy. Our pro-
posed method (red squares) outperforms other BERT
compression methods. Details are in Section 4.4.

pruning (Michel et al., 2019; Voita et al., 2019; Fan
et al., 2019), adaptive depth and/or width (Liu et al.,
2020; Hou et al., 2020), and quantization (Zafrir
et al., 2019; Shen et al., 2020; Fan et al., 2020).

Compared with other compression methods,
quantization compresses a neural network by us-
ing lower bits for weight values without changing
the model architecture, and is particularly useful
for carefully-designed network architectures like
Transformers. In addition to weight quantization,
further quantizing activations can speed up infer-
ence with target hardware by turning floating-point
operations into integer or bit operations. In (Prato
et al., 2019; Zafrir et al., 2019), 8-bit quantization is
successfully applied to Transformer-based models
with comparable performance as the full-precision
baseline. However, quantizing these models to ultra
low bits (e.g., 1 or 2 bits) can be much more chal-
lenging due to significant reduction in model capac-
ity. To avoid severe accuracy drop, more complex
quantization methods, like mixed-precision quan-
tization (Shen et al., 2020; Zadeh and Moshovos,
2020) and product quantization (PQ) (Fan et al.,
2020), are used. However, mixed-precision quan-
tization is unfriendly to some hardwares, and PQ
requires extra clustering operations.
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Besides quantization, knowledge distillation
(Hinton et al., 2015) which transfers knowledge
learned in the prediction layer of a cumbersome
teacher model to a smaller student model, is also
widely used to compress BERT (Sanh et al., 2019;
Sun et al., 2019; Jiao et al., 2019; Wang et al., 2020).
Instead of directly being used to compress BERT,
the distillation loss can also be used in combina-
tion with other compression methods (McCarley,
2019; Mao et al., 2020; Hou et al., 2020), to fully
leverage the knowledge of teacher model.

In this work, we propose TernaryBERT, whose
weights are restricted to {�1, 0,+1}. Instead of
directly using knowledge distillation to compress
a model, we use it to improve the performance of
ternarized student model with the same size as the
teacher model. In this way, we wish to transfer the
knowledge from the highly-accurate teacher model
to the ternarized student model with smaller capac-
ity, and to fully explore the compactness by com-
bining quantization and distillation. We investigate
the ternarization granularity of different parts of the
BERT model, and apply various distillation losses
to improve the performance of TernaryBERT. Fig-
ure 1 summarizes the accuracy versus model size
on MNLI, where our proposed method outperforms
other BERT compression methods. More empirical
results on the GLUE benchmark and SQuAD show
that our proposed TernaryBERT outperforms other
quantization methods, and even achieves compa-
rable performance as the full-precision baseline,
while being much smaller.

2 Related Work

2.1 Knowledge Distillation
Knowledge distillation is first proposed in (Hinton
et al., 2015) to transfer knowledge in the logits from
a large teacher model to a more compact student
model without sacrificing too much performance. It
has achieved remarkable performance in NLP (Kim
and Rush, 2016; Jiao et al., 2019) recently. Besides
the logits (Hinton et al., 2015), knowledge from the
intermediate representations (Romero et al., 2014;
Jiao et al., 2019) and attentions (Jiao et al., 2019;
Wang et al., 2020) are also used to guide the train-
ing of a smaller BERT.

Instead of directly being used for compression,
knowledge distillation can also be used in combi-
nation with other compression methods like prun-
ing (McCarley, 2019; Mao et al., 2020), low-rank
approximation (Mao et al., 2020) and dynamic

networks (Hou et al., 2020), to fully leverage
the knowledge of the teacher BERT model. Al-
though combining quantization and distillation has
been explored in convolutional neural networks
(CNNs) (Polino et al., 2018; Stock et al., 2020;
Kim et al., 2019), using knowledge distillation to
train quantized BERT has not been studied. Com-
pared with CNNs which simply perform convolu-
tion in each layer, the BERT model is more compli-
cated with each Transformer layer containing both
a Multi-Head Attention mechanism and a position-
wise Feed-forward Network. Thus the knowledge
that can be distilled in a BERT model is also much
richer (Jiao et al., 2019; Wang et al., 2020).

2.2 Quantization

Quantization has been extensively studied for
CNNs. Popular ultra-low bit weight quantization
methods for CNNs can be divided into two cate-
gories: approximation-based and loss-aware based.
Approximation-based quantization (Rastegari et al.,
2016; Li et al., 2016) aims at keeping the quantized
weights close to the full-precision weights, while
loss-aware based quantization (Hou et al., 2017;
Hou and Kwok, 2018; Leng et al., 2018) directly
optimizes for the quantized weights that minimize
the training loss.

On Transformer-based models, 8-bit fixed-
point quantization is successfully applied in fully-
quantized Transformer (Prato et al., 2019) and
Q8BERT (Zafrir et al., 2019). The use of lower bits
is also investigated in (Shen et al., 2020; Fan et al.,
2020; Zadeh and Moshovos, 2020). Specifically,
In Q-BERT (Shen et al., 2020) and GOBO (Zadeh
and Moshovos, 2020), mixed-precision with 3 or
more bits are used to avoid severe accuracy drop.
However, mixed-precision quantization can be un-
friendly to some hardwares. Fan et al. (2020)
propose Quant-Noise which quantizes a subset of
weights in each iteration to allow unbiased gradi-
ents to flow through the network. Despite the high
compression rate achieved, the quantization noise
rate needs to be tuned for good performance.

In this work, we extend both approximation-
based and loss-aware ternarization methods to dif-
ferent granularities for different parts of the BERT
model, i.e., word embedding and weights in Trans-
former layers. To avoid accuracy drop due to the
reduced capacity caused by ternarization, various
distillation losses are used to guide the training of
the ternary model.
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Figure 2: Depiction of the proposed distillation-aware ternarization of BERT model.

3 Approach

In this section, we elaborate on the method of using
knowledge distillation to train TernaryBERT, the
weights of which take values in {�1, 0,+1}.

Let the full-precision weight in the BERT model
be w, where w = vec(W) returns a vector by
stacking all the columns of weight matrix W.
The corresponding ternarized weight is denoted
as ŵ = Qw(w) where Qw is the weight ternariza-
tion function. The whole framework, which we call
Distillation-aware ternarization, is shown in Fig-
ure 2. Specifically, at the t-th training iteration, we
first ternarize the weights wt in the student BERT
model to ŵ

t. Then we do the forward pass with
the ternarized model. After that, the gradient of the
distillation loss w.r.t. the quantized weights @L

@ŵt

is computed. As is shown in (Courbariaux et al.,
2016; Hou and Kwok, 2018), it is important to keep
the full-precision weight during training. Hence,
we use the full-precision weight for parameter
update: w

t+1 = UpdateParameter(wt, @L
@ŵt , ⌘t),

where ⌘t is the learning rate at the t-th iteration.
In the following, we will first introduce what and

how to quantize in Section 3.1. Then in Section 3.2,
we introduce the distillation loss used to improve
the performance of the ternarized model.

3.1 Quantization
The BERT model (Devlin et al., 2019) is built
with Transformer layers (Vaswani et al., 2017). A
standard Transformer layer includes two main sub-
layers: Multi-Head Attention (MHA) module and
Feed-Forward Network (FFN).

For the l-th Transformer layer, suppose the input
to it is Hl 2 Rn⇥d where n and d are the sequence
length and hidden state size, respectively. Sup-

pose there are NH attention heads in each layer,
and head h is parameterized by W

Q
h ,W

K
h ,WV

h 2
Rd⇥dh where dh = d

NH
. After computing the at-

tention scores by dot product of queries and keys

Ah = QK
> = HlW

Q
h W

K>
h H

>
l , (1)

the softmax function is applied on the
normalized scores to get the output as
headh = Softmax( 1p

d
Ah)HlW

V
h . Denote

W
⇤ = [W⇤

1, · · · ,W⇤
NH

] where ⇤ can be Q,K, V .
The output of the multi-head attention is:

MHAWQ,WK ,WV ,WO(Hl)

= Concat(head1, · · · , headNH )W
O. (2)

The FFN layer composes two linear layers pa-
rameterized by W

1 2 Rd⇥dff ,b1 2 Rdff and
W

2 2 Rdff⇥d,b2 2 Rd respectively, where dff
is the number of neurons in the intermediate layer
of FFN. Denote the input to FFN as Xl 2 Rn⇥d,
the output is then computed as:

FFN(Xl) = GeLU(XlW
1 + b

1)W2 + b
2. (3)

Combining (2) and (3), the forward propagation for
the l-th Transformer layer can be written as

Xl = LN(Hl + MHA(Hl))

Hl+1 = LN(Xl + FFN(Xl)),

where LN is the layer normalization. The input to
the first transformer layer

H1 = EMBWE ,WS ,WP (z) (4)

is the combination of the token embedding, seg-
ment embedding and position embedding. Here z
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is the input sequence, and W
E ,WS ,WP are the

learnable word embedding, segment embedding
and position embedding, respectively.

For weight quantization, following (Shen et al.,
2020; Zafrir et al., 2019), we quantize the weights
W

Q,WK ,WV ,WO,W1,W2 in (2) and (3)
from all Transformer layers, as well as the word em-
bedding W

E in (4). Besides these weights, we also
quantize the inputs of all linear layers and matrix
multiplication operations in the forward propaga-
tion. We do not quantize WS ,WP , and the bias in
linear layers because the parameters involved are
negligible. Following (Zafrir et al., 2019), we also
do not quantize the softmax operation, layer nor-
malization and the last task-specific layer because
the parameters contained in these operations are
negligible and quantizing them can bring signifi-
cant accuracy degradation.

Weight Ternarization. In the following, we dis-
cuss the choice of the weight ternarization function
Qw in Figure 2.

Weight ternarization is pioneered in ternary-
connect (Lin et al., 2016) where the ternarized val-
ues can take {�1, 0, 1} represented by 2 bits. By
ternarization, most of the floating-point multiplica-
tions in the forward pass are turned into floating-
point additions, which greatly reduces computation
and memory. Later, by adding a scaling parameter,
better results are obtained in (Li et al., 2016). Thus
in this work, to ternarize the weights of BERT, we
use both approximation-based ternarization method
TWN (Li et al., 2016) and loss-aware ternarization
LAT (Hou and Kwok, 2018), where the ternary
weight ŵ can be represented by the multiplication
of a scaling parameter ↵ > 0 and a ternary vec-
tor b 2 {�1, 0,+1}n as ŵ = ↵b. Here n is the
number of elements in ŵ.

In the t-th training iteration, TWN ternarizes
the weights by minimizing the distance between
the full-precision weight wt and ternarized weight
ŵ

t = ↵t
b
t with following optimization prob-

lem (Li et al., 2016)

min
↵t,bt

kwt � ↵t
b
tk22

s.t. ↵t > 0,bt 2 {�1, 0, 1}n. (5)

Let I�(x) be a thresholding function that
[I�(x)]i = 1 if xi >�, �1 if xi < ��, and 0
otherwise, where � is a positive threshold. Let
� be element-wise multiplication, the optimal
solution of (5) satisfies (Hou and Kwok, 2018):

b
t = I�t(wt) and ↵t = kbt�wtk1

kbtk1 , where

�t=argmax
�>0

1

kI�(wt)k1

0

@
X

i:|[wt]i|>�

|[wt]i|

1

A
2

.

The exact solution of �t requires an expensive
sorting operation (Hou et al., 2017). Thus in (Li
et al., 2016), TWN approximates the threshold with
�t = 0.7kwtk1

n .
Unlike TWN, LAT directly searches for the

ternary weights that minimize the training loss L.
The ternary weights are obtained by solving the
optimization problem:

min
↵,b

L(↵b)

s.t. ↵ > 0,b 2 {�1, 0, 1}n. (6)

For a vector x, let
p
x be the element-wise square

root, Diag(x) returns a diagonal matrix with x

on the diagonal, and kxk2Q=x
>Qx. Problem (6)

can be reformulated as solving the following sub-
problem at the t-th iteration (Hou and Kwok, 2018)

min
↵t,bt

kwt � ↵t
b
tk2Diag(

p
vt)

s.t. ↵t > 0,bt 2 {�1, 0, 1}n, (7)

where v
t is a diagonal approximation of the Hes-

sian of L readily available as the second moment
of gradient in adaptive learning rate optimizers
like Adam (Kingma and Ba, 2015). Empirically,
we use the second moment in BertAdam1, which
is a variant of Adam by fixing the weight de-
cay (Loshchilov and Hutter, 2019) and removing
the bias compensation (Kingma and Ba, 2015). For
(7), both an expensive exact solution based on sort-
ing operation, and an efficient approximate solution
based on alternative optimization are provided in
(Hou and Kwok, 2018). In this paper, we use the
more efficient approximate solution.

In the original paper of TWN and LAT, one scal-
ing parameter is used for each convolutional or
fully-connected layer. In this work, we extend them
to the following two granularities: (i) layer-wise
ternarization which uses one scaling parameter
for all elements in each weight matrix; and (ii)
row-wise ternarization which uses one scaling
parameter for each row in a weight matrix. With
more scaling parameters, row-wise ternarization
has finer granularity and smaller quantization error.

1https://github.com/huggingface/
transformers/blob/v0.6.2/pytorch_
pretrained_bert/optimization.py



513

Figure 3: Distribution of the 1st and 6th Transformer
layer’s hidden representation of the full-precision
BERT trained on SQuAD v1.1.

Activation Quantization. To make the most ex-
pensive matrix multiplication operation faster, fol-
lowing (Shen et al., 2020; Zafrir et al., 2019), we
also quantize the activations (i.e., inputs of all linear
layers and matrix multiplication) to 8 bits. There
are two kinds of commonly used 8-bit quantization
methods: symmetric and min-max 8-bit quantiza-
tion. The quantized values of the symmetric 8-bit
quantization distribute symmetrically in both sides
of 0, while those of min-max 8-bit quantization
distribute uniformly in a range determined by the
minimum and maximum values.

We find that the distribution of hidden representa-
tions of the Transformer layers in BERT is skewed
towards the negative values (Figure 3). This bias is
more obvious for early layers (Appendix A). Thus
we use min-max 8-bit quantization for activations
as it gives finer resolution for non-symmetric dis-
tributions. Empirically, we also find that min-max
8-bit quantization outperforms symmetric quanti-
zation (Details are in Section 4.3).

Specifically, for one element x in the activation
x, denote xmax = max(x) and xmin = min(x),
the min-max 8-bit quantization function is

Qa(x) = round((x� xmin)/s)⇥ s+ xmin,

where s = (xmax � xmin)/255, is the scaling pa-
rameter. We use the straight-through estimator in
(Courbariaux et al., 2016) to back propagate the
gradients through the quantized activations.

3.2 Distillation-aware Ternarization

The quantized BERT uses low bits to represent
the model parameters and activations. Therefore
it results in relatively low capacity and worse per-
formance compared with the full-precision coun-
terpart. To alleviate this problem, we incorpo-
rate the technique of knowledge distillation to im-
prove performance of the quantized BERT. In this
teacher-student knowledge distillation framework,
the quantized BERT acts as the student model,

and learns to recover the behaviours of the full-
precision teacher model over the Transformer lay-
ers and prediction layer.

Specifically, inspired by Jiao et al. (2019), the
distillation objective for the Transformer layers
Ltrm consists of two parts. The first part is the dis-
tillation loss which distills knowledge in the embed-
ding layer and the outputs of all Transformer layers
of the full-precision teacher model to the quantized
student model, by the mean squared error (MSE)
loss:

PL+1
l=1 MSE(HS

l ,H
T
l ). The second part is

the distillation loss that distills knowledge from the
teacher model’s attention scores from all heads AT

l
in each Transformer layer to the student model’s at-
tention scores AS

l as
PL

l=1 MSE(AS
l ,A

T
l ). Thus

the distillation for the Transformer layers Ltrm is
formulated as:

Ltrm=
L+1X

l=1

MSE(HS
l ,H

T
l )+

LX

l=1

MSE(AS
l ,A

T
l ).

Besides the Transformer layers, we also distill
knowledge in the prediction layer which makes the
student model’s logits PS learn to fit PT from the
teacher model by the soft cross-entropy (SCE) loss:

Lpred = SCE(PS ,PT ).

The overall objective of knowledge distillation in
the training process of TernaryBERT is thus

L = Ltrm + Lpred. (8)

We use the full-precision BERT fine-tuned on the
downstream task to initialize our quantized model,
and the data augmentation method in (Jiao et al.,
2019) to boost the performance. The whole proce-
dure, which will be called Distillation-aware ternar-
ization, is shown in Algorithm 1.

4 Experiments

In this section, we evaluate the efficacy of the
proposed TernaryBERT on both the GLUE bench-
mark (Wang et al., 2018) and SQuAD (Rajpurkar
et al., 2016, 2018). The experimental code is modi-
fied from the huggingface transformer library.2 We
use both TWN and LAT to ternarize the weights.
We use layer-wise ternarization for weights in
Transformer layers while row-wise ternarization

2Given the superior performance of Huawei Ascend AI
Processor and MindSpore computing framework, we are going
to open source the code based on MindSpore (https://
www.mindspore.cn/en) soon.
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Table 1: Development set results of quantized BERT and TinyBERT on the GLUE benchmark. We abbreviate the
number of bits for weights of Transformer layers, word embedding and activations as “W-E-A (#bits)”.

W-E-A
(#bits)

Size
(MB)

MNLI-
m/mm QQP QNLI SST-2 CoLA STS-B MRPC RTE

BERT 32-32-32 418 (⇥1) 84.5/84.9 87.5/90.9 92.0 93.1 58.1 89.8/89.4 90.6/86.5 71.1
TinyBERT 32-32-32 258 (⇥1.6) 84.5/84.5 88.0/91.1 91.1 93.0 54.1 89.8/89.6 91.0/87.3 71.8

2-bit

Q-BERT 2-8-8 43 (⇥9.7) 76.6/77.0 - - 84.6 - - - -
Q2BERT 2-8-8 43 (⇥9.7) 47.2/47.3 67.0/75.9 61.3 80.6 0 4.4/4.7 81.2/68.4 52.7
TernaryBERTTWN (ours) 2-2-8 28 (⇥14.9) 83.3/83.3 86.7/90.1 91.1 92.8 55.7 87.9/87.7 91.2/87.5 72.9
TernaryBERTLAT (ours) 2-2-8 28 (⇥14.9) 83.5/83.4 86.6/90.1 91.5 92.5 54.3 87.9/87.6 91.1/87.0 72.2
TernaryTinyBERTTWN (ours) 2-2-8 18 (⇥23.2) 83.4/83.8 87.2/90.5 89.9 93.0 53.0 86.9/86.5 91.5/88.0 71.8

8-bit

Q-BERT 8-8-8 106 (⇥3.9) 83.9/83.8 - - 92.9 - - - -
Q8BERT 8-8-8 106 (⇥3.9) -/- 88.0/- 90.6 92.2 58.5 89.0/- 89.6/- 68.8
8-bit BERT (ours) 8-8-8 106 (⇥3.9) 84.2/84.7 87.1/90.5 91.8 93.7 60.6 89.7/89.3 90.8/87.3 71.8
8-bit TinyBERT (ours) 8-8-8 65 (⇥6.4) 84.4/84.6 87.9/91.0 91.0 93.3 54.7 90.0/89.4 91.2/87.5 72.2

Table 2: Test set results of the proposed quantized BERT and TinyBERT on the GLUE benchmark.
W-E-A
(#bits)

Size
(MB)

MNLI
(-m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE score

BERT 32-32-32 418 (⇥1) 84.3/83.4 71.8/89.6 90.5 93.4 52.0 86.7/85.2 87.6/82.6 69.7 78.2
TernaryBERTTWN 2-2-32 28 (⇥14.9) 83.1/82.5 71.0/88.6 90.2 93.4 50.1 84.7/83.1 86.9/81.7 68.9 77.3
TernaryBERTTWN 2-2-8 28 (⇥14.9) 83.0/82.2 70.4/88.4 90.0 92.9 47.8 84.3/82.7 87.5/82.6 68.4 76.9
TernaryTinyBERTTWN 2-2-8 18 (⇥23.2) 83.8/82.7 71.0/88.8 89.2 92.8 48.1 81.9/80.3 86.9/82.2 68.6 76.6
8-bit BERT 8-8-8 106 (⇥3.9) 84.2/83.5 71.6/89.3 90.5 93.1 51.6 86.3/85.0 87.3/83.1 68.9 77.9
8-bit TinyBERT 8-8-8 65 (⇥6.4) 84.2/83.2 71.5/89.0 90.4 93.0 50.7 84.8/83.4 87.4/82.8 69.7 77.7

Algorithm 1 Distillation-aware ternarization.
initialize: A fixed teacher model and a trainable
student model using a fine-tuned BERT model.
input: (Augmented) training data set.
output: TernaryBERT ŵ.

1: for t = 1, ..., Ttrain do
2: Get next mini-batch of data;
3: Ternarize w

t in student model to ŵ
t;

4: Compute distillation loss L in (8);
5: Backward propagation of the student model

and compute the gradients @L
@ŵt ;

6: w
t+1 = UpdateParameter(wt, @L

@ŵt , ⌘t);
7: ⌘t+1 = UpdateLearningRate(⌘t, t).
8: end for

for the word embedding, because empirically finer
granularity to word embedding improves perfor-
mance (Details are in Section 4.3).

We compare our proposed method with Q-
BERT (Shen et al., 2020) and Q8BERT (Zafrir
et al., 2019) using their reported results. We also
compare with a weight-ternarized BERT baseline
Q2BERT by modifying the min-max 8-bit quanti-
zation to min-max ternarization using the released
code of Q8BERT.3 For more direct comparison,
we also evaluate the proposed method under the
same 8-bit quantization settings as Q-BERT and

3https://github.com/NervanaSystems/
nlp-architect.git

Q8BERT. When the weights are quantized to 8-
bit, we use layer-wise scaling for both the weights
in Transformer layers and the word embedding as
8-bit quantization already has high resolution.

4.1 GLUE benchmark
Setup. The GLUE benchmark is a collection of
diverse natural language understanding tasks, in-
cluding textual entailment (RTE), natural language
inference (MNLI, QNLI), similarity and paraphrase
(MRPC, QQP, STS-B), sentiment analysis (SST-2)
and linguistic acceptability (CoLA). For MNLI,
we experiment on both the matched (MNLI-m)
and mismatched (MNLI-mm) sections. The perfor-
mance metrics are Matthews correlation for CoLA,
F1/accuracy for MRPC and QQP, Spearman corre-
lation for STS-B, and accuracy for the other tasks.

The batch size is 16 for CoLA and 32 for the
other tasks. The learning rate starts from 2⇥ 10�5

and decays linearly to 0 during 1 epoch if trained
with the augmented data while 3 epochs if trained
with the original data. The maximum sequence
length is 64 for single-sentence tasks CoLA and
SST-2, and 128 for the rest sentence-pair tasks.
The dropout rate for hidden representations and the
attention probabilities is 0.1. Since data augmenta-
tion does not improve the performance of STS-B,
MNLI, and QQP, it is not used on these three tasks.

Results on BERT and TinyBERT. Table 1
shows the development set results on the GLUE
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benchmark. From Table 1, we find that: 1)
For ultra-low 2-bit weight, there is a big gap be-
tween the Q-BERT (or Q2BERT) and full-precision
BERT due to the dramatic reduction in model ca-
pacity. TernaryBERT significantly outperforms
Q-BERT and Q2BERT, even with fewer number
of bits for word embedding. Meanwhile, Tern-
eryBERT achieves comparable performance with
the full-precision baseline with 14.9⇥ smaller size.
2) When the number of bits for weight increases
to 8, the performance of all quantized models is
greatly improved and is even comparable as the
full-precision baseline, which indicates that the
setting ‘8-8-8’ is not challenging for BERT. Our
proposed method outperforms Q-BERT on both
MNLI and SST-2 and outperforms Q8BERT in 7
out of 8 tasks. 3) TWN and LAT achieve similar
results on all tasks, showing that both ternarization
methods are competitive.

In Table 1, we also apply our proposed quanti-
zation method on a 6-layer TinyBERT (Jiao et al.,
2019) with hidden size of 768, which is trained us-
ing distillation. As can be seen, the quantized 8-bit
TinyBERT and TernaryTinyBERT achieve compa-
rable performance as the full-precision baseline.

Test set results are summarized in Table 2.
The proposed TernaryBERT or TernaryTinyBERT
achieves comparable scores as the full-precision
baseline. Specially, the TernaryTinyBERT has only
1.6 point accuracy drop while being 23.2x smaller.

4.2 SQuAD
Setup. SQuAD v1.1 is a machine reading com-
prehension task. Given a question-passage pair,
the task is to extract the answer span from the pas-
sage. SQuAD v2.0 is an updated version where the
question might be unanswerable. The performance
metrics are EM (exact match) and F1.

The learning rate decays from 2⇥ 10�5 linearly
to 0 during 3 epochs. The batch size is 16, and
the maximum sequence length is 384. The dropout
rate for the hidden representations and attention
probabilities is 0.1. Since Ltrm is several magni-
tudes larger than Lpred in this task, we separate the
distillation-aware quantization into two stages, i.e.,
first using Ltrm as the objective and then L in (8).

Results. Table 3 shows the results on SQuAD
v1.1 and v2.0. TernaryBERT significantly outper-
forms Q-BERT and Q2BERT, and is even compa-
rable as the full-precision baseline. For this task,
LAT performs slightly better than TWN.

Table 3: Development set results on SQuAD.
W/E/A
(#bits)

Size
(MB)

SQuAD
v1.1

SQuAD
v2.0

BERT 32-32-32 418 81.5/88.7 74.5/77.7
Q-BERT 2-8-8 43 69.7/79.6 -
Q2BERT 2-8-8 43 - 50.1/50.1
TernaryBERTTWN 2-2-8 28 79.9/87.4 73.1/76.4
TernaryBERTLAT 2-2-8 28 80.1/87.5 73.3/76.6

4.3 Ablation Study

In this section, we perform ablation study on quan-
tization, knowledge distillation, initialization, and
data augmentation.

Weight Ternarization Granularity. We evalu-
ate the effects of different granularities (i.e., row-
wise and layer-wise ternarization in Section 3.1)
of TWN on the word embedding and weights in
Transformer layers. The results are summarized in
Table 4. There is a gain of using row-wise ternariza-
tion over layer-wise ternarization for word embed-
ding. We speculate this is because word embedding
requires finer granularity as each word contains dif-
ferent semantic information. For weights in the
Transformer layers, layer-wise ternarization per-
forms slightly better than row-wise quantization.
We speculate this is due to high redundancy in the
weight matrices, and using one scaling parameter
per matrix already recovers most of the representa-
tion power of Transformer layers. Appendix E
shows that the attention maps of TernaryBERT
(with layer-wise ternarization for weights in Trans-
former layers) resemble the full-precision BERT.
Thus empirically, we use row-wise ternarization
for word embedding and layer-wise ternarization
for weights in the Transformer layers.

Table 4: Development set results of TernaryBERTTWN
with different ternarization granularities on weights in
Transformer layers and word embedding.

Embedding Weights MNLI-m MNLI-mm
layer-wise layer-wise 83.0 83.0
layer-wise row-wise 82.9 82.9
row-wise layer-wise 83.3 83.3
row-wise row-wise 83.2 82.9

Activation Quantization. For activations, we
experiment on both symmetric and min-max 8-bit
quantization with SQuAD v1.1 in Table 5. The
weights are ternarized using TWN. As can be seen,
the performance of min-max quantization outper-
forms the symmetric quantization. As discussed in
Section 3.1, this may because of the non-symmetric
distributions of the hidden representation.
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Table 5: Comparison of symmetric 8-bit and min-max
8-bit activation quantization methods on SQuAD v1.1.

W(#bit) E(#bit) A(#bit) EM F1
2 2 8 (sym) 79.0 86.9
2 2 8 (min-max) 79.9 87.4

Knowledge Distillation. In Table 6, we inves-
tigate the effect of distillation loss over Trans-
former layers (abbreviated as “Trm”) and final out-
put logits (abbreviated as “logits”) in the training
of TernaryBERTTWN. As can be seen, without dis-
tillation over the Transformer layers, the perfor-
mance drops by 3% or more on CoLA and RTE,
and also slightly on MNLI. The accuracy of all
tasks further decreases if distillation logits is also
not used. In particular, the accuracy for CoLA, RTE
and SQuAD v1.1 drops by over 5% by removing
the distillation compared to the counterpart.

Table 6: Effects of knowledge distillation on the Trans-
former layers and logits on TernaryBERTTWN. “-Trm-
logits” means we use cross-entropy loss w.r.t. the
ground-truth labels as the training objective.

MNLI-m/mm CoLA RTE SQuADv1.1
TernaryBERT 83.3/83.3 55.7 72.9 79.9/87.4

-Trm 82.9/83.3 52.7 69.0 76.6/84.9
-Trm-logits 80.8/81.1 45.4 56.3 74.3/83.2

Initialization and Data Augmentation. Table 7
demonstrates the effect of initialization from a fine-
tuned BERT otherwise a pre-trained BERT, and the
use of data augmentation in training TernaryBERT.
As can be seen, both factors contribute positively
to the performance and the improvements are more
obvious on CoLA and RTE.

Table 7: Effects of data augmentation and initialization.
CoLA MRPC RTE

TernaryBERT 55.7 91.2/87.5 72.9
-Data augmentation 50.7 91.0/87.5 68.2
-Initialization 46.0 91.0/87.2 66.4

4.4 Comparison with Other Methods
In Figure 1 and Table 8, we compare the proposed
TernaryBERT with (i) Other Quantization Methods:
including mixed-precision Q-BERT (Shen et al.,
2020), post-training quantization GOBO (Zadeh
and Moshovos, 2020), as well as Quant-Noise
which uses product quantization (Fan et al., 2020);
and (ii) Other Compression Methods: including
weight-sharing method ALBERT (Lan et al., 2019),
pruning method LayerDrop (Fan et al., 2019), dis-
tillation methods DistilBERT and TinyBERT (Sanh
et al., 2019; Jiao et al., 2019). The result of Distil-
BERT is taken from (Jiao et al., 2019). The results

for the other methods are taken from their original
paper. To compare with the other mixed-precision
methods which use 3-bit weights, we also extend
the proposed method to allow 3 bits (the corre-
sponding model abbreviated as 3-bit BERT, and
3-bit TinyBERT) by replacing LAT with 3-bit Loss-
aware Quantization (LAQ) (Hou and Kwok, 2018).
The red markers in Figure 1 are our results with
settings 1) 2-2-8 TernaryTinyBERT, 2) 3-3-8 3-bit
TinyBERT and 3) 3-3-8 3-bit BERT.

Table 8: Comparison between the proposed method
and other compression methods on MNLI-m. Note that
Quant-Noise uses Product Quantization (PQ) and does
not have specific number of bits for each value.

Method W-E-A
(#bits)

Size
(MB)

Accuracy
(%)

DistilBERT 32-32-32 250 81.6
TinyBERT-4L 32-32-32 55 82.8
ALBERT-E64 32-32-32 38 80.8
ALBERT-E128 32-32-32 45 81.6
ALBERT-E256 32-32-32 62 81.5
ALBERT-E768 32-32-32 120 82.0
LayerDrop-6L 32-32-32 328 82.9
LayerDrop-3L 32-32-32 224 78.6
Quant-Noise PQ 38 83.6
Q-BERT 2/4-8-8 53 83.5
Q-BERT 2/3-8-8 46 81.8
Q-BERT 2-8-8 28 76.6
GOBO 3-4-32 43 83.7
GOBO 2-2-32 28 71.0
3-bit BERT (ours) 3-3-8 41 84.2
3-bit TinyBERT (ours) 3-3-8 25 83.7
TernaryBERT (ours) 2-2-8 28 83.5
TernaryTinyBERT (ours) 2-2-8 18 83.4

Other Quantization Methods. In mixed preci-
sion Q-BERT, weights in Transformer layers with
steeper curvature are quantized to 3-bit, otherwise
2-bit, while word embedding is quantized to 8-bit.
From Table 8, our proposed method achieves bet-
ter performance than mixed-precision Q-BERT on
MNLI, using only 2 bits for both the word em-
bedding and the weights in the Transformer layers.
Similar observations are also made on SST-2 and
SQuAD v1.1 (Appendix B).

In GOBO, activations are not quantized. From
Table 8, even with quantized activations, our pro-
posed TernaryBERT outperforms GOBO with 2-bit
weights and is even comparable to GOBO with 3/4
bit mixed-precision weights.

Other Compression Methods. From Table 8,
compared to other popular BERT compression
methods other than quantization, the proposed
method achieves similar or better performance,
while being much smaller.
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5 Conclusion

In this paper, we proposed to use approximation-
based and loss-aware ternarization to ternarize the
weights in the BERT model, with different gran-
ularities for word embedding and weights in the
Transformer layers. Distillation is also used to re-
duce the accuracy drop caused by lower capacity
due to quantization. Empirical experiments show
that the proposed TernaryBERT outperforms state-
of-the-art BERT quantization methods and even
performs comparably as the full-precision BERT.
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APPENDIX

A Distributions of Hidden
Representations on SQuAD v1.1

Figure 4 shows the distribution of hidden repre-
sentations from the embedding layer and all Trans-
former layers on SQuAD v1.1. As can be seen, the
hidden representations of early layers (e.g. embed-
ding and transformer layers 1-8) are biased towards
negative values while those of the rest layers are
not.

Figure 4: Distribution of Transformer layer’s hidden
representation of a full-precision BERT trained on
SQuAD v1.1.

B More Comparison between
TernaryBERT and Q-BERT

We compare with reported results of Q-BERT on
SST-2 and SQuAD v1.1 in Table 9. Similar to the
observations for MNLI in Section 4.4, our proposed
method achieves better performance than mixed-
precision Q-BERT on SST-2 and SQuAD v1.1.

Table 9: Comparison between TernaryBERT and
mixed-precision Q-BERT.

W-E-A
(#bits)

Size
(MB) SST-2 SQuAD

v1.1
BERT 32-32-32 418 93.1 81.5/88.7
Q-BERT 2/3-8-8 46 92.1 79.3/87.0
TernaryBERTTWN 2-2-8 28 92.8 79.9/87.4

C Training Curve on MNLI

Figure 5 shows the training loss and validation ac-
curacy of TernaryBERT and 8-bit BERT on MNLI-
m. As can be seen, 8-bit BERT has smaller loss and
higher accuracy than TernaryBERT. There is no sig-
nificant difference between the learning curve of
TernaryBERT using TWN and LAT.

Figure 5: Learning curve of TernaryBERT and 8-bit
BERT on MNLI-m.

D 3-bit BERT and TinyBERT

In Table 10, we extend the proposed method
to allow 3 bits by replacing LAT with 3-bit
Loss-aware Quantization (LAQ). Compared with
TernaryBERTLAT, 3-bit BERT performs lightly bet-
ter on 7 out of 8 GLUE tasks, and the accuracy gap
with the full-precision baseline is also smaller.

E Attention Pattern of BERT and
TernaryBERT

In Figures 6-9, we compare the attention patterns
of the fine-tuned full-precision BERT-base model
and the ternarized TernaryBERTTWN on CoLA and
SST-2. CoLA is a task which predicts the grammat-
ical acceptability of a given sentence, and SST-2
is a task of classifying the polarity of movie re-
views. As can be seen, the attention patterns of
TernaryBERT resemble those in the full-precision
BERT.
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Table 10: Development set results of 3-bit quantized BERT and TinyBERT on GLUE benchmark.

W-E-A
(#bits)

Size
(MB)

MNLI-
m/mm QQP QNLI SST-2 CoLA MRPC STS-B RTE

TernaryBERTLAT 2-2-8 28 (⇥14.9) 83.5/83.4 86.6/90.1 91.5 92.5 54.3 91.1/87.0 87.9/87.6 72.2
3-bit BERT 3-3-8 41 (⇥10.2) 84.2/84.7 86.9/90.4 92.0 92.8 54.4 91.3/87.5 88.6/88.3 70.8
3-bit TinyBERT 3-3-8 25 (⇥16.7) 83.7/84.0 87.2/90.5 90.7 93.0 53.4 91.2/87.3 86.1/85.9 72.6

(a) Full-precision BERT. (b) TernaryBERT.

Figure 6: Attention patterns of full-precision and ternary BERT trained on CoLA. The input sentence is “The more
pictures of him that appear in the news, the more embarrassed John becomes.”

(a) Full-precision BERT. (b) TernaryBERT.

Figure 7: Attention patterns of full-precision and ternary BERT trained on CoLA. The input sentence is “Who does
John visit Sally because he likes?”
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(a) Full-precision BERT. (b) TernaryBERT.

Figure 8: Attention patterns of full-precision and ternary BERT trained on SST-2. The input sentence is “this
movie is maddening.”

(a) Full-precision BERT. (b) TernaryBERT.

Figure 9: Attention patterns of full-precision and ternary BERT trained on SST-2. The input sentence is “old-form
moviemaking at its best.”


