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Abstract

We propose an efficient batching strategy for
variable-length decoding on GPU architec-
tures. During decoding, when candidates ter-
minate or are pruned according to heuristics,
our streaming approach periodically “refills”
the batch before proceeding with a selected
subset of candidates. We apply our method to
variable-width beam search on a state-of-the-
art machine translation model. Our method
decreases runtime by up to 71% compared to
a fixed-width beam search baseline and 17%
compared to a variable-width baseline, while
matching baselines’ BLEU. Finally, experi-
ments show that our method can speed up de-
coding in other domains, such as semantic and
syntactic parsing.

1 Introduction

While inference is often cheap compared to training
in modern neural models, one may need to run in-
ference frequently or continually. Such is the case
for online machine translation (MT) services: as far
back as 2016, Google Translate already translated
100 billion words daily (Turovsky, 2016). Large-
scale inference is also required for methods such
as iterative backtranslation and knowledge distilla-
tion to generate training data (Hoang et al., 2018;
Kim and Rush, 2016). For such high-throughput
applications, it is useful to decrease inference cost.

Meanwhile, we must preserve accuracy: beam
search is slower than greedy decoding, but is nev-
ertheless often preferred in MT. Not only is beam
search usually more accurate than greedy search,
but it also outputs a diverse set of decodings, en-
abling reranking approaches to further improve ac-
curacy (Yee et al., 2019; Ng et al., 2019; Charniak
and Johnson, 2005; Ge and Mooney, 2006).

However, it is challenging to optimize the per-
formance of beam search for modern neural ar-
chitectures. Unlike classical methods in sparse
computation settings, modern neural methods typi-

cally operate in dense (batched) settings to leverage
specialized hardware such as GPUs.

In this work, we propose a streaming method
to optimize GPU-batched variable-output-length
decoding. Our method does not use a fixed batch
during inference; instead, it continually “refills”
the batch after it finishes translating some fraction
of the current batch. Our method then continues
decoding on the remaining candidates in the batch,
prioritizing those least expanded.

We apply our method to variable-width beam
search. For variable-output-length decoding even
in batched settings, variable-width beam search
often modestly decreases accuracy in exchange
for substantial speedups over fixed-width beam
search (Freitag and Al-Onaizan, 2017; Wu et al.,
2016). When decoding with Fairseq’s state-of-
the-art WMT’19 model (Ng et al., 2019), our
method further improves over the speed of base-
line variable-width beam search: up to 16.5% on
a 32GB V100 GPU, without changing BLEU (Pa-
pineni et al., 2002). Our approach also improves
decoding efficiency in lightweight models for se-
mantic and syntactic parsing.1 In principle, our
method can be applied to any task which sequen-
tially processes variable-length data.

2 Background: Beam Search

Given encoder E and decoder D, our task is to
convert inputs {x1 . . . xN} into corresponding out-
puts {ȳ1 . . . ȳN}, for data size N . For example,
in machine translation, each xi is a source sen-
tence consisting of a sequence of tokens and each
ȳi is a translation. We assume D(ei, yi) receives
ei = E(xi) and a partial yi as input, constructing
ȳi one token at a time.

One method of constructing ȳi for a given xi is
greedy search. Let ylti be the in-construction candi-
date with length lt = t at timestep t. We initialize

1Code available at https://github.com/
yangkevin2/emnlp2020-stream-beam-mt.

https://github.com/yangkevin2/emnlp2020-stream-beam-mt
https://github.com/yangkevin2/emnlp2020-stream-beam-mt


4527

Figure 1: Illustration of our method VAR-STREAM for variable-width beam search with vocabulary size |V| = 3,
beam width k = 2, batch size n = 3, refill threshold ε = 1

3 . Each color corresponds to the beam for a single input.
The rounded rectangles at each timestep are beams H(Blt

i ), while the shapes inside are individual candidates.
Shaded beams represent the end of the search. The right-facing triangles indicate the initial candidate containing
just the start token wsos, circles denote an active (non-terminated) candidate, and stars denote a finalized candidate.
Candidates become finalized after following the third (bottom-most) branch in an expansion, corresponding to the
end token weos; they then undergo only no-op expansions thereafter. The first two rows of beams depict normal
operation of variable-width beam search, including heuristic pruning in the light blue beam at t = 6. The third row
shows an important detail of our method: VAR-STREAM refills the batch after t = 3, when only εn beams remain,
and the remaining purple beam halts computation until the two newly added beams reach the same lt. (This detail
matters in transformer architectures; see Appendix A.2.)

y1i as the start token wsos, and at each timestep
t obtain ylt+1

i by concatenating the maximum-
probability token. We finalize ylti as ȳi once we
append the end token, or at some maximum length.

Previous work has found that greedy search of-
ten underperforms beam search in accuracy, and
gains from non-greedy decoding have also been ob-
served in many classical models (Sutskever et al.,
2014; Freitag and Al-Onaizan, 2017; Wilt et al.,
2010). See the dark blue, green, and brown beams
in Figure 1 for normal operation of fixed-width
beam search using beam width k = 2. For each
input xi, fixed-width beam search tracks a length-
lt, width-k beam Blt

i for each time t. Blt
i contains

k length-lt candidates ylti1 . . . y
lt
ik with maximum

log-likelihood in order, denoted by the shapes in-
side the rounded rectangles (beams) in the figure.
At each step, beam search considers all k|V| pos-
sible candidate expansions (one-token extensions
of existing candidates), where V is the vocabulary.
The top k expansions become the expanded beam
Blt+1

i . Figure 1 shows these expansions at each

timestep for |V| = 3, with active non-terminated
candidates (circles) becoming finalized (stars) after
following the bottom-most branch, corresponding
to the end token weos. In the end, beam search
yields k finalized candidates ȳi1 . . . ȳik compared
to a single ȳi in greedy search.

Variable-width beam search reduces the compu-
tational cost of the above fixed-width beam search
by pruning the full beam Blt

i using heuristics H,
for example at t = 6 for the light blue beam in
the figure. The width of the resulting pruned beam
H(Blt

i ) is no longer always exactly equal to k, and
may vary over time.

3 Streaming Variable-Length Decoding

As an example, consider translating a batch of n
German sentences into English via a traditionally-
batched variable-width beam search (e.g., Freitag
and Al-Onaizan (2017)) on a GPU. Henceforth we
refer to this baseline as VAR-BATCH.

An inefficiency results from decoding being in-
herently variable in length: After t steps, we may
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have completed m < n translations, but the last
n−m beams may take several more timesteps. For
example, in Figure 1, our initial batch consists of
the dark blue, brown, and purple beams. After the
dark blue and brown beams terminate, we would
still be stuck decoding the purple beam by itself.

The resulting GPU underutilization motivates
our streaming approach VAR-STREAM applied to
variable-width beam search (Figure 1). For batch
size n, VAR-STREAM initially proceeds identi-
cally to VAR-BATCH. But when the number of
remaining beams drops below εn for some constant
ε ∈ (0, 1), VAR-STREAM encodes a new batch of
inputs x to “refill” its batch to size n.2 This occurs
at t = 4 in Figure 1, where we refill the batch using
the green and light blue beams.

Note the active beams are no longer of equal
length lt = t for every beam after refilling. At each
subsequent t, VAR-STREAM only expands beams
H(Blt

i ) with minimal lt; in particular, the purple
beam in Figure 1 pauses computation at t = 4.3

When decoding with state-of-the-art transformer
architectures for MT, it is advantageous to expand
only beams with minimal lt at each step, because
self-attention causes steps at higher lt to be more
expensive; see Appendix A.2. (For RNN-based
architectures, it may be faster to expand all active
beams at each step.)

We emphasize that VAR-STREAM is an imple-
mentation optimization, exactly matching the out-
put of VAR-BATCH. Full details in Algorithm 1.

When the memory bottleneck is partially the de-
coding process itself rather than caching the input
encodings E(xi) or beamsH(Blt

i ), VAR-STREAM

can cache additional encodings and beams on GPU.
At each t, VAR-STREAM then selects beams up to
some limit on total beam width, filling GPU ca-
pacity even in the case of variable-width beams.
This batching constraint addresses a second ineffi-
ciency in GPU utilization: the widths of the pruned
beamsH(Blt

i ) may vary over time. We exploit this
in semantic (Sec. 4.2) and syntactic parsing (Sec.
4.3).

4 Experiments

We apply VAR-STREAM to variable-width beam
search in machine translation, semantic parsing,

2Our method is relatively insensitive to ε (Appendix A.3).
3As very long translations could get “stuck” in the batch,

one can periodically finish computation on all remaining
beams in the batch if latency is a concern in addition to
throughput.

Algorithm 1 VAR-STREAM

Input: inputs X = {x1, . . . xN}, model (E ,D),
batch size n, refill threshold ε, beam width k, prun-
ing heuristicsH

1: procedure DECODE(X, E ,D, n, ε, k,H)
2: # initialize encodings, beams, final outputs
3: E,B, Y = [ ], [ ], [ ]
4: # initialize index counter
5: c = 1
6: while c ≤ N or |B| > 0 do
7: if c ≤ N and |B| ≤ εn then
8: # refill batch by m = n(1− ε)
9: E = E + [E(xc) . . . E(xc+m−1)]

10: B = B + [wsos]×m
11: Y = Y + [ ]×m
12: c = c+m

13: Select Es ∈ E,Bs ∈ B with min lt
14: for (ei,H(Blt

i )) ∈ (Es,Bs) do
15: for yltij ∈ H(Blt

i ) do
16: Compute expansion D(ei, y

lt
ij)

17: UpdateH(Blt
i ) toH(Blt+1

i )
18: Add finalized candidates to Y [i]

19: Remove terminated beams from E,B
20: return Y

and syntactic parsing. We use the absolute thresh-
old and max candidates heuristics of Freitag and Al-
Onaizan (2017) asH, modifying only the heuristic
hyperparameters for each domain based on a devel-
opment set. The absolute threshold heuristic prunes
candidates yltij whose log-probabilities fall short of
the best candidate ylti1’s by some threshold δ, i.e.
logP (yltij) < logP (ylti1)− δ. The max candidates
heuristic prevents the search from selecting more
than M < k length-lt + 1 candidates originating
from the same length-lt candidate at each step t.

In each domain we compare four methods:

1. GREEDY, a greedy search,

2. FIXED, a fixed-width beam search,

3. VAR-BATCH, a batched variable-width beam
search, and

4. VAR-STREAM, our streaming method.

We sort and bucket inputs by length for batching.

4.1 Machine Translation
We evaluate on the transformer architecture imple-
mented in Fairseq (Ott et al., 2019), which scored
highest on several tracks of WMT’19 (Barrault
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Method BLEU Wall Clock (s)

De-En GREEDY 48.18 39.01 ± 0.14
k=50 FIXED 49.57 891.53 ± 0.77
32GB VAR-BATCH 49.59* 308.15 ± 3.48

VAR-STREAM 49.59* 257.20 ± 0.54

Method BLEU Wall Clock (s)

Ru-En GREEDY 37.84 42.09 ± 1.33
k=50 FIXED 38.98 893.23 ± 1.23
32GB VAR-BATCH 39.04* 399.98 ± 1.25

VAR-STREAM 39.04* 342.18 ± 1.28

Method BLEU Wall Clock (s)

De-En GREEDY 48.18 46.41 ± 0.23
k=5 FIXED 49.42 102.25 ± 0.58

32GB VAR-BATCH 49.46* 114.18 ± 0.17
VAR-STREAM 49.46* 92.39 ± 1.05

Method BLEU Wall Clock (s)

Ru-En GREEDY 37.84 42.09 ± 1.33
k=5 FIXED 38.83 103.59 ± 0.34

32GB VAR-BATCH 39.03* 130.01 ± 2.33
VAR-STREAM 39.03* 95.45 ± 0.21

Method BLEU Wall Clock (s)

De-En GREEDY 48.18 46.41 ± 0.23
k=50 FIXED 49.57 2072.86 ± 23.18
16GB VAR-BATCH 49.59* 645.70 ± 17.49

VAR-STREAM 49.59* 606.17 ± 4.96

Method BLEU Wall Clock (s)

Ru-En GREEDY 37.84 52.26 ± 0.50
k=50 FIXED 38.98 2155.95 ± 58.47
16GB VAR-BATCH 39.04* 852.93 ± 9.11

VAR-STREAM 39.04* 803.72 ± 15.94

Table 1: Top-1 BLEU and wall clock times for machine
translation. Our method VAR-STREAM is substantially
faster than VAR-BATCH (14-17% for k = 50 on 32GB,
19-27% for k = 5 on 32GB, 6% for k = 50 on 16GB)
and FIXED (62-71% for k = 50, 8-10% for k = 5),
while preserving high BLEU. *Our rules for finalizing
candidates during decoding differ slightly from Fairseq,
resulting in equal or higher BLEU for VAR-BATCH and
VAR-STREAM compared to FIXED. Adapting our im-
plementation to fixed-width beam search is slower but
yields higher BLEU (Appendix A.1).4

et al., 2019). For our main experiments, we run
German-English and Russian-English translation
on newstest2018 using an ensemble of 5 models
with k = 50, matching the setup of Ng et al. (2019)

but without reranking. As smaller beam sizes are
also common in practice, we evaluate with k = 5
as well. Our GREEDY and FIXED baselines are
Fairseq’s implementation, while VAR-BATCH and
VAR-STREAM are our own. For all methods, we
evaluate 5 runs on a 32GB V100 GPU. For k = 50,
we also run on a 16GB V100 GPU, noting that
32GB is likely more realistic in a production setting.
We choose batch size to saturate the GPU, using
ε = 1

6 for VAR-STREAM, with pruning heuristics
δ = 1.5,M = 5. Appendix A.3 details hyperpa-
rameter choices.

As shown in Table 1, on both GPU settings and
on both languages, GREEDY is fastest, but suf-
fers heavily in BLEU. Our VAR-STREAM is the
fastest beam-based search, and matches the BLEU
of the beam search baselines. Compared to VAR-
BATCH, VAR-STREAM is faster by 14-17% when
using k = 50 on the 32GB GPU, and by 19-27%
when k = 5. VAR-STREAM also remains 6% faster
when using k = 50 on the 16GB GPU where over-
head is higher. VAR-BATCH and VAR-STREAM

match the BLEU of FIXED while being 2-3 times
faster when using beam size 50, confirming the
speedups from VAR-BATCH over FIXED in e.g.,
Freitag and Al-Onaizan (2017). FIXED is more
competitive when k = 5 because the potential for
heuristic beam pruning is much more limited; more-
over, our implementations of VAR-STREAM and
VAR-BATCH somewhat understate both speedups
and BLEU cost compared to FIXED due to an im-
plementation difference with Fairseq (Appendix
A.1).4 Thus VAR-BATCH becomes slower than
FIXED when k = 5. Nevertheless, VAR-STREAM

remains the fastest in this scenario by 8-10%.

4.2 Semantic Parsing

To explore our method’s domain applicability,
we experiment with semantic parsing using the
seq2seq model of Dong and Lapata (2016). This
lightweight model is no longer state of the art,
but its decoding is representative of more recent
architectures (Suhr et al., 2018; Yin and Neu-
big, 2018; Lin et al., 2019). We use the ATIS
flight-booking dataset (Dahl et al., 1994), setting
n = k = δ = 10,M = 3. Due to the small dataset
and model, our batching constraint is more theoret-
ical: we constrain each method to expand at most

4Essentially, we allow finalized candidates to fall off the
beam if we find enough other higher-likelihood candidates.
See e.g., the star at t = 7 in the light blue beam in Figure 1.
Fairseq does not allow this.
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Semantic Parsing (ATIS) Syntactic Parsing (Penn Treebank)

Method F1 Oracle Time (s) Exp. / Step F1 Oracle Time (s) Exp. / Step
GREEDY 86.4 86.4 1.4 ± 0.0 46.5 91.3 91.3 22.3 ± 0.2 86.7
FIXED 86.6 91.2 7.7 ± 0.1 48.0 91.2 94.0 224.2 ± 2.1 97.1
VAR-BATCH 86.6 90.2 8.2 ± 0.2 16.9 91.2 93.8 235.6 ± 1.8 48.2
VAR-STREAM 86.6 90.2 6.3 ± 0.1 72.1 91.2 93.8 220.5 ± 2.5 95.7

Table 2: Top-1 and oracle reranking F1, wall clock (avg. 5 runs), and average candidate expansions per timestep
(i.e., total candidate expansions divided by total decoding timesteps) for semantic parsing on ATIS and syntac-
tic parsing on the Penn Treebank (PTB). Theoretical maximum efficiency under our batching constraint is 100
expansions per step for both tasks. VAR-STREAM achieves substantially higher expansions per step than other
methods on ATIS. On PTB, FIXED achieves near-perfect efficiency because all ȳij for a given xi have the same
length. But comparing variable-width beam searches, VAR-STREAM is much more efficient with batch capacity
than VAR-BATCH.

nk = 100 candidates per timestep (i.e., total beam
width), instead of simply saturating the GPU.5

As shown by the expansions per step in Table 2,
VAR-STREAM uses the batch capacity of 100 most
efficiently. Thus VAR-STREAM is faster than both
VAR-BATCH and FIXED, despite overhead which is
exacerbated in a small model. The speedup is larger
on the JOBS and GEO datasets (Zettlemoyer and
Collins, 2012) (Appendix A.4). While all methods
achieve similar top-1 F1, oracle F1 (using an oracle
to “rerank” all outputs ȳij) highlights the benefit of
producing a diverse set of translations.

4.3 Syntactic Parsing

We also experiment with the lightweight shift-
reduce constituency parser of Cross and Huang
(2016) on the Penn Treebank (Marcus et al., 1993).
This task and model differ from our previous setups
in that for a given input xi, all valid parses ȳij have
exactly the same length. When inputs are bucketed
by length, this removes the variable-output-length
inefficiency for traditional batching: we cannot get
stuck finishing a small fraction of beams when the
rest of the batch is done. Thus, this task isolates the
effect of VAR-STREAM using batch capacity more
efficiently in the case of variable-width beams. We
use the same computational constraint as in seman-
tic parsing, with n = k = 10, δ = 2.5,M = 3.

As all ȳij have equal length for a given xi,
FIXED already achieves near-perfect efficiency in
expansions per step (Table 2). Combined with
the impact of overhead in this older (smaller)
model, VAR-STREAM is not substantially faster
than FIXED in this setting. However, when compar-

5Due to caching additional encodings and beams, VAR-
STREAM uses more GPU memory in this idealized setting.

ing variable-width beam searches where efficient
batching is more difficult, we observe that VAR-
STREAM doubles VAR-BATCH in expansions per
step.

5 Discussion

In this work, we have proposed a streaming method
for variable-length decoding to improve GPU uti-
lization, resulting in cheaper inference. Applied
to a state-of-the-art machine translation model,
our method yields substantial speed improvements
compared to traditionally-batched variable-width
beam search. We also apply our method to both
semantic and syntactic parsing, demonstrating our
method’s broader applicability to tasks that process
variable-output-length data in a sequential manner.
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A Appendices

A.1 Implementation Differences Compared
to Fairseq

In our main machine translation experiments, the
FIXED baseline is Fairseq’s implementation. Run-
ning our own beam search implementation—the
basis of VAR-BATCH and VAR-STREAM—with a
fixed beam width differs from Fairseq’s implemen-
tation as follows. In our implementation, hence-
forth FIXED-OURS, terminated candidates ylt0ij

with i > 1 are kept on the beam, added to our
list of final outputs only if they become the top
candidate ylt1i1 in the beam at a subsequent step t1.
Fairseq instead immediately adds ylt0ij to the list of

final outputs at time t0. The difference is that ylt0ij

may be removed from the beam at time t > t0 if we
later find multiple terminated candidates originat-
ing from a higher-probability beam y

lt0
ij′ for j′ < j,

e.g. between t = 7 and t = 8 in the light blue
beam in Figure 1.

FIXED-OURS is slower than Fairseq’s implemen-
tation. However, while the two implementations
achieve more similar BLEU on the development set,
FIXED-OURS achieves higher BLEU on the test set
(49.75 vs 49.57 on De-En and 39.19 vs 38.98 on
Ru-En). See Table 3 for De-En experiment details.

For completeness, we also present results in Ta-
ble 3 for FIXED-STREAM, our streaming imple-
mentation adapted to fixed-size beam search on
newstest2018 on the 32GB Nvidia V100, with
k = 50 as in the FIXED baseline. We keep the
ε = 1

6 hyperparameter. FIXED-STREAM is signif-
icantly faster than FIXED-OURS, demonstrating
that our streaming method can also speed up fixed-

Method BLEU Wall Clock (s)
FIXED-FAIRSEQ 49.57 891.53 ± 0.77
FIXED-OURS 49.75 1280.59 ± 5.34
FIXED-STREAM 49.75 1004.18 ± 6.82

Table 3: De-En translation experiments test set (new-
stest2018) on 32GB Nvidia V100 using different im-
plementations of fixed-size beam search. FIXED-
FAIRSEQ is the FIXED baseline in the main paper,
while FIXED-OURS is our implementation of fixed-size
beam search. FIXED-STREAM is a streaming imple-
mentation with ε = 1

6 ; FIXED-OURS corresponds to
ε = 0. FIXED-STREAM improves over FIXED-OURS
in wall clock, but is still slower than FIXED-FAIRSEQ,
although it achieves higher BLEU.

size beam search. However, FIXED-STREAM is
slower than Fairseq’s implementation, although it
outperforms Fairseq. It is possible that our imple-
mentation is less optimized, but we do not formally
claim this.

A.2 Alternative Method Analysis
We briefly analyze an alternative streaming method
to our proposed VAR-STREAM, which we label
VAR-STR-FIFO. At each decoding timestep t, in-
stead of selecting only the beams with minimal lt as
in VAR-STREAM, VAR-STR-FIFO selects beams
up to its batch capacity starting with the beam of
maximal lt. In Figure 1, this corresponds to not
pausing computation for the purple beam. This is
intuitively appealing and has potential advantages:
as shown in Table 5, unlike VAR-STREAM which
uses slightly more timesteps than VAR-BATCH due
to using a slightly smaller effective batch size, VAR-
STR-FIFO significantly reduces the number of
timesteps required for decoding in the De-En trans-
lation task. Yet VAR-STR-FIFO is significantly
slower than both VAR-STREAM and VAR-BATCH.
This is due to Fairseq’s architecture, a transformer
reliant on decoder self-attention, causing decoding
timesteps with longer lt to be more expensive (Fig-
ure 2). VAR-STR-FIFO suffers because it must
pad all selected beams’ lengths up to the maximum
lt among those selected.

The difference between VAR-STREAM and VAR-
STR-FIFO demonstrates that selecting the correct
beams to expand during decoding timesteps can be
highly impactful on speed, illustrating a new axis
of optimization made possible by streaming. While
VAR-STREAM is superior for the transformers used
in state-of-the-art machine translation, we hypoth-
esize that VAR-STR-FIFO may be preferred in
other applications, especially in RNN architectures
which do not use self-attention.

Method Wall Clock (s) Timesteps
VAR-BATCH 308.15 ± 3.48 2007
VAR-STREAM 257.20 ± 0.54 2180
VAR-STR-FIFO 343.10 ± 0.41 1538

Table 4: Comparison of variable-size beam search
methods on De-En translation of newstest2018 on
32GB Nvidia V100 GPU. All methods achieve equal
BLEU and expand the same number of candidates.
VAR-STR-FIFO uses the fewest timesteps but takes the
most time due to the transformer architecture requiring
more time per step at high values of lt.
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Figure 2: Median time for decoding steps at values
of lt up to 40, for a single run of De-En translation
on the 32GB GPU with k = 50. The time taken in-
creases roughly linearly with lt due to self-attention in
the transformer.

A.3 Experiment Details and
Hyperparameters

We provide details on our setup. All code is written
in Pytorch (Paszke et al., 2017). For hardware, for
our 32GB and 16GB Nvidia V100 experiments, we
use p3dn.24xlarge and p3.2xlarge instances respec-
tively on AWS. Experiments are conducted serially
with no other computation on the instance. Due to
some variance between instances, all experiments
within a single comparable group (e.g., all meth-
ods’ runs for beam size 50 on a 32GB GPU) are
conducted on the same instance.

Additionally, we specify an implementation de-
tail: for the absolute threshold heuristic δ, we note
that ylti1 may be a terminated candidate from a pre-
vious timestep.

For heuristic hyperparameters, in all domains we
choose pruning heuristics to approximately match
the performance of FIXED, based on the develop-
ment set (newstest2017 for machine translation,
and the ATIS and Penn Treebank development sets
in semantic and syntactic parsing respectively). As
usual, in heuristic selection, there is a tradeoff be-
tween time and performance, which we explore
here in the machine translation domain.

We run FIXED and VAR-STREAM on the de-
velopment set (newstest2017) for German-English
translation using the 32GB Nvidia V100, using our
main paper heuristics δ = 1.5,M = 5, ε = 1

6 . We
additionally run versions where we individually
tweak each heuristic, using δ = 0.5, δ = 2.5,M =
3,M = 10, ε = 1

12 , ε = 1
4 .

Both BLEU scores and computation time overall
increase with δ and M (Table 5).
ε does not affect BLEU. Larger ε means we run

fewer timesteps at high lt, but our batch refills are
smaller. At least in this machine translation setting,
the effect of changing ε is typically a few seconds,
indicating that our method is not overly sensitive
to this hyperparameter choice as long as ε is small.
(Note we re-adjusted batch sizes in multiples of 64
to saturate the GPU for each ablation.)

During initial hyperparameter selection, we ran
ε = 1

6 ,
1
3 and 1

2 . For M we tested 3, 5, and 10 and
for δ we tested 1.5, 2.5, 5 and 10 based on manual
tuning with single runs. Note that BLEU and F1
scores do not change with multiple trials, as we
do not retrain models. Meanwhile, runtimes gen-
erally have fairly small standard deviation (see all
tables), so we did not heavily optimize. Overall, the
speedups enabled by VAR-STREAM over baselines
are relatively insensitive to heuristic hyperparame-
ters.
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Method Top 1 BLEU Wall Clock (s) Timesteps Cand. Exp. Exp. / Step

FIXED 42.71 921.57 ± 2.95 6620 3967200 599
VAR-STREAM 42.71 259.78 ± 2.52 2261 651786 288
δ = 0.5 42.49 104.28 ± 1.35 860 131108 152
δ = 2.5 42.72 558.71 ± 5.49 4325 1788047 413
M = 3 42.7 248.45 ± 2.66 2070 625099 302
M = 10 42.71 268.62 ± 3.91 2543 655300 258
ε = 1

12 42.71 255.03 ± 0.49 2479 651786 263
ε = 1

4 42.71 264.73 ± 1.05 2352 651786 277

Table 5: Exploration of effect of different hyperparameter choices on VAR-STREAM performance on De-En devel-
opment set (newstest2017). Top 1 BLEU, wall clock (average of 5 runs), total decoding timesteps, total candidate
expansions, and average candidate expansions per step for several methods. All experiments on 32GB Nvidia
V100. Larger values of δ and M result in a method closer to fixed-width beam search, which tends to increase
BLEU while taking more time due to needing more candidate expansions. Efficiency in expansions per step gen-
erally increases as the method approaches fixed-width beam search, as variable-width beams are more difficult to
pack efficiently. Nevertheless, for the purpose of wall-clock time, this effect is outweighed by the vastly larger
number of expansions required by fixed-width beam search.

Method F1 Oracle Time (s) Timesteps Cand. Exp. Exp. / Step

GREEDY 87.1 87.1 0.67 ± 0.02 136 2715 20.0
FIXED 87.1 90.0 2.36 ± 0.04 705 27781 39.4
VAR-BATCH 87.1 89.3 2.29 ± 0.02 585 5071 8.7
VAR-STREAM 87.1 89.3 1.47 ± 0.01 126 5071 40.2

Table 6: Semantic parsing experiments on JOBS dataset of job listings. Top-1 F1, oracle reranking F1, wall
clock average of 5 runs, total decoding timesteps, total candidate expansions, and average expansions per timestep.
Although VAR-STREAM is not much more efficient than FIXED in expansions per timestep, it requires many fewer
total expansions and is thus faster. Meanwhile, VAR-STREAM is several times more efficient than VAR-BATCH.
However, the variable beam searches suffer slightly in oracle F1 compared to FIXED, while still remaining above
GREEDY.

A.4 Additional Semantic Parsing
Experiments

In Tables 6 and 7, we present results from applying
our method to the JOBS and GEO datasets. We
use the same hyperparameters and heuristics as
for ATIS, and operate under the same candidate-
expansion constraint. VAR-STREAM is substan-
tially faster than Fixed and VAR-BATCH under this
setting.



4535

Method F1 Oracle Time (s) Timesteps Cand. Exp. Exp. / Step

GREEDY 82.5 82.5 0.96 ± 0.02 138 5492 39.8
FIXED 82.5 89.3 4.54 ± 0.09 1469 57550 39.2
VAR-BATCH 82.5 89.6 4.77 ± 0.05 1344 14154 10.5
VAR-STREAM 82.5 89.6 2.95 ± 0.04 248 14154 57.1

Table 7: Semantic parsing experiments on GEO dataset of geographical queries. VAR-STREAM is substantially
more efficient than both FIXED and VAR-BATCH in expansions per timestep, and this is reflected in the wall clock
time.

A.5 Dataset Details
A.5.1 Machine Translation
Evaluation datasets (newstest2018 and new-
stest2017) are available at http://www.statmt.

org/wmt19/translation-task.html. new-
stest2018 contains 2998 and 3000 examples for
De-En and Ru-En respectively, while newstest2017
contains 3004 and 3001.

A.5.2 Semantic Parsing
Datasets can be obtained by running the data
scripts at https://github.com/Alex-Fabbri/

lang2logic-PyTorch, which re-implements Dong
and Lapata (2016) in PyTorch. We use Dong and
Lapata (2016)’s training, development (for ATIS),
and test sets. ATIS, JOBS, and GEO contain 5410,
640, and 880 examples respectively.

A.5.3 Syntactic Parsing
The Penn Treebank dataset and splits are available
at https://github.com/jhcross/span-parser.
The training, data, and test splits are the standard
Penn Treebank splits (sections 2-21 for training, 22
for development, and 23 for test, containing 39832,
1700, and 2416 examples respectively).

http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
https://github.com/Alex-Fabbri/lang2logic-PyTorch
https://github.com/Alex-Fabbri/lang2logic-PyTorch
https://github.com/jhcross/span-parser

