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Abstract

We present an easy and efficient method to ex-
tend existing sentence embedding models to
new languages. This allows to create multi-
lingual versions from previously monolingual
models. The training is based on the idea that
a translated sentence should be mapped to the
same location in the vector space as the orig-
inal sentence. We use the original (monolin-
gual) model to generate sentence embeddings
for the source language and then train a new
system on translated sentences to mimic the
original model. Compared to other methods
for training multilingual sentence embeddings,
this approach has several advantages: It is easy
to extend existing models with relatively few
samples to new languages, it is easier to en-
sure desired properties for the vector space,
and the hardware requirements for training are
lower. We demonstrate the effectiveness of our
approach for 50+ languages from various lan-
guage families. Code to extend sentence em-
beddings models to more than 400 languages
is publicly available.1

1 Introduction

Mapping sentences or short text paragraphs to a
dense vector space, such that similar sentences are
close, has wide applications in NLP. However, most
existing sentence embeddings models are monolin-
gual, usually only for English, as applicable train-
ing data for other languages is scarce. For multi-
and cross-lingual scenarios, only few sentence em-
beddings models exist.

In this publication, we present a new method that
allows us to extend existing sentence embeddings
models to new languages. We require a teacher
modelM for source language s and a set of parallel
(translated) sentences ((s1, t1), ..., (sn, tn)) with ti
the translation of si. Note, the ti can be in different

1Code, models, and datasets: https://github.com/
UKPLab/sentence-transformers

languages. We train a new student model M̂ such
that M̂(si) ≈ M(si) and M̂(ti) ≈ M(si) using
mean squared loss. We call this approach multi-
lingual knowledge distillation, as the student M̂
distills the knowledge of the teacher M in a mul-
tilingual setup. We demonstrate that this type of
training works for various language combinations
as well as for multilingual setups. We observe
an especially high improvement of up to 40 accu-
racy points for low resource languages compared
to LASER (Artetxe and Schwenk, 2019b).

The student model M̂ learns a multilingual sen-
tence embedding space with two important proper-
ties: 1) Vector spaces are aligned across languages,
i.e., identical sentences in different languages are
close, 2) vector space properties in the original
source language from the teacher model M are
adopted and transferred to other languages.

The presented approach has various advantages
compared to other training approaches for multilin-
gual sentence embeddings. LASER (Artetxe and
Schwenk, 2019b) trains an encoder-decoder LSTM
model using a translation task. The output of the
encoder is used as sentence embedding. While
LASER works well for identifying exact transla-
tions in different languages, it works less well for
assessing the similarity of sentences that are not
exact translations.

Multilingual Universal Sentence Encoder
(mUSE) (Chidambaram et al., 2019; Yang et al.,
2019) was trained in a multi-task setup on SNLI
(Bowman et al., 2015) and on over a billion
question-answer pairs from popular online forums
and QA websites. In order to align the cross-
lingual vector spaces, mUSE used a translation
ranking task. Given a translation pair (si, ti)
and various alternative (incorrect) translations,
identify the correct translation. First, multi-task
learning is difficult since it can suffer from
catastrophic forgetting and balancing multiple

www.ukp.tu-darmstadt.de
https://github.com/UKPLab/sentence-transformers
https://github.com/UKPLab/sentence-transformers
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Figure 1: Given parallel data (e.g. English and German), train the student model such that the produced vectors for
the English and German sentences are close to the teacher English sentence vector.

tasks is not straight-forward. Further, running the
translation ranking task is complex and results in
a huge computational overhead. Selecting random
alternative translations usually leads to mediocre
results. Instead, hard negatives (Guo et al., 2018)
are required, i.e., alternative incorrect translations
that have a high similarity to the correct translation.
To get these hard negatives, mUSE was first
trained with random negatives samples, then, this
preliminary sentence encoder was used to identify
hard negative examples. They then re-trained the
network.

In this work, we use Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019), which achieves
state-of-the-art performance for various sentence
embeddings task. SBERT is based on transformer
models like BERT (Devlin et al., 2018) and applies
mean pooling on the output. In our experiments we
use XLM-R (Conneau et al., 2019), a pre-trained
network on 100 languages, as student model. Note,
the described approach is not limited to be used
with transformer models and should also work with
other network architectures.

2 Training

We require a teacher modelM , that maps sentences
in one or more source languages s to a dense vector
space. Further, we need parallel (translated) sen-
tences ((s1, t1), ..., (sn, tn)) with si a sentence in
one of the source languages and ti a sentence in
one of the target languages.

We train a student model M̂ such that M̂(si) ≈
M(si) and M̂(ti) ≈ M(si). For a given mini-
batch B, we minimize the mean-squared loss:

1

|B|
∑
j∈B

[
(M(sj)− M̂(sj))

2 + (M(sj)− M̂(tj))
2
]

M̂ could have the structure and the weights of
M , or it can be a different network architecture.
This training procedure is illustrated in Figure 1.
We denote trained models with M̂ ← M , as the
student model M̂ learns the representation of the
teacher model M .

In our experiments, we mainly use an English
SBERT model as teacher model M and use XLM-
RoBERTa (XLM-R) as student model M̂ . The
English BERT models have a wordpiece vocabu-
lary size of 30k mainly consisting of English to-
kens. Using the English SBERT model as initializa-
tion for M̂ would be suboptimal, as most words in
other latin-based languages would be broken down
to short character sequences, and words in non-
latin alphabets would be mapped to the UNK token.
In contrast, XLM-R uses SentencePiece2, which
avoids language specific pre-processing. Further, it
uses a vocabulary with 250k entries from 100 dif-
ferent languages. This makes XLM-R much more
suitable for the initialization of the multilingual
student model.

3 Training Data

In this section, we evaluate the importance of train-
ing data for making the sentence embedding model
multilingual. The OPUS website3 (Tiedemann,
2012) provides parallel data for hundreds of lan-
guage pairs. In our experiments, we use the follow-
ing datasets:

• GlobalVoices: A parallel corpus of news sto-
ries from the web site Global Voices.

• TED2020: We crawled the translated subti-
2https://github.com/google/

sentencepiece
3http://opus.nlpl.eu/

https://github.com/google/sentencepiece
https://github.com/google/sentencepiece
http://opus.nlpl.eu/
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tles for about 4,000 TED talks, available in
over 100 languages. This dataset is available
in our repository.

• NewsCommentary: Political and economic
commentary crawled from the web site Project
Syndicate, provided by WMT.

• WikiMatrix: Mined parallel sentences from
Wikipedia in different languages (Schwenk
et al., 2019). We only used pairs with scores
above 1.05, as pairs below this threshold were
often of bad quality.

• Tatoeba: Tatoeba4 is a large database of ex-
ample sentences and translations to support
language learning.

• Europarl: Parallel sentences extracted from
the European Parliament website (Koehn,
2005).

• JW300: Mined, parallel sentences from the
magazines Awake! and Watchtower (Agić and
Vulić, 2019).

• OpenSubtitles2018: Translated movie subti-
tles from opensubtitles.org (Lison and Tiede-
mann, 2016).

• UNPC: Manually translated United Nations
documents from 1994 - 2014 (Ziemski et al.,
2016).

Getting parallel sentence data can be challenging
for some low-resource language pairs. Hence, we
also experiment with bilingual dictionaries:

• MUSE: MUSE5 provides 110 large-scale
ground-truth bilingual dictionaries created by
an internal translation tool (Conneau et al.,
2017b).

• Wikititles: We use the Wikipedia database
dumps to extract the article titles from cross-
language links between Wikipedia articles.
For example, the page ”United States” links to
the German page ”Vereinigte Staaten”. This
gives a dictionary covering a wide range of
topics.

4https://tatoeba.org/
5https://github.com/facebookresearch/

MUSE

The data set sizes for English-German (EN-DE)
and English-Arabic (EN-AR) are depicted in Table
5. For training, we balance the data set sizes by
drawing for a mini batch roughly the same number
of samples from each data set. Data from smaller
data sets is repeated.

We trained XLM-R as our student model and
used SBERT fine-tuned on English NLI and STS
data6 as our teacher model. We trained for a max-
imum of 20 epochs with batch size 64, 10,000
warm-up steps, and a learning rate of 2e-5. As
development set, we measured the MSE loss on
hold-out parallel sentences.

In (Reimers and Gurevych, 2017, 2018), we
showed that the random seed can have a large im-
pact on the performances of trained models, espe-
cially for small datasets. In the following experi-
ments, we have quite large datasets of up to several
million parallel sentences and we observed rather
minor differences (∼ 0.3 score points) between
random seeds.

4 Experiments

In this section, we conduct experiments on three
tasks: Multi- and cross-lingual semantic textual
similarity (STS), bitext retrieval, and cross-lingual
similarity search. STS assigns a score for a pair of
sentences, while bitext retrieval identifies parallel
(translated) sentences from two large monolingual
corpora.

Note, evaluating the capability of different strate-
gies to align vector spaces across languages is non-
trivial. The performance for cross-lingual tasks
depends on the ability to map sentences across lan-
guages to one vector space (usually the vector space
for English) as well as on the properties this source
vector space has. Differences in performance can
then be due to a better or worse alignment between
the languages or due to different properties of the
(source) vector space.

We evaluate the following systems:
SBERT-nli-stsb: The output of the BERT-base

model is combined with mean pooling to create a
fixed-sized sentence representation (Reimers and
Gurevych, 2019). It was fine-tuned on the English
AllNLI (SNLI (Bowman et al., 2015) and Multi-
NLI (Williams et al., 2018)) dataset and on the
English training set of the STS benchmark (Cer
et al., 2017) using a siamese network structure.

6bert-base-nli-stsb-mean-tokens model from our repository

https://tatoeba.org/
https://github.com/facebookresearch/MUSE
https://github.com/facebookresearch/MUSE
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mBERT / XLM-R mean: Mean pooling of
the outputs for the pre-trained multilingual BERT
(mBERT) and XLM-R model. These models are
pre-trained on multilingual data and have a multi-
lingual vocabulary. However, no parallel data was
used.

mBERT- / XLM-R-nli-stsb: We fine-tuned
XLM-R and mBERT on the (English) AllNLI and
the (English) training set of the STS benchmark.

LASER: LASER (Artetxe and Schwenk, 2019b)
uses max-pooling over the output of a stacked
LSTM-encoder. The encoder was trained in an
encoder-decoder setup (machine translation setup)
on parallel corpora over 93 languages.

mUSE: Multilingual Universal Sentence En-
coder (Chidambaram et al., 2019) uses a dual-
encoder transformer architecture and was trained
on mined question-answer pairs, SNLI data, trans-
lated SNLI data, and parallel corpora over 16 lan-
guages.

LaBSE: Language-agnostic BERT Sentence
Embedding (LaBSE) (Feng et al., 2020) was
trained similar to mUSE with a dual-encoder trans-
former architecture based on BERT with 6 Billion
translation pairs for 109 languages.

mBERT- / DistilmBERT- / XLM-R ←
SBERT-nli-stsb: We learn mBERT, DistilmBERT,
and XLM-R to imitate the output of the English
SBERT-nli-stsb model.

XLM-R ← SBERT-paraphrases: We train
XLM-R to imitate SBERT-paraphrases, a
RoBERTa model trained on more than 50 Million
English paraphrase pairs.

For our multi-lingual knowledge distillation ex-
periments, we trained a single model with parallel
data for 50 languages7.

4.1 Multilingual Semantic Textual Similarity

The goal of semantic textual similarity (STS) is
to assign for a pair of sentences a score indicating
their semantic similarity. For example, a score of 0
indicates not related and 5 indicates semantically
equivalent.

The multilingual STS 2017 dataset (Cer et al.,
2017) contains annotated pairs for EN-EN, AR-
AR, ES-ES, EN-AR, EN-ES, EN-TR. We extend
this dataset by translating one sentence of each
pair in the EN-EN dataset to German. Further, we

7ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he,
hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my,
nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi,
zh-cn, zh-tw

use Google Translate to create the datasets EN-
FR, EN-IT, and EN-NL. Samples of these machine
translated versions have been checked by humans
fluent in that language.

For the generate sentence embeddings we com-
pute cosine similarity and, as recommended in
(Reimers et al., 2016), compute the Spearman’s
rank correlation ρ between the computed score and
the gold score.

Table 1 shows the results for the monolingual
setup and Table 2 the cross-lingual setup.

As shown before (Reimers and Gurevych, 2019),
using mBERT / XLM-R without fine-tuning yields
rather poor performance. Training on English NLI
& STS data (mBERT/XLM-nli-stsb) significantly
improves the performance also for the other lan-
guages. While in the monolingual setup (Table 1)
the performance is quite competitive, we observe a
significant drop for the cross-lingual setup (Table
2). This indicates that the vectors spaces are not
well aligned across languages.

Using our multilingual knowledge distillation ap-
proach, we observe state-of-the-art performances
for mono- as well as for the cross-lingual setup, sig-
nificantly outperforming other state-of-the-art mod-
els (LASER, mUSE, LaBSE). Even though SBERT-
nli-stsb was trained on the STSbenchmark train
set, we observe the best performance by SBERT-
paraphrase, which was not trained with any STS
dataset. Instead, it was trained on a large and broad
paraphrase corpus, mainly derived from Wikipedia,
which generalizes well to various topics.

In our experiments, XLM-R is slightly ahead
of mBERT and DistilmBERT. mBERT and Dis-
tilmBERT use different language-specific tokeniza-
tion tools, making those models more difficult to
be used on raw text. In contrast, XLM-R uses a
SentencePiece model that can be applied directly
on raw text data for all languages. Hence, in the
following experiments we only report results for
XLM-R.

4.2 BUCC: Bitext Retrieval

Bitext retrieval aims to identify sentence pairs that
are translations in two corpora in different lan-
guages. Guo et al. (2018) showed that computing
the cosine similarity of all sentence embeddings
and to use nearest neighbor retrieval with a thresh-
old has certain issues.

For our experiments, we use the BUCC bitext
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Model EN-EN ES-ES AR-AR Avg.
mBERT mean 54.4 56.7 50.9 54.0
XLM-R mean 50.7 51.8 25.7 42.7
mBERT-nli-stsb 80.2 83.9 65.3 76.5
XLM-R-nli-stsb 78.2 83.1 64.4 75.3
Knowledge Distillation
mBERT← SBERT-nli-stsb 82.5 83.0 78.8 81.4
DistilmBERT← SBERT-nli-stsb 82.1 84.0 77.7 81.2
XLM-R← SBERT-nli-stsb 82.5 83.5 79.9 82.0
XLM-R← SBERT-paraphrases 88.8 86.3 79.6 84.6
Other Systems
LASER 77.6 79.7 68.9 75.4
mUSE 86.4 86.9 76.4 83.2
LaBSE 79.4 80.8 69.1 76.4

Table 1: Spearman rank correlation ρ between the cosine similarity of sentence representations and the gold labels
for STS 2017 dataset. Performance is reported by convention as ρ× 100.

Model EN-AR EN-DE EN-TR EN-ES EN-FR EN-IT EN-NL Avg.
mBERT mean 16.7 33.9 16.0 21.5 33.0 34.0 35.6 27.2
XLM-R mean 17.4 21.3 9.2 10.9 16.6 22.9 26.0 17.8
mBERT-nli-stsb 30.9 62.2 23.9 45.4 57.8 54.3 54.1 46.9
XLM-R-nli-stsb 44.0 59.5 42.4 54.7 63.4 59.4 66.0 55.6
Knowledge Distillation
mBERT← SBERT-nli-stsb 77.2 78.9 73.2 79.2 78.8 78.9 77.3 77.6
DistilmBERT← SBERT-nli-stsb 76.1 77.7 71.8 77.6 77.4 76.5 74.7 76.0
XLM-R← SBERT-nli-stsb 77.8 78.9 74.0 79.7 78.5 78.9 77.7 77.9
XLM-R← SBERT-paraphrases 82.3 84.0 80.9 83.1 84.9 86.3 84.5 83.7
Other Systems
LASER 66.5 64.2 72.0 57.9 69.1 70.8 68.5 67.0
mUSE 79.3 82.1 75.5 79.6 82.6 84.5 84.1 81.1
LaBSE 74.5 73.8 72.0 65.5 77.0 76.9 75.1 73.5

Table 2: Spearman rank correlation ρ between the cosine similarity of sentence representations and the gold labels
for STS 2017 dataset. Performance is reported by convention as ρ× 100.

retrieval code from LASER8 with the scoring func-
tion from Artetxe and Schwenk (2019a):

score(x, y) = margin(cos(x, y),∑
z∈NNk(x)

cos(x, z)

2k
+

∑
z∈NNk(y)

cos(y, z)

2k

with x, y the two sentence embeddings and
NNk(x) denoting the k nearest neighbors of x in
the other language9. As margin function, we use
margin(a, b) = a/b.

We use the dataset from the BUCC mining task
(Zweigenbaum et al., 2017, 2018), with the goal of
extracting parallel sentences between an English
corpus and four other languages: German, French,
Russian, and Chinese. The corpora consist of 150K
- 1.2M sentences for each language with about 2-
3% of the sentences being parallel. The data is split

8https://github.com/facebookresearch/
LASER/

9retrieved using using faiss: https://github.com/
facebookresearch/faiss

into training and test sets. The training set is used
to find a threshold for the score function. Pairs
above the threshold are returned as parallel sen-
tences. Performance is measured using F1 score.

Results are shown in Table 3. Using mean pool-
ing directly on mBERT / XLM-R produces low
scores. While training on English NLI and STS
data improves the performance for XLM-R (XLM-
R-nli-stsb), it reduces the performance for mBERT.
It is unclear why mBERT mean and XLM-R mean
produce vastly different scores and why training on
NLI data improves the cross-lingual performance
for XLM-R, while reducing the performance for
mBERT. As before, we observe that mBERT /
XLM-R do not have well aligned vector spaces
and training only on English data is not sufficient.

Using our multilingual knowledge distillation
method, we were able to significantly improve the
performance compared to the mBERT / XLM-R
model trained only on English data.

While LASER and LaBSE only achieve
mediocre results on the STS 2017 dataset, they

https://github.com/facebookresearch/LASER/
https://github.com/facebookresearch/LASER/
https://github.com/facebookresearch/faiss
https://github.com/facebookresearch/faiss
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Model DE-EN FR-EN RU-EN ZH-EN Avg.
mBERT mean 44.1 47.2 38.0 37.4 41.7
XLM-R mean 5.2 6.6 22.1 12.4 11.6
mBERT-nli-stsb 38.9 39.5 26.4 30.2 33.7
XLM-R-nli-stsb 44.0 51.0 51.5 44.0 47.6
Knowledge Distillation
XLM-R← SBERT-nli-stsb 86.8 84.4 86.3 85.1 85.7
XLM-R← SBERT-paraphrase 90.8 87.1 88.6 87.8 88.6
Other systems
mUSE 88.5 86.3 89.1 86.9 87.7
LASER 95.4 92.4 92.3 91.7 93.0
LaBSE 95.9 92.5 92.4 93.0 93.5

Table 3: F1 score on the BUCC bitext mining task.

achieve state-of-the-art performances on BUCC
outperforming mUSE and our approach. LASER
and LaBSE were specifically designed to identify
perfect translations across languages. However,
as the STS 2017 results show, these models have
issues assigning meaningful similarity scores for
sentence pairs that don’t have identical meaning.

In contrast, mUSE and our approach creates vec-
tor spaces such that semantically similar sentences
are close. However, sentences with similar mean-
ings must not be translations of each other. For
example, in the BUCC setup, the following pair is
not labeled as parallel text:

• Olympischen Jugend-Sommerspiele fanden
vom 16. bis 28. August 2014 in Nanjing
(China) statt. (en: Summer Youth Olympic
Games took place from August 16 to 28, 2014
in Nanjing (China))

• China hosted the 2014 Youth Olympic Games.

Both sentences are semantically similar, hence
our model and mUSE assign a high similarity score.
But the pair is not a translation, as some details are
missing (exact dates and location).

These results stress the point that there is no
single sentence vector space universally suitable
for every application. For finding translation pairs
in two corpora, LASER and LaBSE would be the
best choice. However, for the task of finding se-
mantically similar sentence pairs, our approach and
mUSE would be the better choices.

We noticed that several positive pairs are miss-
ing in the BUCC dataset. We analyzed for SBERT,
mUSE, and LASER 20 false positive DE-EN pairs
each, i.e., we analyzed pairs with high similarities
according to the embeddings method but which are
not translations according to the dataset. For 57 out
of 60 pairs, we would judge them as valid, high-
quality translations. This issue comes from the way

BUCC was constructed: It consists of a parallel
part, drawn from the News Commentary dataset,
and sentences drawn from Wikipedia, which are
judged as non-parallel. However, it is not ensured
that the sentences from Wikipedia are in fact non-
parallel. The systems successfully returned parallel
pairs from the Wikipedia part of the dataset. Re-
sults based on the BUCC dataset should be judged
with care. It is unclear how many parallel sentences
are in the Wikipedia part of the dataset and how
this affects the scores.

4.3 Tatoeba: Similarity Search

In this section, we evaluate the strategy for lower
resource languages, where it can be especially
challenging to get well-aligned sentence embed-
dings. For evaluation, we use the Tatoeba test set-
up from LASER (Artetxe and Schwenk, 2019b):
The dataset consists of up to 1,000 English-aligned
sentence pairs for various languages. Evaluation is
done by finding for all sentences the most similar
sentence in the other language using cosine simi-
larity. Accuracy is computed for both directions
(English to the other language and back).

As before, we fine-tune XLM-R with SBERT-
nli-stsb as teacher model. As training data, we
use JW300, which covers over 300 languages. To
make our results comparable to LASER, we reduce
the training data to the same amount as used by
LASER. We selected four languages with rather
small parallel datasets: Georgian (KA, 296k par-
allel sentence pairs), Swahili (SW, 173k), Tagalog
(TL, 36k), and Tatar (TT, 119k). Tagalog and Tatar
were not part of the 100 languages XLM-R was
pre-trained for, i.e., XLM-R has no specific vocab-
ulary and the language model was not tuned for
these languages.

As Table 4 shows, we observe a significant accu-
racy improvement compared to LASER, indicating
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Model KA SW TL TT
LASER

en→ xx 39.7 54.4 52.6 28.0
xx→ en 32.2 60.8 48.5 34.3

XLM-R← SBERT-nli-stsb
en→ xx 73.1 85.4 86.2 54.5
xx→ en 71.7 86.7 84.0 52.3

Table 4: Accuracy on the Tatoeba test set in both direc-
tions (en to target language and vice versa).

much better aligned vector spaces between English
and these languages. Even though Tagalog had the
smallest dataset with 36k pairs and that XLM-R
was not pre-trained for this language, we achieve
high accuracy scores of 86.2 and 84.0. We con-
clude that our strategy also works for low resource
languages and can yield a significant improvement.
The results for all languages in the Tatoeba test set
can be found in the appendix.

5 Evaluation of Training Datasets

To evaluate the suitability of the different training
sets, we trained bilingual XLM-R models for EN-
DE and EN-AR on the described training datasets.
English and German are fairly similar languages
and have a large overlap in their alphabets, while
English and Arabic are dissimilar languages with
distinct alphabets. We evaluate the performance on
the STS 2017 dataset.

The results for training on the full datasets are
shown in Table 5. Table 6 shows the results
for training only on the first k sentences of the
TED2020 dataset.

First, we observe that the bilingual models are
slightly better than the model trained for 10 lan-
guages (section 4.1): 2.2 points improvement for
EN-DE and 1.2 points improvement for EN-AR.
Conneau et al. (2019) calls this curse of multilin-
guality, where adding more languages to a model
can degrade the performance as the capacity of the
model remains the same.

For EN-DE we observe only minor differences
between the datasets. It appears that the domain of
the training data (news, subtitles, parliamentary de-
bates, magazines) is of minor importance. Further,
only little training data is necessary.

For the dissimilar languages English and Ara-
bic, the results are less conclusive. Table 5 shows
that more data does not necessarily lead to better
results. With the Tatoeba dataset (only 27,000 par-
allel sentences), we achieve a score of 76.7, while
with the UNPC dataset (over 8 Million sentences),

we achieve only a score of 66.1. The domain of
the parallel sentences is of higher importance. The
results on the reduced TED2020 dataset (Table 6)
show that the score improves slower for EN-AR
than for EN-DE with more data.

Dataset #DE EN-DE #AR EN-AR
XLM-R mean - 21.3 - 17.4
XLM-R-nli-stsb - 59.5 - 44.0
MUSE Dict 101k 75.8 27k 68.8
Wikititles Dict 545k 71.4 748k 67.9
MUSE + Wikititles 646k 76.0 775k 69.1
GlobalVoices 37k 78.1 29k 68.6
TED2020 483k 80.4 774k 78.0
NewsCommentary 118k 77.7 7k 57.4
WikiMatrix 276k 79.4 385k 75.4
Tatoeba 303k 79.5 27k 76.7
Europarl 736k 78.7 - -
JW300 1,399k 80.0 382k 74.0
UNPC - - 8M 66.1
OpenSubtitles 21M 79.8 28M 78.8
All datasets 25M 81.4 38M 79.0

Table 5: Data set sizes for the EN-DE / EN-AR sections.
Performance (Spearman rank correlation) of XLM-R
← SBERT-nli-stsb on the STS 2017 dataset.

Dataset size EN-DE EN-AR
XLM-R mean 21.3 17.4
XLM-R-nli-stsb 59.5 44.0
1k 71.5 48.4
5k 74.5 59.6
10k 77.0 69.5
25k 80.0 70.2
Full TED2020 80.4 78.0

Table 6: Performance on STS 2017 dataset when
trained with reduced TED2020 dataset sizes.

6 Target Language Training

In this section we evaluate whether it is better
to transfer an English model to a certain target
language or if training from-scratch on suitable
datasets in the target language yields better results.

For this, we use the KorNLI and KorSTS datasets
from Ham et al. (2020). They translated the English
SNLI (Bowman et al., 2015), MultiNLI (Williams
et al., 2018), and STSbenchmark (STSb) (Cer et al.,
2017) datasets to Korean with an internal machine
translation system. The dev and tests were post-
edited by professional translators.

Ham et al. fine-tuned Korean RoBERTa and
XLM-R on these datasets using the SBERT frame-
work. We use the translated sentences they pro-
vide and tuned XLM-R using multilingual knowl-
edge distillation. We use SBERT-nli-stsb as teacher
model. Results are shown in Table 7.
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Model KO-KO
LASER 68.44
mUSE 76.32
Trained on KorNLI & KorSTS
Korean RoBERTa-base 80.29
Korean RoBERTa-large 80.49
XLM-R 79.19
XLM-R-large 81.84
Multiling. Knowledge Distillation
XLM-R← SBERT-nli-stsb 81.47
XLM-R-large← SBERT-large-nli-stsb 83.00

Table 7: Spearman rank correlation on Korean STS-
benchmark test-set (Ham et al., 2020).

We observe a slight improvement of using mul-
tilingual knowledge distillation over training the
models directly on the translated NLI and STS data.
This is great news: Training on the Korean datasets
yields a model only for Korean, while with mul-
tilingual knowledge distillation, we get a model
for English and Korean with aligned vector spaces.
Further, we do not necessarily have a performance
drop if there is only training data for the sentence
embedding method in English available.

7 Language Bias

Roy et al. (2020) introduces the concept of lan-
guage bias: A model prefers one language or lan-
guage pair over others. For example, a model
would have a language bias if it maps sentences
in the same language closer in vector space just
because they are of the same language. Language
bias can be an issue if the task involves a multilin-
gual sentence pool: certain language pairs might
get discriminated, potentially harming the overall
performance for multilingual sentence pools.

Figure 2 shows the plot of the first two princi-
ple components for different multi-lingual sentence
embeddings methods. In the plot, we encoded the
English premise sentences from XNLI (Conneau
et al., 2018) with their Russian translation. The
plot shows for the LaBSE model a drastic separa-
tion between the two languages, indicating that the
language significantly impacts the resulting embed-
ding vector.

The experiments in Section 4 used so far mono-
lingual sentence pools, i.e., all sentences in the
source / target pool were of the same language.
Hence, these benchmarks are not suited to measure
a potential harmful effect from language bias. In
order to measure a potential negative effect from
language bias, we combine all sentence pairs from
the multilingual STS dataset and compute similar-

ity scores as described in Section 4.1. Note, in
Section 4.1, the models had only to score e.g. EN-
AR sentence pairs. Now, there are 10 language
combinations in one joined set. A model without
language bias would achieve on this joined set a
performance similar to the average of the perfor-
mances over the individual subsets. However, if a
model has a language bias, sentence pairs from spe-
cific language combinations will be ranked higher
than others, lowering the Spearman rank correla-
tion for the joint set.

The results are depicted in Table 8. We observe
that LaBSE has a difference of -1.29 and LASER
has a difference of -0.92. Both scores are sta-
tistically significant with confidence p < 0.001.
LASER and LaBSE both have a language bias
which decrease the performance on multilingual
pools compared to mono-lingual pools. In con-
trast, mUSE and the proposed multilingual knowl-
edge distillation have a minor, statistically insignif-
icant language bias. There, the performance for
the joined set only decreases by -0.19 and -0.11
compared to the evaluation on the individual sets.

In summary, mUSE and the proposed multilin-
gual knowledge distillation approach can be used
on multilingual sentence pools without a nega-
tive performance impact from language bias, while
LASER and LaBSE prefer certain language combi-
nations over other, impacting the overall result.

8 Related Work

Sentence embeddings are a well studied area with
dozens of proposed methods (Kiros et al., 2015;
Conneau et al., 2017a; Cer et al., 2018; Yang et al.,
2018). Most of the methods have in common that
they were only trained on English. Multilingual
representations have attracted significant attention
in recent times. Most of it focuses on cross-lingual
word embeddings (Ruder, 2017). A common ap-
proach is to train word embeddings for each lan-
guage separately and to learn a linear transforma-
tion that maps them to a shared space based on
a bilingual dictionary (Artetxe et al., 2018). This
mapping can also be learned without parallel data
(Conneau et al., 2017b; Lample et al., 2018).

A straightforward approach for creating cross-
lingual sentence embeddings is to use a bag-of-
words representation of cross-lingual word embed-
dings. However, Conneau et al. (2018) showed
that this approach works poorly in practical cross-
lingual transfer settings. LASER (Artetxe and
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Model Expected Score Actual Score Difference
LASER 69.5 68.6 -0.92
mUSE 81.7 81.6 -0.19
LaBSE 74.4 73.1 -1.29
XLM-R← SBERT-paraphrases 84.0 83.9 -0.11

Table 8: Spearman rank correlation for the multilingual STS dataset. Expected score is the average over the
performance on the individual sets (Table 1 & 2). Actual score is the correlation for one joined set of sentence
pairs. Models without language bias would score on the joined set similar to the average over the individual sets.
The difference shows the negative impact from the language bias.

Schwenk, 2019b) uses a sequence-to-sequence
encoder-decoder architecture (Sutskever et al.,
2014) based on LSTM networks. It trains on
parallel corpora from neural machine translation.
To create a fixed sized sentence representation,
they apply max-pooling over the output of the en-
coder. LASER was trained for 93 languages on 16
NVIDIA V100 GPUs for about 5 days.

Multilingual Universal Sentence Encoder
(mUSE)10 (Chidambaram et al., 2019; Yang
et al., 2019) uses a dual-encoder architecture.
It was trained in a multi-task setup on SNLI
(Bowman et al., 2015) and over 1 Billion crawled
question-answer pairs from various communities.
A translation ranking task was applied: Given
a sentence in the source language and a set of
sentences in the target languages, identify the cor-
rect translation pair. To work well, hard negative
examples (similar, but incorrect translations) must
be included in the ranking task. mUSE was trained
for 16 languages with 30 million steps. LaBSE
(Feng et al., 2020) is based on a BERT architecture
and used masked language model and 6 Billion
translation pairs for training. It was trained similar
to mUSE with a translation ranking loss, however,
without any other training data.

In this publication, we extended Sentence-BERT
(SBERT) (Reimers and Gurevych, 2019). SBERT
is based on transformer models like BERT (Devlin
et al., 2018) and fine-tunes those using a siamese
network structure. By using the pre-trained weights
from BERT, suitable sentence embeddings meth-
ods can be trained efficiently. Multilingual BERT
(mBERT) was trained on 104 languages using
Wikipedia, while XLM-R (Conneau et al., 2019)
was trained on 100 languages using CommonCrawl.
mBERT and XLM-R were not trained on any paral-
lel data, hence, their vector spaces are not aligned.

10https://tfhub.dev/google/
universal-sentence-encoder

9 Conclusion

We presented a method to make monolingual sen-
tence embeddings multilingual with aligned vector
spaces between the languages. This was achieved
by using multilingual knowledge distillation. We
demonstrated that this approach successfully trans-
fers properties from the source language vector
space (in our case English) to various target lan-
guages. Models can be extended to multiple lan-
guages in the same training process.

This stepwise training approach has the advan-
tage that an embedding model with desired proper-
ties, for example for clustering, can first be created
for a high-resource language. Then, in an inde-
pendent step, it can be extended to support further
languages. This decoupling significantly simpli-
fies the training procedure compared to previous
approaches. Further, it minimizes the potential lan-
guage bias of the resulting model.

We extensively tested the approach for various
languages from different language families. We
observe that LASER and LaBSE work well for
retrieving exact translations, however, they work
less well assessing the similarity of sentence pairs
that are not exact translations. Further, we noticed
that LASER and LaBSE show a language bias,
preferring some language combinations over other.
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Appendix

A Tatoeba Similarity Search

LASER (Artetxe and Schwenk, 2019b) introduces
the Tatoeba test set: It consists of up to 1,000
English-aligned sentence pairs for various lan-
guages. Evaluation is done by finding for all sen-
tences the most similar sentence in the other lan-
guage using cosine similarity. Accuracy is com-
puted for both directions (English to the other lan-
guage and back). As the two scores are usually
quite close, we report the average of the scores
here.

For our multi-lingual knowledge distillation, we
exclude all training data from Tatoeba. This is in
contrast to LASER, which used Tatoeba also for
training. As the overlap between the Tatoeba test
and train set is enormous, this bears the risk that the
scores for LASER are artificially high. For mUSE
and LaBSE, it is unknown whether they used any
parallel data crawled from the Tatoeba website.

Table 9 shows the results for the languages we
had parallel training data. We achieve accuracy
scores usually in the 90th. Note mUSE is only
available for 16 languages, hence, we also tested
multilingual knowledge distillation using Distilm-
BERT as student and mUSE as teacher. We report
this as DistilmBERT← mUSE in the table.

For the languages which we did not use any par-
allel data (Table ), the scores show a much larger
variance. But overall, the scores for languages
without parallel data are in most cases low. This is
expected, as the model did not learn how to align
for these languages. Note, LaBSE and LASER
had seen training data for most of the languages in
Table .
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Figure 2: First two principle components for parallel sentences in English and Russian. For LaBSE, we observe
a strong separation between the vector spaces, i.e., it is more biased for same language pairs. mUSE and the
proposed multilingual knowledge distillation approach show nearly no language bias.
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Model ara bul cat ces cmn dan deu ell est fin fra glg heb
LASER 92.0 95.0 95.9 96.5 95.4 96.0 99.0 95.0 96.7 96.3 95.6 95.5 92.2
mUSE 81.0 54.0 66.3 17.8 94.3 25.9 98.2 1.6 8.4 8.2 93.5 82.2 1.8
LaBSE 91.0 95.7 96.5 97.5 96.2 96.4 99.4 96.6 97.7 97.0 96.0 97.2 93.0
XLM-R← SBERT-p 87.7 94.0 96.4 96.3 95.0 96.2 98.7 95.5 95.8 96.4 94.7 96.0 88.4
DistilmBERT← mUSE 86.8 93.3 95.8 94.6 95.3 94.6 98.6 93.1 93.7 91.9 94.0 95.2 85.0
Model hin hrv hun hye ind ita jpn kat kor lit lvs mar mkd
LASER 94.7 97.2 96.0 36.1 94.5 95.3 90.7 35.9 88.9 96.2 95.4 91.5 94.7
mUSE 1.2 23.9 10.2 1.7 93.3 94.3 93.8 2.6 86.0 10.2 11.1 1.8 33.1
LaBSE 97.7 97.8 97.2 95.0 95.3 94.6 96.4 95.9 93.5 97.3 96.8 94.8 94.8
XLM-R← SBERT-p 96.4 97.0 94.7 91.3 94.1 94.9 94.2 91.4 90.1 95.8 96.4 91.0 92.2
DistilmBERT← mUSE 94.2 95.1 91.3 88.0 93.5 93.1 92.7 82.7 89.5 94.2 92.3 86.4 91.1
Model mon nld nob pes pol por ron rus slk slv spa sqi srp
LASER 8.2 96.3 98.8 93.4 97.8 95.2 97.4 94.6 96.6 95.9 98.0 98.0 95.3
mUSE 16.9 94.0 23.9 12.7 93.7 94.9 30.0 93.7 21.1 20.9 95.4 19.9 27.7
LaBSE 96.6 97.2 98.9 96.0 97.8 95.6 97.8 95.3 97.3 96.7 98.4 97.6 96.2
XLM-R← SBERT-p 91.7 96.0 98.0 94.8 97.0 94.8 96.4 93.5 96.2 95.5 98.0 97.5 93.8
DistilmBERT← mUSE 90.6 95.8 95.8 90.0 95.3 94.5 94.7 94.4 95.4 94.8 95.5 95.6 93.2
Model swe tha tur ukr urd vie yue zsm
LASER 96.6 95.4 97.5 94.5 81.9 96.8 90.0 96.4
mUSE 18.8 96.0 94.0 51.0 6.4 10.4 84.2 89.1
LaBSE 96.5 97.1 98.4 95.2 95.3 97.8 92.1 96.9
XLM-R← SBERT-p 95.7 96.3 97.2 94.3 92.2 97.2 84.4 95.6
DistilmBERT← mUSE 94.3 93.2 96.5 92.5 87.9 95.3 81.0 95.2

Table 9: Tatoeba test set results for languages with parallel data for multilingual knowledge distillation.

Model afr amh ang arq arz ast awa aze bel ben ber bos bre
LASER 89.5 42.0 37.7 39.5 68.9 86.2 36.1 66.0 66.1 89.6 68.2 96.5 15.8
mUSE 63.5 2.1 38.1 28.2 59.6 81.5 2.4 42.2 40.3 0.7 8.3 30.1 10.2
LaBSE 97.4 94.0 64.2 46.2 78.4 90.6 73.2 96.1 96.2 91.3 10.4 96.2 17.3
XLM-R← SBERT-p 84.5 67.9 25.0 30.6 63.7 78.3 46.5 85.0 86.9 77.6 6.8 95.8 10.1
DistilmBERT← mUSE 68.3 2.7 37.7 32.7 61.5 85.0 43.9 43.4 49.1 1.2 8.1 94.2 11.5
Model cbk ceb cha cor csb cym dsb dtp epo eus fao fry gla
LASER 77.0 15.7 29.2 7.5 43.3 8.6 48.0 7.2 97.2 94.6 71.6 51.7 3.7
mUSE 76.1 13.7 33.6 6.4 37.4 13.1 35.1 8.4 36.8 19.4 18.7 52.3 6.9
LaBSE 82.5 70.9 39.8 12.8 56.1 93.6 69.3 13.3 98.4 95.8 90.6 89.9 88.8
XLM-R← SBERT-p 69.4 11.7 25.9 5.1 40.5 34.9 51.4 7.3 68.8 48.6 50.8 58.4 7.5
DistilmBERT← mUSE 77.2 13.8 34.7 7.3 48.0 13.1 52.0 9.4 41.2 19.0 36.1 54.0 6.0
Model gle gsw hsb ido ile ina isl jav kab kaz khm kur kzj
LASER 5.2 44.4 54.5 83.7 86.2 95.2 95.6 22.9 58.1 18.6 20.6 17.2 7.2
mUSE 7.7 39.3 33.3 55.5 73.3 86.7 10.3 38.3 3.7 15.3 1.5 21.7 10.2
LaBSE 95.0 52.1 71.2 90.9 87.1 95.8 96.2 84.4 6.2 90.5 83.2 87.1 14.2
XLM-R← SBERT-p 18.6 36.8 57.6 56.0 70.5 87.9 75.8 37.3 2.7 73.7 64.8 43.7 8.0
DistilmBERT← mUSE 8.0 38.9 56.4 61.1 77.8 90.4 16.0 31.7 3.7 16.8 1.2 27.7 10.8
Model lat lfn mal max mhr nds nno nov oci orv pam pms swg
LASER 58.5 64.5 96.9 50.9 10.4 82.9 88.3 66.0 61.2 28.1 6.0 49.6 46.0
mUSE 36.7 60.5 1.2 65.0 14.3 57.5 21.2 66.1 42.9 28.3 8.4 48.8 48.7
LaBSE 82.0 71.2 98.9 71.1 19.2 81.2 95.9 78.2 69.9 46.8 13.6 67.0 65.2
XLM-R← SBERT-p 28.0 57.7 94.0 58.5 11.9 50.7 89.3 58.8 52.4 33.4 7.0 44.3 33.9
DistilmBERT← mUSE 42.9 65.3 1.0 60.9 14.2 59.5 78.8 69.8 54.7 27.8 9.6 52.6 51.8
Model swh tam tat tel tgl tuk tzl uig uzb war wuu xho yid
LASER 57.6 69.4 31.1 79.7 50.6 20.7 44.7 45.2 18.7 13.6 87.7 8.5 5.7
mUSE 13.7 2.8 15.7 2.4 16.2 20.9 46.6 4.0 15.9 15.6 82.2 14.8 1.9
LaBSE 88.6 90.7 87.9 98.3 97.4 80.0 63.0 93.7 86.8 65.3 90.3 91.9 91.0
XLM-R← SBERT-p 27.6 85.7 17.8 89.1 32.4 24.1 41.3 65.5 32.6 11.4 82.7 11.6 52.7
DistilmBERT← mUSE 13.8 2.3 13.5 1.9 15.7 27.6 45.2 4.5 18.7 15.4 82.2 13.4 6.2

Table 10: Tatoeba test set results for languages for languages without parallel data for multilingual knowledge
distillation. LaBSE and LASER had training data for most of these languages.


