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Abstract

Multilingual BERT (Devlin et al.,, 2019,
mBERT), XLM-RoBERTa (Conneau et al.,
2019, XLMR) and other unsupervised multi-
lingual encoders can effectively learn cross-
lingual representation. Explicit alignment ob-
jectives based on bitexts like Europarl or Mul-
tiUN have been shown to further improve
these representations. However, word-level
alignments are often suboptimal and such bi-
texts are unavailable for many languages. In
this paper, we propose a new contrastive align-
ment objective that can better utilize such
signal, and examine whether these previous
alignment methods can be adapted to noisier
sources of aligned data: a randomly sampled
1 million pair subset of the OPUS collection.
Additionally, rather than report results on a
single dataset with a single model run, we re-
port the mean and standard derivation of multi-
ple runs with different seeds, on four datasets
and tasks. Our more extensive analysis finds
that, while our new objective outperforms pre-
vious work, overall these methods do not im-
prove performance with a more robust evalua-
tion framework. Furthermore, the gains from
using a better underlying model eclipse any
benefits from alignment training. These neg-
ative results dictate more care in evaluating
these methods and suggest limitations in apply-
ing explicit alignment objectives.

1 Introduction

Unsupervised massively multilingual encoders in-
cluding multilingual BERT (Devlin et al., 2019,
mBERT) and XLM-RoBERTa (Conneau et al.,
2019, XLMR) are now standard tools for zero-
shot cross-lingual transfer for NLP tasks (Wu and
Dredze, 2019; Xia et al., 2020). While almost
all encoders are pretrained without explicit cross-
lingual objective, i.e. enforcing similar words from
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different languages have similar representation, im-
provements can be attained through the use of ex-
plicit cross-lingually linked data during pretraining,
such as bitexts (Conneau and Lample, 2019; Huang
et al., 2019; Ji et al., 2019) and dictionaries (Wu
et al., 2019). As with cross-lingual embeddings
(Ruder et al., 2019), these data can be used to sup-
port explicit alignment objectives with either linear
mappings (Wang et al., 2019, 2020; Wu et al., 2019;
Liu et al., 2019) or fine-tuning (Cao et al., 2020).

However, as word-level alignments from an un-
supervised aligner are often suboptimal, we de-
velop a new cross-lingual alignment objective for
training our model. We base on our objective on
contrastive learning, in which two similar inputs
— such as from a bitext — are directly optimized to
be similar, relative to a negative set. These meth-
ods have been effective in computer vision tasks
(He et al., 2019; Chen et al., 2020a). Addition-
ally, most previous work on contextual alignments
consider high-quality bitext like Europarl (Koehn,
2005) or MultiUN (Eisele and Chen, 2010). While
helpful, these resources are unavailable for most
languages for which we seek a zero-shot transfer.
To better reflect the quality of bitext available for
most languages, we additionally use OPUS-100
(Zhang et al., 2020), a randomly sampled 1 million
subset (per language pair) of the OPUS collection
(Tiedemann, 2012).

We show that our new contrastive learning align-
ment objectives outperform previous work (Cao
et al., 2020) when applied to bitext from previous
works or the OPUS-100 bitext. However, our exper-
iments also produce a negative result. While previ-
ous work showed improvements from alignment-
based objectives on zero-shot cross-lingual trans-
fer for a single task (XNLI) with a single random
seed, our more extensive analysis tells a different
story. We report the mean and standard deriva-
tion of multiple runs with the same hyperparam-
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eters and different random seeds. We find that
previously reported improvements disappear, even
while our new method shows a small improvement.
Furthermore, we extend the evaluation to multiple
languages on 4 tasks, further supporting our con-
clusions. Finally, we evaluate XLMR|yge On these
tasks, which dominate the results obtained from
the alignment objectives. We conclude that explicit
alignments do not improve cross-lingual represen-
tations under a more extensive evaluation with nois-
ier bitexts, and improvements are lost when com-
pared to larger models. This negative result shows
the limitation of explicit alignment objective with
larger-scale bitext and encoders.

2 Explicit Alignment Objectives

We begin with a presentation of objective functions
that use parallel data across languages for training
multilingual encoders. These objectives assume
multilingual data in the form of word pairs in par-
allel sentences. Since gold word alignments are
scarce, we use an unsupervised word aligner. Let
S and T be the contextual hidden state matrix of
corresponding words from a pretrained multilin-
gual encoder. We assume S is English while T
is a combination of different target languages. As
both mBERT and XLLMR operate at the subword
level, we use the representation of the first subword,
which is consistent with the evaluation stage. Each
s; and t; are a corresponding row of S and T, re-
spectively. S and T come from the final layer of the
encoder while S! and T! come from the [-layer.

Linear Mapping If S and T are static feature
(such as from ELMo (Peters et al., 2018)) then T
can be aligned so that it is close to S via a linear
mapping (Wang et al., 2019, 2020; Wu et al., 2019;
Liu et al., 2019), similar to aligning monolingual
embeddings to produce cross-lingual embeddings.
For feature S! and T! from layer [, we can learn a
mapping W

W = argmin ||S! — T'W!|2 (1)
Wl

When W/ is orthogonal, Eq. (1) is known as Pro-
crustes problem (Smith et al., 2017) and can be
solved by SVD. Alternatively, Eq. (1) can also be
solved by gradient descent, without the need to
store in memory huge matrices S and T. We adopt
the latter more memory efficient approach. Follow-
ing Lample et al. (2018), we enforce the orthog-
onality by alternating the gradient update and the

following update rule
W (1+B8)W - (WWHW (2

with 8 = 0.01. Note we learn different W' for
each target language.

This approach has yielded improvements in sev-
eral studies. Wang et al. (2019) used mBERT and
10k parallel sentences from Europarl to improve de-
pendency parsing. Wang et al. (2020) used mBERT
and 30k parallel sentences from Europarl to im-
prove named entity recognition (NER) on Spanish,
Dutch, and German. Wu et al. (2019) used bilin-
gual BERT and 10k parallel sentences from XNLI
(Conneau et al., 2018) to improve dependency pars-
ing (but not NER) on French, Russian, and Chinese.
Liu et al. (2019) did not evaluate on cross-lingual
transfer tasks.

L2 Alignment Instead of using S and T as static
features, Cao et al. (2020) proposed fine-tuning the
entire encoder

L12(0) = mean;(||s; — ti[|3) 3)

where 6 is the encoder parameters. To prevent
a degenerative solution, they additionally use a
regularization term

['reg-hidden(e) - HS - Spretrained”% (4)

where S denote all hidden states of the source sen-
tence including unaligned words, encouraging the
source hidden states to stay close to the pretrained
hidden states. With mBERT and 20k to 250k par-
allel sentences from Europarl and MultiUN, Cao
et al. show improvement on XNLI but not parsing.!

In preliminary experiments, we found constrain-
ing parameters to stay close to their original pre-
trained values also prevents degenerative solutions

£reg-param(0) = ||0 - epretrainedH% (5)

while being more efficient than Eq. (4). As a result,
we adopt the following objective (with A = 1):

L(G) = »CLZ(@) + )\»Creg-param(e) (6)

2.1 Contrastive Alignment

Inspired by the contrastive learning framework of
Chen et al. (2020a), we propose a contrastive loss
to align S and T by fine-tuning the encoder. As-
sume in each batch, we have corresponding (s;, t;)

!The authors state they did not observe improvements on
parsing in the NLP Hightlights podcast (#112) (AI2, 2020).
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where i € {1,..., B}. Instead of optimizing the
absolute distance between s; and ¢; like Eq. (1)
or Eq. (3), contrastive loss allows more flexibility
by encouraging s; and t; to be closer as compared
with any other hidden state. In other words, our
proposed contrastive alignment optimizes the rela-
tive distance between s; and ¢;. As the alignment
signal is often suboptimal, our alignment objective
is more robust to errors in unsupervised word-level
alignment. Additionally, unlike previous works, we
select different sets of negative examples to enforce
different levels of cross-lingual alignment. Finally,
it naturally scales to multiple languages.

Weak alignment When the negative examples
only come from target languages, we enforce a
weak cross-lingual alignment, i.e. s; should be
closer to t; than any other ¢;,Vj # ¢. The same is
true in the other direction. The loss of a batch is

weak(e)

1 & exp (sim(s;, t;)/T)

" 2B ; prs B exp(sim(s;, t;)/T)
+log exp(sim(s;, t;)/T) Y )

> exp(sim(sj, t:)/T)

where T' = 0.1 is a temperature hyperparameter
and sim(a, b) measures the similarity of a and b.
We use a learned cosine similarity sim(a, b) =
cos(f(a), f(b)) where f is a feed-forward feature
extractor with one hidden layer (768-768-128) and
ReLU. It can learn to discard language-specific
information and only align the align-able informa-
tion. Chen et al. (2020a) find that this similarity
measure learns better representation for computer
vision. After alignment, f is discarded as most
cross-lingual transfer tasks do not need this feature
extractor, though tasks like parallel sentence re-
trieval might find it helpful. This learned similarity
cannot be applied to an absolute distance objective
like Eq. (3) as it can produce degenerate solutions.

Strong alignment If the negative examples in-
clude both source and target languages, we enforce
a strong cross-lingual alignment, i.e. s; should be
closer to ¢; than any other ¢;,Vj # i and s, Vj # 1.

Estrong(e)
Zl exp(sim(h, aligned(h))/T)
2B hen Zh/efH h/;ﬁh eXp(Slm(h h/)/T)

®)

where aligned(h) is the aligned hidden state of h
and H = {81,...,83,t1,...,t3}.

For both weak and strong alignment objectives,
we add a regularization term Eq. (5) with A = 1.

3 Experiments

Multilingual Alignment We consider alignment
and transfer from English to 8 target languages:
Arabic, German, English, Spanish, French, Hindi,
Russian, Vietnamese, and Chinese. We use two
sets of bitexts: (1) bitext used in previous works
(Conneau and Lample, 2019) and (2) the OPUS-
100 bitext (Zhang et al., 2020). (1) For bitext used
in previous works, we use MultiUN for Arabic,
Spanish, French, Russian or Chinese, EUBookshop
(Skadins et al., 2014) for German, IIT Bombay
corpus (Kunchukuttan et al., 2018) for Hindi and
OpenSubtitles (Lison et al., 2018) for Vietnamese.
We sample 1M bitext for each target language. (2)
The OPUS-100 covering 100 languages with En-
glish as the center, and sampled from the OPUS
collection randomly, which better reflects the aver-
age quality of bitext for most languages. It contains
IM bitext for each target language, except Hindi
(0.5M).

We tokenize the bitext with Moses (Koehn et al.,
2007) and segment Chinese with Chang et al.
(2008). We use fast_align (Dyer et al., 2013)
to produce unsupervised word alignments in both
direction and symmetrize with the grow-diag-final-
and heuristic. We only keep one-to-one alignment
and discard any trivial alignment where the source
and target words are identical.

We train the L2, weak, and strong alignment ob-
jectives in a multilingual fashion. Each batch con-
tains examples from all target languages. Follow-
ing Devlin et al. (2019), we optimize with Adam
(Kingma and Ba, 2014), learning rate 1e—4, 128
batch size, 100k total steps (= 2 epochs), 4k steps
linear warmup and linear decay. We use 16-bit
precision and train each model on a single RTX
TITAN for around 18 hours. We set the maximum
sequence length to 96. For linear mapping, we use
a linear decay learning rate from 1e—-4 to 0 in 20k
steps (= 3 epochs), and train for 3 hours for each
language pairs.

Evaluation We consider zero-shot cross-lingual
transfer with XNLI (Conneau et al., 2018), NER
(Pan et al., 2017), POS tagging and dependency
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XNLI NER POS Parsing XNLI NER POS Parsing
mBERT 701108 677413 783105 52.6104 mBERT 701108 677413 783105 52.6404
+ Linear Mapping 70.0106 [ 63. 7615 795105 53.6403 + Linear Mapping 7024106 [ 638413 80.1104 53.6103
+L12 Allgn 69.7i0.4 67-1i10 78-0i1A3 52-2i047 + 12 Align 70.3ig.5 67.8i1.4 78.2i1.2 52.8i0.7
+ Weak Align (Our) 70-5i0.7 68-0i1A3 78.8:&0‘7 53-1:(:046 + Weak Allgn (Olll') 70.8i[].7 67.3i0.9 78.8:{:0'6 52-9i0.6
+ Strong Align (Our) | 704107 67.7411 | 79.0407 53.0106 + Strong Align (Our) | 704107 67.2411 | 790407 533106
XLMRypgse 764105 664109 812106 573106 XLMRypgse 764105 664109 812106 573106
+ Linear Mapping 73-4d:0.6 54.15:0.9 81.3i0_5 55.65:0.5 + Linear Mapping 73.5:{:0.5 54.2:{:0,3 81710.6 56.1:{:0,4
+ L2 Align 75. 7405 | 65.7+12 813109 | 562107 + L2 Align 758405 655415 8l.4ips | 559406
+ Weak Align (Our) 76.1197 66.04109 815105 574104 + Weak Align (Our) 76.0404 662412 815105 574105
+ Strong Align (Our) 76-0i0.6 66.1i0_9 81~4i0.b‘ 57~4i0.5 + Strong A]ign (OUI‘) 76.110_4 66.2i1_0 81 .Sio_ﬁ 57‘410_5
XLMR e ‘ 804106 71.0x14 826405 5941038 XLMRjarge ‘ 804106 71.0414 82.6105 59.44i0s

(a) Alignment with bitext used in previous works

(b) Alignment with the OPUS-100 bitext

Table 1: Zero-shot cross-lingual transfer result, average over 9 languages. Breakdown can be found in App. B.

or indicates the mean performance is one standard derivation or

the mean of baseline.

While mBERT benefits from alignment in some cases, extra alignment does not improve XLMR.

parsing (Zeman et al., 2020).> We evaluate XNLI
and POS tagging with accuracy (ACC), NER with
span-level F1, and parsing with labeled attachment
score (LAS). For the task-specific layer, we use
a linear classifier for XNLI, NER, and POS tag-
ging, and use Dozat and Manning (2017) for de-
pendency parsing. We fine-tune all parameters on
English training data and directly transfer to tar-
get languages. We optimize with Adam, learning
rate 2e—-5 with 10% steps linear warmup and lin-
ear decay, 5 epochs, and 32 batch size. For the
linear mapping alignment, we use an ELMo-style
feature-based model® with 4 extra Transformer lay-
ers (Vaswani et al., 2017), a CRF instead of a linear
classifier for NER, and train for 20 epochs, a batch
size of 128 and learning rate 1e-3 (except NER
and XNLI with 1e—-4). All token level tasks use
the first subword as the word representation for
task-specific layers following previous work (De-
vlin et al., 2019; Wu and Dredze, 2019). Model
selection is done on the English dev set. We report
the mean and standard derivation of test perfor-
mance of 5 evaluation runs with different random
seeds* and the same hyperparameters. Additional
experiments detail can be found in App. A.

4 Result

Robustness of Previous Methods With a more
robust evaluation scheme and 1 million parallel

2We use the following treebanks: Arabic-PADT, German-
GSD, English-EWT, Spanish-GSD, French-GSD, Hindi-
HDTB, Russian-GSD, Vietnamese-VTB, and Chinese-GSD.

3We take the weighted average of representations in all
layers of the encoder.

*We pick 5 random seeds before the experiment and use
the same seeds for each task and model.

sentences (4% to 100x of previously considered
data), the previously proposed Linear Mapping or
L2 Alignment does not consistently outperform a
no alignment setting more than one standard deriva-
tion in all cases (Tab. 1). With mBERT, L2 Align-
ment performs comparably to no alignment on all
4 tasks (XNLI, NER, POS tagging, and parsing).
Compared to no alignment, Linear Mapping per-
forms much worse on NER, performs better on
POS tagging and parsing, and performs compara-
bly on XNLI. While previous work observes small
improvements on selected languages and tasks, it
likely depends on the randomness during evalua-
tion. Based on a more comprehensive evaluation
including 4 tasks and multiple seeds, the previously
proposed methods do not consistently perform bet-
ter than no alignment with millions of parallel sen-
tences.

Contrastive Alignment In Tab. 1, with mBERT,
both proposed contrastive alignment methods con-
sistently perform as well as no alignment while out-
performing more than 1 standard derivation on POS
tagging and/or parsing. This suggests the proposed
methods are more robust to suboptimal alignments.
‘We hypothesize that learned cosine similarity and
contrastive alignment allow the model to recover
from suboptimal alignments. Both weak and strong
alignment perform comparably. While preliminary
experiments found that increasing the batch size
by 1.5x does not lead to better performance, fu-
ture work could consider using a memory bank to
greatly increase the number of negative examples
(Chen et al., 2020b), which has been shown to be
beneficial for computer vision tasks.
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Alignment with XLMR XLMR, trained on
2.5TB of text, has the same number of transformer
layers as mBERT but larger vocabulary. It performs
much better than mBERT. Therefore, we wonder if
an explicit alignment objective can similarly lead to
better cross-lingual representations. Unfortunately,
in Tab. 1, we find all alignment methods we con-
sider do not improve over no alignment. Compared
to no alignment, Linear Mapping and L2 Align-
ment have worse performance in 3 out of 4 tasks
(except POS tagging). In contrast to previous work,
both contrastive alignment objectives perform com-
parably to no alignment in all 4 tasks.

Impact of Bitext Quality Even though the
OPUS-100 bitext has lower quality compared to
bitext used in previous works (due to its greater
inclusion of bitext from various sources), it has
minimum impact on each alignment method we
consider. This is good news for the lower resource
languages, as not all languages are covered by Mul-
tiUN or Europarl.

Model Capacity vs Alignment XLMRj,,. has
nearly twice the number of parameters as
XLMRy,se. Even trained on the same data, it per-
forms much better than XLMR,s., With or without
alignment. This suggests increasing model capacity
likely leads to better cross-lingual representations
than using an explicit alignment objective. Future
work could tackle the curse of multilinguality (Con-
neau et al., 2019) by increasing the model capacity
in a computationally efficient way (Pfeiffer et al.,
2020).

5 Discussion

Our proposed contrastive alignment objective out-
performs L2 Alignment (Cao et al., 2020) and con-
sistently performs as well as or better than no align-
ment using various quality bitext on 4 NLP tasks
under a comprehensive evaluation with multiple
seeds. However, to our surprise, previously pro-
posed methods do not show consistent improve-
ment over no alignment in this setting. Therefore,
we make the following recommendations for future
work on cross-lingual alignment or multilingual
representations: 1) Evaluations should consider
average quality data, not exclusively high-quality
bitext. 2) Evaluation must consider multiple NLP
tasks or datasets. 3) Evaluation should report mean
and variance over multiple seeds, not a single
run. More broadly, the community must estab-

lish a robust evaluation scheme for zero-shot cross-
lingual transfer as a single run with one random
seed does not reflect the variance of the method (es-
pecially in a zero-shot or few-shot setting).> While
Keung et al. (2020) advocate using oracle for model
selection, we instead argue reporting the variance
of test performance, following the few-shot learn-
ing literature. Additionally, no alignment methods
improve XLMR and larger XLMR|yge performs
much better, and raw text is easier to obtain than
bitext. Therefore, scaling models to more raw text
and larger capacity models may be more beneficial
for producing better cross-lingual models.
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A Additional Experiments Detail

Evaluation Detail We set the maximum se-
quence length to 128 during fine-tuning. For NER
and POS tagging, we additionally use a sliding
window of context to include subwords beyond the
first 128. At test time, we use the same maximum
sequence length except for parsing. At test time
for parsing, we only use the first 128 words of
a sentence instead of subwords to make sure we
compare different models consistently. We ignore
words with POS tags of SYM and PUNCT during
parsing evaluation. We rewrite the BIO label, simi-
lar to an unbiased structure predictor, to make sure
a valid span is produced during NER evaluation.
As the supervision on Chinese NER is on character-
level, we segment the character into word using the
Stanford Word Segmenter and realign the label.

All datasets we used are publicly available:
NER®, XNLI’%, POS tagging and dependency pars-
ing’. Data statistic can be found in Tab. 2.

POS tagging
Parsing

en-train 392703 20000 12543

en-dev 2490 10000 2002
en-test 5010 10000 2077

XNLI  NER

ar-test 5010 10000 680
de-test 5010 10000 977

es-test 5010 10000 426
fr-test 5010 10000 416
hi-test 5010 1000 1684
ru-test 5010 10000 601

vi-test 5010 10000 800
zh-test 5010 10000 500

Table 2: Number of examples.

B Breakdown of Zero-shot Cross-lingual
Transfer Result

Breakdown of alignment with bitext from previous
works can be found in Tab. 3 and breakdown of
alignment with the OPUS-100 bitext can be found
in Tab. 4.

*https://www.amazon.
com/clouddrive/share/
d3KGCRCIYWhKJFOH3eWA26hjg2ZCRhjpEQtDL70FSBN

"https://cims.nyu.edu/~sbowman/
multinli/multinli_1.0.zip

$https://dl.fbaipublicfiles.com/XNLI/
XNLI-1.0.zip

‘https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3226
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| ar de en es fr hi ru vi zh | AVER

XNLI (Accuracy)

mBERT 642109 705402 8254103 742415 738408 594107 683109 69.6407 68.6199 | 70.11058
+ Linear Mapping 63.8406 739409 702405 70.040.6
+ L2 Align 64.110.4 739405 73.8402 6794104 694106 679104 | 69.710.4

+ Weak Align (Our) | 64.94038 74.6407 73.8404 59.8403 685110 703108 694110 | 70.510.7
+Str0ngAlign (Our) 64.8;&0,8 74-410.6 74.110‘7 59.810.9 68.210'6 70~1:EO.8 69.0;&1,0 70.410_7

XLMRpase 793405 78.8404 703406 759405
+ Linear Mapping

+ L2 Align

+ Weak Align (Our)
+ Strong Align (Our)

XLMRlarge
NER (Entity-level F1)

mBERT

+ Linear Mapping

+ L2 Align

+ Weak Align (Our)
+ Strong Align (Our)

XLMRbase

+ Linear Mapping

+ L2 Align

+ Weak Align (Our)
+ Strong Align (Our)

775106 81.7104 88.0103 833106 82.0105 751108 792107 784106 783106 ‘ 80.4 06

725415
842102 71.6199
40.6110 [TSITEORN 84.2:02 722425

76.042.4

68.011.3
67.741.1

750431 771106
750405 822402 7424904 7724108 658111 66.0110
751406 82.1403 _ 772406 658417 637195 68.1i0s 66.110.9

POS (Accuracy)

mBERT 877102 889403
+ Linear Mapping 88.940.3
+ L2 Align

+ Weak Align (Our)
+ Strong Align (Our)

XLMRype 81.2106
+ Linear Mapping 81.3405

+1.2 Aligl’l 71-1:E1.8 91.4;&0_3 81.3;&0_9

+ Weak Align (Our) 81.510.5
+ Strong Align (Our) 814106
XLMR yrge ‘ 739410 919403 98.0400 892102 898101 784197 86.5192 648193 71.0103 | 82.6405
Parsing (Labeled Attachment Score)

mBERT 28.8404 67.8405

+ Linear Mapping

+L2 Align 33.3404

+ Weak Align (Our) 335106

+ Strong Align (Our) 33.5406

XLMRygse 36.640.2

+ Linear Mapping

+ L2 Align 36.5105

+ Weak Align (Our) 68.8104 804101 714102 739402 410406 657104 367104

+ STIOHg Align (Our) 44.8i0_9 68.9i0_5 80.4i0.1 71~3i042 73-9i0.1 40~7i0.8 66.2i0'4 36.7i0'3 34.0i0_g 57-4i045
XLMR yrge ‘ 4824115 678106 82.6403 739104 764104 418195 69.6104 389106 354105 ‘ 5944108

Table 3: Zero-shot cross-lingual transfer result with bitext from previous works. Bluc or orange indicates the mean
performance is one standard derivation above or below the mean of baseline.
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| ar de en es fr hi ru vi zh | AVER

XNLI (Accuracy)

mBERT 642109 705102 8254103 742419 738108 5944107 683109 69.6407 70.110.8
+ Linear Mapping 64.1407 741106 702405 702106
+ L2 Align 643105 707110 825105 743103 740404 593104 68.6107 697104 7034105
+ Weak Align (Our) 65.1i0_9 82.6i0.5 74-9i0.6 74~1:t0.4 _ 68-9i0,8 70.8i0.7
+ Strong Align (Our) 64.7;&0,9 82.4i0_1 74.510_7 73.910.7 59.610.6 68.5;&1,1 70.410_7
XLMRpse 71.8402 773105 851103 793105 788+04 703106 759105

+ Linear Mapping

+ L2 Align

+ Weak Align (Our) 78.440.5 747103

+ Strong Align (Our) | 72.0405 790404 78.6405 70.1103 757104 74.84056 76.140.4
XLMR yrge ‘ 775106 81.7104 88.0103 833106 820105 75.1108 792407 784106 783106 ‘ 80.4106
NER (Entity-level F1)

mBERT 7894103 69.741.8

+ Linear Mapping

+ L2 Align 84.140.1

+ Weak Align (Our) 84.040.1 79.040.4 69.1408

+ Strong Align (Olll‘) 84.2i0_1 78.810‘3 64.810,9 69.5;&1,4 52~1:E0.6 67.2:&1_1
XLMRpase 750403 822402 77.610.7 68.011.2

+ Linear Mapping

+ L2 Align 684199

+ Weak Align (Our) 750408 822402 7734106 67.541.4 66.2112
+ Strong Align (Our) 751404 822402 774106 63. 7109 68.04+11 66.241.0
POS (Accuracy)

mBERT 9044103 969101 88.9403 62.740.2 7834105
+ Linear Mapping 89.010.2

+L2 Align 62.8105 673411

+ Weak Align (Our) 88.710.3 68.0+0.5

+ Strong Align (Our) 88.710.4

XLMRp,se 702416 91.6403 97.5100 885102 8944103 71.7113 86.1193 645105 714105 | 81.2406
+ Linear Mapping 89.5103 81.7106
+ L2 Align 8141038
+ Weak Align (Our) 727113 862102 81.5405
+ Strong Align (Our) 72.041.9 _ 81.5406
XLMR yrge ‘ 739410 919403 98.0400 892402 898401 784421 865102 648103 71.0403 | 82.6105
Parsing (Labeled Attachment Score)

mBERT 28.8;&0,4 67.8;&0_5 31.010.5 60.210'6

+ Linear Mapping 67.740.2

+L2 Align 67.7+0.7 7344105

+ Weak Align (Our) 67.610.4 7354105 31.0116

+ Strong Align (Our) 68.040.4

XLMRpase 69.0-£0.4

+ Linear Mapping 69.240.2

+ L2 Align 36.4106

+ Weak Align (Our) 68.75:0‘7 80.45:0‘1 71.3:(:0,3 73‘8:(:0‘3 41.4:(:0.3 65.7:{:0_4 36.7:{:0_4

+ STIOHg Align (Our) 44~9j:1.0 68.8i0_6 80.4i0_1 71~2i042 73.8:‘:0.2 41~1i0.8 65.9i0'5 36.6i0'3 33~9i0.7 57-4i045
XLMR yrge ‘ 4824115 678106 82.6403 739104 764104 418195 69.6104 389106 354105 ‘ 5941038

Table 4: Zero-shot cross-lingual transfer result with the OPUS-100 bitext. Bluc or orange indicates the mean
performance is one standard derivation above or below the mean of baseline.
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