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Abstract

We propose a novel adapter layer formalism
for adapting multilingual models. They are
more parameter-efficient than existing adapter
layers while obtaining as good or better per-
formance. The layers are specific to one lan-
guage (as opposed to bilingual adapters) allow-
ing to compose them and generalize to unseen
language-pairs. In this zero-shot setting, they
obtain a median improvement of +2.77 BLEU
points over a strong 20-language multilingual
Transformer baseline trained on TED talks.

1 Introduction

Ofthe many virtues of multilingual neural machine
translation (MNMT), arguably the most attractive
is the promise of improving performance in the
low resource setting (Johnson et al., 2017; Ari-
vazhagan et al., 2019; Dabre et al., 2020). These
models even allow for the extreme of these cases,
namely to translate in language pair directions
which are unseen at training time (zero-shot set-
ting in this paper). Unfortunately, while perfor-
mance in the low-resource setting indeed increases
significantly, their zero-shot performance remains
very low (Johnson et al., 2017). In this paper,
we propose a neural architecture that allows to
translate from any of the source languages towards
any of the target languages seen in the training
data, regardless of the presence of that specific
language direction during training. For that, we
build upon the recently proposed adapter layers
for NMT (Bapna and Firat, 2019), by using mono-
lingual (language-specific) adapter layers, instead
of bilingual (language-pair specific) ones. This
design difference improves their compositionality,
permitting to combine any encoder adapter with
other decoder adapters. Monolingual adapter lay-
ers perform as good as bilingual adapter layers in
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the non—zero-shot setting, are effective in the zero-
shot setting and have the additional advantage of
requiring fewer parameters.

2 Related Work

Zero-shot translation is direct translation in a
language pair unseen during training. Aharoni
et al. (2019) analyze the zero-shot performance of
MNMT models as a function of the number of
language pairs. They observe that having more
languages results in better zero-shot performance.
However, several artifacts arise, as described by
Dabre et al. (2020); Zhang et al. (2020); Aharoni
et al. (2019); Arivazhagan et al. (2019), like off-
target translation and insufficient modeling capac-
ity of the MNMT models. Zhang et al. (2020)
use language-aware layer normalization and lin-
ear transformation to improve some drawbacks
of MNMT,; they also rely massively on back-
translation to improve zero-shot translation.
Adaptation to a new language pair may be
addressed by training a multilingual model then
fine-tuning it with parallel data in the language
pair of interest (Neubig and Hu, 2018; Vari§ and
Bojar, 2019; Stickland et al., 2020). Escolano
et al. (2020) propose plug-and-play encoders and
decoders per language, which take advantage of a
single representation in each language but at the
cost of larger model sizes. In order to add only a
few trainable parameters per task, adapter modules
— initially introduced for computer vision (Rebuffi
et al., 2017, 2018) — were proposed for language
modeling by Houlsby et al. (2019). Bapna and Fi-
rat (2019) used them for parameter-efficient adap-
tation in MNMT. The parameters of the original
MNMT network (the parent model) remain fixed,
which permits a high degree of parameter sharing.
The final multilingual model (the adapted model)
is just slightly larger than the original one. (Bapna
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Figure 1: Proposed modification of the adapter layers from Bapna and Firat (2019). We use languages as the tasks
in the encoder and in the decoder. xx and yy denote source and target languages respectively.

and Firat, 2019) show that adapters mitigate one
major problem of MNMT models: performance
drop in high-resource languages.

The motivation of that work was not zero-shot,
and it is not obvious how to use them in such a
scenario as the adapter layers are language-pair
specific. While in Section 5 we propose a way of
using those adapters through pivoting adapter lay-
ers, the main contribution of this paper is monolin-
gual adapters which allow combining any encoder
adapter with other decoder adapters.

3 Monolingual adapters

Adapter modules (Rebuffi et al., 2017; Houlsby
et al., 2019) were formulated for NMT by Bapna
and Firat (2019): lightweight adapter layers are
transplanted between the layers of a pre-trained
network and fine-tuned on the adaptation corpus.
As shown in Figure 1 (left), an adapter layer is
a down projection to a bottleneck dimension fol-
lowed by an up projection to the initial dimen-
sion. The bottleneck allows to limit the number
of parameters of the adapter module. The residual
connection coupled with a near-identity initializa-
tion enables a pass-through and allows keeping at
least the performance of the parent model. In their
initial formulation, Bapna and Firat (2019) pro-
posed adapters for each language pair (bilingual
adapters), while we propose monolingual adapters.

We illustrate the mechanism in Figure 1: our
monolingual-adapter layers are inserted into each
of the transformer encoder and decoder layers.
When translating from language xx to language yy,
we only activate the encoder adapter layers for xx,
denoted by 6Z; and the decoder adapter layers for

XX

yy, denoted by GyDy.

adapt  #tasks + params/task zero-shot
FT O(n?) O(K) X
biling. O(n?) O(k) v (pivot)
mono. O(n) O(k) v

Table 1: Number of parameters required for different
adaptation techniques. FT denotes fine-tuning. K is
the total number of model parameters, % is the number
of parameters per set of adapter layers (with £ < K),
and n is the number of languages.

Our formulation is different from Bapna and Fi-
rat (2019), who propose adapter layers for each
language direction (0y,—,,). In a multiparallel set-
ting (i.e., where parallel data is available for all lan-
guage pairs), this requires training n(n — 1) sets of
layers, where n is the number of languages. Our
monolingual (language-specific) adapters only re-
quire 2n layers. Table 1 summarizes the amount of
parameters needed for adaptation with regular fine-
tuning (FT), bilingual adapters (Bapna and Firat,
2019) and our proposed monolingual adapters. In
our setting of 20 languages, fine-tuning would mul-
tiply the number of parameters by 380 (20 x 19).
As the bottleneck dimension determines the in-
crease of parameters, we experiment with both 64
(used in past work) and 1024, which matches the
total number of parameters for bilingual adapters
(see Table 2).

4 Experimental Setup

4.1 Datasets

We use the TED talks (Qi et al., 2018) in all our ex-
periments, and all the numbers are BLEU scores
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type FT  mono. biling. mono.
bottleneck - 64 64 1024
increase x380 x1.47 x4.53 x3.73

Table 2: Increase in parameters over all tasks (380 lan-
guage directions). FT denotes fine-tuning. The number
of parameters of the parent model in this work is 68M.
These parameter counts include the embeddings.

over the test set.! The TED talks dataset is mul-
tiparallel, i.e., each English sentence has transla-
tions in multiple languages. Here, we restrict to
the top 20 languages,” resulting in training cor-
pora ranging between 108k and 214k parallel sen-
tences. We use the dataset as a full multiparallel
corpus (data aligned in all directions) and simulate
an English-centric setting by using only parallel
corpora with English as one of the languages.

4.2 Training

Architecture We use the Transformer archi-
tecture (Vaswani et al., 2017), implemented in
fairseq (Ott et al., 2019), which we modify to
include monolingual and bilingual adapters. We
train a joint BPE model (Sennrich et al., 2016)
on all languages, with inline casing (Berard et al.,
2019) and 64k merge operations (resulting in a
70k vocabulary size). The Transformer architec-
ture used in this work® has 4 attention heads, 6 en-
coder layers, 6 decoder layers, an embedding size
of 512 and a feed-forward dimension of 1024.

MNMT Training We train a standard MNMT
model following similar settings as Johnson et al.
(2017). A single many-to-many model is trained
on all the data English-centric data, using a source-
side control token to indicate the target language.
This model, which we call “parent”, serves as an
initialization for our adapter-enabled models. We
use Adam (Kingma and Ba, 2015) with an inverse
square root schedule, with 4000 warmup updates
and a maximum learning rate of 0.0005. We set
the maximum batch size per GPU to 4000 tokens,
and train on 4 GPUs with mixed-precision (Ott
et al., 2018). We apply dropout with a rate of 0.3,
and label smoothing with a rate of 0.1. Like Ari-

'Obtained by running multi-bleu.perl, or SacreBLEU
with the -—tok none option, as the TED talks dataset is pre-
tokenized.

2en, ar, he, ru, ko, it, ja, zh-cmn, es, fr,
pt-br, nl, tr, ro, pl, bg, vi, de, fa, hu

3transformer_iwslt_de_en in fairseq

vazhagan et al. (2019), we mitigate the training
size imbalance between language pairs by follow-
ing a temperature-based sampling strategy with
T = 5. To ensure all languages are represented
adequately in the vocabulary, we use the same
temperature-based sampling strategy for training
the BPE model. This MNMT model is trained
for 120 epochs over all the English-centric train-
ing data (38 language pairs). As shown in Table 3,
it is a strong MNMT baseline.

Adapter Variations With monolingual adapters
enabled, we optimize the adapter parameters for an
additional 60 epochs with the same English-centric
data. This setting lets us study the zero-shot ca-
pabilities of monolingual adapters. We also con-
sider an “adaptation” setting where the monolin-
gual adapters see data in all language pairs (380).
In this setting, we only optimize adapter param-
eters for 10 epochs due to the increase of train-
ing time owing to more data. We use a bottle-
neck dimension of 64 for bilingual adapters, and
try two values for the monolingual adapters: 64
and 1024. Table 2 shows how many extra parame-
ters are added in each setting.

To train the adapters, we use the same settings
as the parent MNMT model but reset the learning
rate schedule and freeze all model parameters ex-
cept the new adapter parameters. We train the 380
sets of bilingual adapters sequentially, as they are
independent from each other. However, the mono-
lingual adapters are trained all at once. To do so,
we aggregate the training data for all language di-
rections, using the same temperature-based sam-
pling strategy as the parent model. For ease of im-
plementation, we build homogeneous batches (i.e.,
only containing sentences for one language direc-
tion) and only activate corresponding adapters. An
epoch consists in a pass over the training data in all
language directions (== 160k line pairs x 380 lang
dirs ~ 62M examples in the adaptation case, and
~ 7.1M examples in the zero-shot case).

5 Results and Discussion

We evaluate the effectiveness of monolingual
adapters in two settings: adaptation, where multi-
parallel training data is available for the adapters;
and in the zero-shot setting where translation is
done on unseen language pairs.
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xx—en en—yy XX—yy
ar de he it avgio ar de he it avgio  avgsas
Abharoni et al. (2019) 27.84 30.50 34.37 33.64 - 1295 2331 23.66 30.33 - -
(1) Tanetal. (2019) 31.07 34.63 36.81 38.06 - - - - - - -
Bilingual baselines 3299 3736 39.00 39.73 3242 17.22 2994 2747 3542 2437 14.96
Abharoni et al. (2019) 2832 3297 33.18 35.14 - 1425 2795 24.16 33.26 - -
Parent 30.68 36.53 36.00 38.77 31.66 1540 28.60 24.53 34.02 23.26 9.73
(2) Parent adaptation 29.63 3583 35.10 3791 30.85 1445 2749 2287 3243 2225 1482
Mono-1024 zero-shot ~ 30.87 35.87 3587 38.14 3121 1671 30.81 26.78 36.05 24.85 12.94
Mono-1024 adaptation  32.66 37.03 37.76 3881 32.29 1624 29.76 2577 35.02 24.07 1583

Table 3: BLEU scores of our models on the TED test sets compared to the literature. (1) Bilingual models. (2)
Many-to-many MNMT models. The best model for each case is highlighted in italics and the best overall is in bold.
Note that “(2) Aharoni et al. (2019)” is a 58-language model. “Parent” is our MNMT model trained on English-
centric data. “Parent adaptation” is the same model fine-tuned for 10 epochs on the full multiparallel corpus (similar
setting as “Mono-1024 adaptation”, but without adapters). “Bilingual baselines‘ are models trained on one language
direction only, with the same architecture as “Parent”. Pivot-translating through English with “Parent” gives an

average zero-shot performance (zx—yy) of 14.39 BLEU.

14 : mono-64
o = mono-1024
12 cel ) o === biling-64

10

BLEU A

Language pairs (sorted by training size in descending order)

Figure 2: Comparison of bilingual adapters and mono-
lingual adapters on the TED test sets in the adaptation
setting, over 380 language pairs (sorted by available
data). The y-axis shows the absolute BLEU differences
with the parent model (trained on English-centric data
only). The trendlines are obtained by interpolating a
polynomial of degree 7 over the individual points.

5.1 Adaptation

In this setting, the adapter layers are trained on
multiparallel data in 380 language pairs. Fig-
ure 2 shows the absolute difference in BLEU with
the parent model, trained on English-centric data
only, on each language pair. We compare bilin-
gual adapters of dimension 64 with monolingual
adapters of dimension 1024 or 64. As can be
seen from the trendlines, while mono-64 performs
slightly (but consistently) worse than biling-64,
mono-1024 (which has a lower parameter budget
than biling-64) obtains even better results, rang-
ing from an absolute difference of -0.22 to +14.43,
with a median of +5.59.

Because multilingual models are known to de-
grade performance on high-resource language di-
rections, we study specifically translation to and

from English. For en—yy, mono-1024 (me-
dian +1.65) consistently outperforms biling-64
(+1.24) and mono-64 (+0.48) over the 19 language
pairs. For xx—en however, biling-64 adapters are
slightly superior to both mono-64 and mono-1024
(+1.08 vs +0.09 and +0.50 respectively).

5.2 Zero-shot

10 mono-64

. = mono-1024
8 ’ ’ . o . === biling-64 (pivot)

BLEU A

Language pairs (sorted by training size in descending order)

Figure 3: Comparison of bilingual adapters and mono-
lingual adapters on the TED test sets in the zero-shot
setting. The parent model and adapter-enabled models
have only seen xx—en and en—yy data, and are tested
on the remaining 342 pairs. The y-axis shows the abso-
lute BLEU differences with the parent model.

Monolingual adapters can be naturally used for
zero-shot translation, where a new language pair
is provided at inference time. For this, we sim-
ply use the encoder adapters of the source language
and the decoder adapters of the target language. To
evaluate zero-shot translation, we use the adapter-
enabled models trained on English-centric data and
translate the test sets in the 342 language pairs not
involving English (19 x 18).

Absolute improvements in BLEU scores of the
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adapter-enabled models over the MNMT parent
model are shown in Figure 3. A median improve-
ment of +1.26 is observed in the mono-64 setting,
while the mono-1024 setting brings a median im-
provement of +2.77. The smallest difference (over
the parent model) observed in each case was -0.14
and +0.30 respectively, indicating near-systematic
improvement by using monolingual adapter lay-
ers. These results demonstrate the compositional-
ity property of our monolingual adapters.

Because of the English-centric nature of TEDx,
we also apply bilingual adapters to the zero-shot
setting. We do this by composing the encoder and
decoder adapter layers through a pivot language.
That is, to translate xx—yy, we choose the bilin-
gual adapter corresponding to xx—en in the en-
coder and en—yy in the decoder. As can be seen
in Figure 3, this slightly outperforms mono-64 but
not mono-1024.

6 Ablation Study

We investigate the individual contribution of the
encoder and decoder adapter layers at inference
time. We compare the full model using mono-
1024 adapters against the two options of activat-
ing (1) only encoder adapters (2) only decoder
adapters.

- mono-1024
-30 mono-1024 (decoder-only)
=== mono-1024 (encoder-only)

Language pairs (sorted by training size in descending order)

Figure 4: Ablation study for the adaptation setting,
where we compare the full model using mono-1024
adapter against its degraded versions with (1) only en-
coder adapters (2) only decoder adapters.

The interpolated curves for all language pairs
are in Figure 4 for the adaptation setting and in Fig-
ure 5 for the zero-shot setting. In the adaptation set-
ting, enabling only the decoder layers brings a me-
dian improvement of +1.03 over the parent model,
while enabling only the encoder gives -7.00 BLEU
(versus +5.59 when both encoder and decoders are
enabled). In the zero-shot setting, the contribution
of the encoder is larger (+1.69) than the decoder

101 — mono-1024

mono-1024 (decoder-only)
871 === mono-1024 (encoder-only) . .

BLEU A

Language pairs (sorted by training size in descending order)

Figure 5: Ablation study for the zero-shot setting,
where we compare the full model using mono-1024
adapter against its degraded versions with (1) only en-
coder adapters (2) only decoder adapters.

(+0.63), compared to +2.77 when both encoder and
decoder adapters are enabled.

We have seen that in the adaptation case, using
the encoder adapter layers alone leads to a severe
drop in performance. This might indicate that — at
least during the adaptation — important information
is captured in the encoder’s adapter layer (in line
with previous reports by Kudugunta et al., 2019)
or that the decoder adaptation grows dependent on
the encoder adapters, to the point where dropping
the latter degrades the system. However, further
analysis would be needed to confirm either of these
hypotheses.

7 Conclusion

This work investigated adapter modules and their
compositionality for MNMT, in particular in the
zero-shot setting. We introduced monolingual
adapters and compared them to bilingual adapters,
which we also applied to zero-shot translation.
Our adaptation experiments show the potential of
the proposed monolingual adapters, which outper-
form bilingual adapters while having fewer param-
eters. In a zero-shot setting, we naturally com-
pose our monolingual adapters and obtain a me-
dian improvement of +2.77 BLEU points over a
strong MNMT model. Future work will investi-
gate the compositional capability of these adapters,
and combine domain and monolingual adapters for
NMT.

More generally, this work adds to the growing
evidence of the flexibility of adapter layers (Pfeif-
fer etal., 2020a), and their potential for lightweight
fine-tuning, including in zero-shot scenarios (Pfeif-
fer et al., 2020b) and in a variety of tasks (Ustiin
et al., 2020).
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