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Abstract

Exploiting visual groundings for language un-
derstanding has recently been drawing much
attention. In this work, we study visually
grounded grammar induction and learn a con-
stituency parser from both unlabeled text and
its visual groundings. Existing work on this
task (Shi et al., 2019) optimizes a parser via
REINFORCE and derives the learning signal
only from the alignment of images and sen-
tences. While their model is relatively accu-
rate overall, its error distribution is very un-
even, with low performance on certain con-
stituents types (e.g., 26.2% recall on verb
phrases, VPs) and high on others (e.g., 79.6%
recall on noun phrases, NPs). This is not
surprising as the learning signal is likely in-
sufficient for deriving all aspects of phrase-
structure syntax and gradient estimates are
noisy. We show that using an extension of
probabilistic context-free grammar model we
can do fully-differentiable end-to-end visually
grounded learning. Additionally, this enables
us to complement the image-text alignment
loss with a language modeling objective. On
the MSCOCO test captions, our model estab-
lishes a new state of the art, outperforming
its non-grounded version and, thus, confirm-
ing the effectiveness of visual groundings in
constituency grammar induction. It also sub-
stantially outperforms the previous grounded
model, with largest improvements on more
‘abstract’ categories (e.g., +55.1% recall on
VPs).1

1 Introduction

Grammar induction is a task of finding latent hier-
archical structure of language. As a fundamental
problem in computational linguistics, it has been
extensively studied for decades (Lari and Young,
1990; Carroll and Charniak, 1992; Clark, 2001;

1Our code is available at https://git.io/JU0JJ.

Klein and Manning, 2002). Recently, deep learn-
ing models have been shown very effective across
NLP tasks and have also been applied to grammar
induction, greatly advancing the area (Shen et al.,
2018, 2019; Kim et al., 2019a,b; Jin et al., 2019).
These neural grammar-induction approaches have
been generally limited to relying on text, without
considering learning signals from other modalities.

In contrast, the crucial aspect of natural language
learning is that it is grounded in perceptual ex-
periences (Barsalou, 1999; Fincher-Kiefer, 2001;
Bisk et al., 2020). We thus anticipate improved
language understanding by leveraging grounded
learning. Promising results from grounded learn-
ing have been emerging in areas such as representa-
tion learning (Bruni et al., 2014; Kiela et al., 2018;
Bordes et al., 2019). Typically, they use visual im-
ages as perceptual groundings of language and aim
at improving continuous vector representations of
language (e.g., word or sentence embeddings). In
this work, we consider a more challenging prob-
lem: can visual groundings help us induce syntac-
tic structure? We refer to this problem as visually
grounded grammar induction.

Shi et al. (2019) propose a visually grounded
neural syntax learner (VG-NSL) to tackle the task.
Specifically, they learn a parser from aligned image-
sentence pairs (e.g., image-caption data), where
each sentence describes visual content of the corre-
sponding image. The parser is optimized via REIN-
FORCE, where the reward is computed by scoring
the alignment of images and constituents. While
straightforward, matching-based rewards can, as
we will discuss further in the paper, make the parser
focus only on more local and short constituents
(e.g., 79.6% recall on NPs) and to perform poorly
on longer ones (e.g., 26.2% recall on VPs) (Shi
et al., 2019). While for the former it outperforms
the text-only grammar induction methods, for the
latter it substantially underachieves. This may not

https://github.com/zhaoyanpeng/vpcfg
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be surprising, as it is not guaranteed that every
constituent of a sentence has its visual representa-
tion in the aligned image; the reward signals can
be noisy and insufficient to capture all aspects of
phrase-structure syntax. Consequently, Shi et al.
(2019) have to rely on language-specific inductive
bias to obtain more informative reward signals. An-
other issue with VG-NSL is that the parser does
not admit tractable estimation of the partition func-
tion and the posterior probabilities for constituent
boundaries needed to compute the expected reward
in closed form. Instead, VG-NSL relies on Monte
Carlo policy gradients, potentially suffering from
high variance.

To alleviate the first issue, we propose to com-
plement the image-text alignment-based loss with
a loss defined on unlabeled text (i.e., its log-
likelihood). As re-confirmed with neural models
in Shen et al. (2019) and Kim et al. (2019a), text
itself can drive induction of rich syntactic knowl-
edge, so additionally optimizing the parser on raw
text can be beneficial and complementary to visual
grounded learning. To resolve the second issue,
we resort to an extension of probabilistic context-
free grammar (PCFG) parsing model, compound
PCFG (Kim et al., 2019a). It admits tractable esti-
mation of the posteriors, needed in the alignment
loss, with dynamical programming and leads to a
fully-differentiable end-to-end visually grounded
learning. More importantly, the PCFG parser lets
us complement the alignment loss with a language
modeling objective.

Our key contributions can be summarized as
follows: (1) we propose a fully-differentiable end-
to-end visually grounded learning framework for
grammar induction; (2) we additionally optimize a
language modeling objective to complement visu-
ally grounded learning; (3) we conduct experiments
on MSCOCO (Lin et al., 2014) and observe that
our model has a higher recall than VG-NSL for
five out of six most frequent constituent labels. For
example, it surpasses VG-NSL by 55.1% recall on
VPs and by 48.7% recall on prepositional phrases
(PPs). Comparing to a model trained purely via
visually grounded learning, extending the loss with
a language modeling objective improves the overall
F1 from 50.5% to 59.4%.

2 Background and Motivation

Our model relies on compound PCFGs (Kim et al.,
2019a) and generalizes the visually grounded gram-

mar learning framework of Shi et al. (2019). We
will describe the relevant aspects of both frame-
works in Sections 2.1-2.2, and then discuss their
limitations (Section 2.3).

2.1 Compound PCFGs
Compound PCFGs extend context-free grammars
(CFGs) and, to establish notation, we start by
briefly introducing them. A CFG is defined as
a 5-tuple G = (S,N ,P,Σ,R) where S is the start
symbol, N is a finite set of nonterminals, P is a
finite set of preterminals, Σ is a finite set of ter-
minals,2 and R is a set of production rules in the
Chomsky normal form:

S � A, A ∈ N ,
A � BC, A ∈ N , B,C ∈ N ∪ P,
T � w, T ∈ P, w ∈ Σ .

PCFGs extend CPGs by associating each produc-
tion rule r ∈ R with a non-negative scalar πr such
that

∑
r:A�γ πr = 1, i.e., the probabilities of pro-

duction rules with the same left-hand-side nonter-
minal sum to 1. The strong context-free assumption
hinders PCFGs and prevent them from being effec-
tive in the grammar induction context. Compound
PCFGs (C-PCFGs) mitigate this issue by assuming
that rule probabilities follow a compound probabil-
ity distribution (Robbins, 1951):

πr = gr(z; θ), z ∼ p(z) ,

where p(z) is a prior distribution of the latent z,
and gr(·; θ) is parameterized by θ and yields a rule
probability πr. Depending on the rule type, gr(·; θ)
takes one of these forms:

πS�A =
exp(uTAfs([wS ; z]))∑

A′∈N exp(uTA′fs([wS ; z]))
,

πA�BC =
exp(uTBC [wA; z])∑

B′,C′∈N∪P exp(uTB′C′ [wA; z])
,

πT�w =
exp(uTwft([wT ; z]))∑

w′∈Σ exp(uTw′ft([wT ; z]))
,

where u is a parameter vector, wN is a symbol
embedding and N ∈ {S} ∪ N ∪ P . [·; ·] indicates
vector concatenation, and fs(·) and ft(·) encode
the input into a vector (parameters are dropped for
simplicity).

2Strictly, CFGs do not distinguish nonterminals N (con-
stituent labels) from preterminals P (part-of-speech tags).
They are both treated as nonterminals. N ,P,Σ satisfy
N ∩ P = ∅ and (N ∪ P) ∩ Σ = ∅.
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A C-PCFG defines a mixture of PCFGs (i.e., we
can sample a set of PCFG parameters by sampling
a vector z). It satisfies the context-free assumption
conditioned on z and thus admits exact inference
for each given z. Learning with C-PCFGs involves
maximizing the log-likelihood of every observed
sentence w = w1w2 . . . wn:

log pθ(w) = log

∫
z

∑
t∈TG(w)

pθ(t|z)p(z) dz ,

where TG(w) consists of all parses of the sentence
w under a PCFG G. Though for each given z
the inner summation over parses can be efficiently
computed using the inside algorithm (Baker, 1979),
the integral over z makes optimization intractable.
Instead, C-PCFGs rely on variational inference and
maximize the evidence lower bound (ELBO):

log pθ(w) ≥ ELBO(w;φ, θ) = (1)

Eqφ(z|w)[log pθ(w|z)]− KL[qφ(z|w)||p(z)] ,

where qφ(z|w) is a variational posterior, a neural
network parameterized with φ. The expected log-
likelihood term is estimated via the reparameteriza-
tion trick (Kingma et al., 2014); the KL term can
be computed analytically when p(z) and qφ(z|w)
are normally distributed.

2.2 Visually grounded neural syntax learner

The visually grounded neural syntax learner (VG-
NSL) comprises a parsing model and an image-text
matching model. The parsing model is an easy-
first parser (Goldberg and Elhadad, 2010). It builds
a parse greedily in a bottom-up manner while at
the same time producing a semantic representa-
tion for each constituent in the parse (i.e., its ‘em-
bedding’). The parser is optimized through REIN-
FORCE (Williams, 1992). The reward encourages
merging two adjacent constituents if the merge re-
sults in a constituent that is concrete, i.e., if its
semantic representations is predictive of the cor-
responding image, as measured with a matching
function. We omit details of the parser and how the
semantic representations of constituents are com-
puted, as they are not relevant to our approach, and
refer the reader to Shi et al. (2019).

However, as we will extend their image-text
matching model, we explain this component of
their approach more formally. In their work, this
loss is used to learn the textual and visual repre-
sentations. For every constituent c(i) of a sentence

w(i), they define the following triplet hinge loss:

h(c(i),v(i)) = Ec′

[
m(c′,v(i))−m(c(i),v(i)) + ε

]
+

+ Ev′

[
m(c(i),v′)−m(c(i),v(i))+ε

]
+
, (2)

where [·]+ = max(0, ·), ε is a positive margin,
m(c,v) , cos(c,v) is the matching function mea-
suring similarity between the constituent represen-
tation c and the image representation v. The expec-
tation is taken with respect to ‘negative examples’,
c′ and v′. In practice, for efficiency reasons, a sin-
gle representation of an image v′ and a single rep-
resentation of a constituent (span) c′ from another
example in the same batch are used as the negative
examples. Intuitively, an aligned image-constituent
pair (c(i),v(i)) should score higher than an un-
aligned one ((c′,v(i)) or (c(i),v′)).

The total loss for an image-sentence pair
(v(i),w(i)) is obtained by summing losses for all
constituents in a tree t(i), sampled from the parsing
model (we write c(i) ∈ t(i)):

ŝ(v(i),w(i)) =
∑

c(i)∈t(i)
h(c(i),v(i)) . (3)

In their work, training alternates between opti-
mizing the parser using rewards (relying on image
and text representations) and optimizing the image-
text matching model to refine image and text rep-
resentations (relying on the fixed parsing model).
Once trained, the parser can be directly applied to
raw text, i.e., images are not used at test time.

2.3 Limitations of the VG-NSL framework
While straightforward, there are several practical
issues inhibiting the visually grounded learning
framework. First, contrastive learning implicitly
assumes that every constituent of a sentence has its
visual representation in the aligned image. How-
ever, it is not guaranteed in practice and would
result in noisy reward signals. Besides, the loss in
Equation 2 (and a similar component in the reward,
see Shi et al. (2019)) focuses on constituents corre-
sponding to short spans. Long spans, independently
of their syntactic structure, tend to be sufficiently
discriminative to distinguish the aligned image v(i)

from an unaligned one. This implies that there is
not much learning signal for such constituents. The
tendency to focus on short spans and those more
easily derivable from an image is evident from the
results (Shi et al., 2019; Kojima et al., 2020). For
example, their parser is accurate for noun phrases
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(recall 79.6%), which are often short for captions,
but performs poorly on verb phrases (recall 26.2%)
which have longer spans, more complex composi-
tionally and also harder to predict from images (see
our analysis in Section 4.3.2). While there may be
ways to mitigate some of these issues, we believe
that any image-text matching loss alone is unlikely
to provide sufficient learning signal to accurately
captures all aspects of syntax. Instead of resorting
to language-specific inductive biases as done by Shi
et al. (2019) (i.e., head-initial bias (Baker, 2008) of
English), we propose to complement the image-text
matching loss with the objective derived from the
unaligned text (i.e., log-likelihood), jointly training
a parser to both explain the raw language data and
the alignment with images.

Moreover, their learning is likely to suffer from
large variance in gradient estimation as their parser
does not admit tractable estimation of the partition
function, and thus they have to rely on sampling
decisions. This will be even more of a problem if
we would attempt to use it in the joint learning set-
up. Also note that similar parsing models do not
yield linguistically-plausible structures when used
in the conventional (i.e., non-grounded) grammar-
induction set-ups (Williams et al., 2018; Havrylov
et al., 2019).

In the next section, we will use com-
pound PCFGs and describe an improved visually
grounded learning framework that can tackle these
issues neatly.

3 Visually grounded compound PCFGs

We use compound PCFGs (Kim et al., 2019a) and
develop visually-grounded compound PCFGs (VC-
PCFGs) within the contrastive learning framework.
Instead of sampling a tree and computing a point
estimate of the image-text matching loss, we can
compute the expected image-text matching loss
under a tree distribution and use end-to-end con-
trastive learning (Section 3.1). Since it is inefficient
to compute constituent representations relying on
the chart, we will introduce an additional textual
representation model to encode constituents (Sec-
tion 3.2). Moreover, VC-PCFGs let us additionally
optimize a language modeling objective, comple-
menting the visually grounded contrastive learning
(Section 3.3).

3.1 End-to-end contrastive learning
In the visually grounded grammar induction frame-
work, the parsing model is optimized through learn-
ing signals derived from the alignment of images
and constituents, as scored by the image-text match-
ing model. Denoting a set of image representations
by V = {v(i)} and the corresponding set of sen-
tences byW = {w(i)}, the image-text matching
model is optimized via contrastive learning:

L(V,W;φ, θ) =
∑
i

s(v(i),w(i)) . (4)

We define s(v(i),w(i)) as the loss of aligning v(i)

and w(i). In VG-NSL, it is estimated via point
estimation (see Equation 3). While in VC-PCFGs,
given an aligned image-sentence pair (v,w), we
compute the expected image-sentence matching
loss under a tree distribution pθ(t|w), leading to an
end-to-end contrastive learning:

s(v,w) = Epθ(t|w)

∑
c∈t

h(c,v) , (5)

where h(c,v) is the hinge loss of aligning the un-
labeled constituent c and the image v (defined in
Equation 2). Minimizing the hinge loss encourages
an aligned image-constituent pair to rank higher
than any unaligned one. Expanding the right-hand
side of Equation 5

s(v,w) =
∑

t∈TG(w)

pθ(t|w)
∑
c∈t

h(c,v)

=
∑
c∈w

∑
t∈TG(w)

I{c∈t}pθ(t|w)

︸ ︷︷ ︸
p(c|w): marginal of the span c

h(c,v)

=
∑
c∈w

p(c|w)h(c,v) , (6)

where p(c|w) is the conditional probability (i.e.,
marginal) of the span c given w. It can be effi-
ciently computed with the inside algorithm and
automatic differentiation (Eisner, 2016).

3.2 Span representation
Estimation of the expected image-text matching
scores relies on span representations. Ideally, a
span representation should encode semantics of a
span with its computation guided by its syntactic
structure (Socher et al., 2013). The reliance on
the predicted tree structure will result in propagat-
ing learning signals derived from the alignment of
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images and sentences back to the parser. To real-
ize this desideratum, we could follow the inside
algorithm and recursively compose span represen-
tations (Le and Zuidema, 2015; Stern et al., 2017;
Drozdov et al., 2019), which is, however, time- and
memory-inefficient in practice.

Instead, we produce span representations largely
independently of the parser, as we will explain be-
low. The only way the parser model influences this
representation is through the predicted constituent
label: we use its distribution to compute the repre-
sentation.3

Specificially, as a trade-off for a better training
efficiency, we adopt a single-layer BiLSTM to en-
code spans. A mean-pooling layer is applied over
the hidden states h of the BiLSTM and followed by
a label-specific affine transformation fk(·) to pro-
duce a label-specific span representation ck. Take
a span ci,j = wi . . . wj (0 < i < j ≤ n):

ck = fk(
1

j − i+ 1

j∑
l=i

hl) . (7)

The BiLSTM encoding model operates at the span
level and encodes semantics of a span. Unlike
using a single sentence-level (Bi)LSTM encoder, it
guarantees that no information from words outside
of the span leaks into its representations. More
importantly, it can run in O(n) for a sentence of
length n with a parallel implementation. While
the produced representation does not reflect the
structural decisions made by the parser, it can be
sensitive to word order and may be affected by its
syntactic structure (Blevins et al., 2018).

In order to compute the representation of unla-
beled constituent c, we average the label-specific
span representation ck under the distribution of
labels defined by the parser:

c =

K∑
k=1

p(k|c,w)ck , (8)

where p(k|c,w) is the probability that the span c
has label k, conditioned on having this constituent
span in the tree.

To further reduce computation we estimate the
matching loss only using the n(n−1)

4 shortest spans
for a sentence of length n. Thus the image-text
alignment loss will focus on small constituents.

3Intuitively, the key learning signal for the parser in our
model comes through the marginals in Equation 6, not through
the span representation.

This is the case anyway (see discussion in Sec-
tion 2.3), so we expect that this simplification
would not hurt model performance significantly.

3.3 Joint objective

Rather than simply optimizing the contrastive learn-
ing objective, we additionally maximize the log-
likelihood of text data. As with C-PCFGs, we opti-
mize the ELBO:

L(W;φ, θ) = −
∑
w∈W

ELBO(w;φ, θ) . (9)

This learning objective complements contrastive
learning. As contrastive learning optimizes a parser
by solely matching images and constituents, the
parser would only focus on simple and local con-
stituents (e.g., short NPs). Moreover, in practice,
since not every constituent can be grounded in an
image, contrastive learning would suffer from mis-
leading or ambiguous learning signals.

To summarize, the overall loss function is

J (φ, θ) = L(W;φ, θ) + α · L(V,W;φ, θ) , (10)

where α is a hyper-parameter balancing the relative
importance of the contrastive learning.

3.4 Parsing

The parser can be directly used to parse raw text
after training, without requiring access to visual
groundings. Parsing seeks for the most probable
parse t∗ of w:

t∗ = argmax

∫
z
pθ(t|w, z)pθ(z|w) dz .

Still, though the maximum a posterior (MAP) in-
ference over pθ(t|w) can be solved by the CYK
algorithm (Kasami, 1966; Younger, 1967), infer-
ence becomes intractable when introducing into z.
The MAP inference is instead approximated by

t∗ ≈ argmax

∫
z
pθ(t|w, z)δ(z− µφ(w)) dz ,

where δ(·) is the Dirac delta function and µφ(w)
is the mean vector of the variational posterior
qφ(z|w). As δ(·) has zero mass everywhere but
at the mode µφ(w), it is equivalently solving
argmaxt pθ(t|w,µφ(w)).
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4 Experiments

4.1 Datasets and evaluation
Datasets: We use MSCOCO (Lin et al., 2014). It
consists of 82,783 training images, 1,000 valida-
tion images, and 1,000 test images. Each image
is associated with 5 caption sentences. We encode
images into 2048-dimensional vectors using the
pre-trained ResNet-101 (He et al., 2016). At test
time, only captions are used. We follow Shi et al.
(2019) and parse test captions with Benepar (Kitaev
and Klein, 2018). We use the same data preprocess-
ing4 as in Shen et al. (2019) and Kim et al. (2019a),
where punctuation is removed from all data, and
the top 10,000 frequent words in training sentences
are kept as the vocabulary.
Evaluation: We mainly compare VC-PCFGs with
VG-NSL (Shi et al., 2019). To verify the effec-
tiveness of the use of visual groundings, we also
compare our model with a C-PCFG trained only on
the training captions. All models are run four times
with different random seeds and for at most 15
epochs with early stopping (i.e., the image-caption
loss / perplexity on the validation captions does not
decrease). We report both averaged corpus-level F1
and averaged sentence-level F1 numbers as well as
the unbiased standard deviations.

4.2 Settings and hyperparameters
We adopt parameter settings suggested by the
authors for the baseline models. For VG-NSL
we run the authors’ code.5 We re-implement
C-PCFG using automatic differentiation (Eisner,
2016) to speed up training. Our VC-PCFG com-
prises a parsing model and an image-text match-
ing model. The parsing model has the same pa-
rameters as the baseline C-PCFG; the image-text
matching model has the same parameters as the
baseline VG-NSL. Concretely, the parsing model
has 30 nonterminals and 60 preterminals. Each
of them is represented by a 256-dimensional vec-
tor. The inference model qφ(z|w) uses a single-
layer BiLSTM. It has a 512-dimensitional hidden
state and relies on 512-dimensitional word em-
beddings. We apply a max-pooling layer over
the hidden states of the BiLSTM and then ob-
tain 64-dimensitional mean vectors µφ(w) and
log-variances log σφ(w) by using an affine layer.
The image-text matching model projects visual fea-
tures into 512-dimensitional feature vectors and

4https://git.io/JfV6J.
5https://git.io/Jf3nn.

encodes spans as 512-dimensitional vectors. Our
span representation model is another single-layer
BiLSTM, with the same hyperparameters as in the
inference model. α for visually grounded learning
is set to 0.001. We implement VC-PCFG relying
on Torch-Struct (Rush, 2020), and optimize it us-
ing Adam (Kingma and Ba, 2015) with the learning
rate set to 0.01, β1 = 0.75, and β2 = 0.999. All
parameters are initialized with Xavier uniform ini-
tializer (Glorot and Bengio, 2010).

4.3 Results and analysis

4.3.1 Main results
Our model outperforms all baselines according to
both corpus-level F1 and sentence-level F1 (see
Table 1). Notably, it surpasses VG-NSL+HI by
10% F1.6 The right branching model is a strong
baseline on image captions, as observed previously
on the WSJ corpus, including in recent work (Shen
et al., 2018; Kim et al., 2019a). Comparing with
C-PCFG, which is trained solely on captions, VC-
PCFG achieves a much higher mean F1 (+5.7%
F1), demonstrating the informativeness of visual
groundings. However, VC-PCFG suffers from a
larger variance presumably because the joint objec-
tive is harder to optimize. Visually grounded con-
trastive learning (w/o LM) has a mean F1 50.5%.
It is further improved to 59.4% when additionally
optimizing the language modeling objective.

Moreover, we show recall on six frequent con-
stituent labels (NP, VP, PP, SBAR, ADJP, ADVP)
in the test captions. Unsurprisingly, VG-NSL is
best on NPs because the matching-based reward
signals optimize it to focus only on short and con-
crete NPs (recall 64.3%). It performs poorly on
other constituent labels such as VPs (recall 28.1%).
In contrast, VC-PCFG exhibits a relatively even
performance across constituent labels, e.g., it is
most accurate on SBARs and ADVPs and works
fairly well on VPs (recall 83.2%). Meanwhile, it
improves over C-PCFG for NPs, which are usually
short and ‘concrete’, once again confirming the ben-
efits of using visual groundings. Visually grounded
contrastive learning (w/o LM) tends to behave like

6We run the code of Shi et al. (2019) and train VG-NSL
and VG-NSL+HI on the training captions with punctuation
removed. This is considered a more challenging setting as
punctuation signals the boundaries of constituents and makes
it easy for parsers to derive constituents. At test time, as a
common practice (Shen et al., 2018, 2019; Kim et al., 2019a),
we discard punctuation and ignore trivial single-word and
sentence-level spans. We notice that including sentence-level
spans can improve the F1 of VG-NSL to around 49%.

https://git.io/JfV6J
https://git.io/Jf3nn
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Model NP VP PP SBAR ADJP ADVP C-F1 S-F1

Left Branching 33.2 0.0 0.1 0.0 4.9 0.0 15.1 15.7
Right Branching 37.5 94.5 71.1 97.8 20.9 79.1 51.0 51.8

Random Trees 32.8±0.5 18.4±0.4 24.4±0.3 17.7±1.7 26.8±2.6 20.9±1.5 24.2±0.3 24.6±0.2

C-PCFG 43.0±8.6 85.0±2.6 78.4±5.6 90.6±2.1 36.6±21 87.4±1.0 53.6±4.7 53.7±4.6

VG-NSL† 79.6±0.4 26.2±0.4 42.0±0.6 22.0±0.4 50.4±0.3

VG-NSL+HI† 74.6±0.5 32.5±1.5 66.5±1.2 21.7±1.1 53.3±0.2

VG-NSL? 64.3±1.1 28.1±0.5 32.2±1.1 16.9±3.2 13.2±1.5 5.6±0.3 41.5±0.5 41.8±0.5

VG-NSL+HI? 61.0±0.2 33.5±1.6 62.7±0.6 42.0±5.1 13.9±0.6 65.9±2.5 48.8±0.4 49.4±0.5

VC-PCFG (ours) 54.9±14 83.2±3.9 80.9±7.9 89.0±2.0 38.8±25 86.3±4.1 59.3±8.2 59.4±8.3

w/o LM 35.6±3.7 93.4±2.1 70.1±2.0 95.9±3.9 20.6±0.8 78.0±2.2 49.7±2.6 50.5±2.5

Table 1: Recall on six frequent constituent labels (NP, VP, PP, SBAR, ADJP, ADVP) in the MSCOCO test captions
and corpus-level F1 (C-F1) and sentence-level F1 (S-F1) results. The best mean number in each column is in bold.
† indicates results reported by Shi et al. (2019). ? denotes results obtained by running their code. Notice that
the results from Shi et al. (2019) are not comparable to ours because they keep punctuation and include trivial
sentence-level spans in evaluation.
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Figure 1: Recall broken down by constituent length.

the right branching baseline. Additionally optimiz-
ing the language modeling objective brings a huge
improvement for NPs (+19.3% recall).

4.3.2 Analysis
We analyze model performance for constituents of
different lengths (Figure 1). As expected, VG-NSL
becomes weaker as constituent length increases,
and the drop is very dramatic. C-PCFG and its
grounded version VC-PCFG consistently outper-
form VG-NSL on constituents longer than four
tokens and display a more even performance across
constituent lengths. Meanwhile, VC-PCFG beats
C-PCFG on constituents of length below 5, con-
firming that visual groundings are beneficial for
short spans. We further plot the distribution over
constituent length for different phrase types (Fig-
ure 2) and find that around 75% constituents in
our dataset are shorter than six tokens, and 60% of
them are NPs. Thus, it is not surprising that the im-

2 3 4 5 6 7 8
Constituent Length

NP

VP

PP

SBAR

ADJP

ADVP

All

0.25 0.10 0.05 0.04 0.02 0.01 0.01

0.01 0.01 0.03 0.03 0.03 0.03 0.02

0.04 0.09 0.05 0.02 0.02 0.01 0.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.22 0.13 0.09 0.08 0.06 0.04

Figure 2: Label distribution over constituent length.
All denotes frequencies of constituent lengths. Zero fre-
quencies are due to the limited numerical precision.

provement on NPs, brought by visually grounded
learning, has a large impact on the overall perfor-
mance.

Next, we analyze induced tree structures. We
compare model predictions against gold trees,
left branching trees, and right branching trees.
As there is little performance difference between
corpus-level F1 and sentence-level F1, we focus
on sentence-level F1 in this analysis. We report
self F1 (Williams et al., 2018) to show model con-
sistency across runs. The self F1 is computed by
averaging over six model pairs from four different
runs. All results are presented in Table 2. Overall,
all models have self F1 above 70%, indicating a rel-
atively high consistency. We observe that using the
head-initial bias pushes VG-NSL closer to the right-
branching baseline, while visual grounded learning
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Model Gold Left Right Self

VG-NSL 41.8 28.3 20.6 84.3
VG-NSL+HI 49.4 24.5 29.2 88.6

C-PCFG 53.7 1.3 53.6 77.3
VC-PCFG 59.4 4.4 48.5 71.1

Table 2: Average sentence-level F1 results against gold
trees (Gold), left branching trees (Left), right branching
trees (Right), and self F1 (Self) (Williams et al., 2018).

leads to improvements over C-CPFG, forcing VC-
PCFG to deviate from the default right-branching
behaviour.

Finally, we test VG-NSL+HI and VC-PCFG on
50 manually annotated captions released by Shi
et al. (2019). VC-PCFG achieves a mean F1 62.7%,
surpassing VG-NSL+HI by 12.1% F1. In Figure 3
we visualize a parse tree predicted by the best run
of VC-PCFG. We can see that VC-PCFG identifies
most NPs but makes mistakes in PP attachement
and consequently fails to identify the VP.

5 Related work

Grammar Induction has a long history in com-
putational linguistics. Following observations that
direct optimization of log-likelihood with the Ex-
pectation Maximization algorithm (Lari and Young,
1990) is not effective at producing effective gram-
mars, a number of approaches have been devel-
oped, emboding various inductive biases or assump-
tion about the language structure and its relation
to surface realizations (Klein and Manning, 2002;
Smith and Eisner, 2005; Cohen and Smith, 2009;
Spitkovsky et al., 2010). The recent advances in
the area have been brought by flexible neural mod-
els (Jin et al., 2019; Kim et al., 2019a,b; Drozdov
et al., 2019). All these methods, with the exception
of Shi et al. (2019), rely solely on text.

Visually grounded learning is motivated by
the observation that natural language is grounded
in perceptual experiences (Steels, 1998; Barsalou,
1999; Fincher-Kiefer, 2001; Roy, 2002; Bisk et al.,
2020). It has been shown effective in word repre-
sentation learning (Bruni et al., 2014; Silberer and
Lapata, 2014; Lazaridou et al., 2015) and sentence
representation learning (Kiela et al., 2018; Bordes
et al., 2019). All this work uses visual images as
perceptual experience of language and exploits vi-
sual semantics derived from images to improve con-
tinuous vector representatios of language. In con-
trast, we induce structured representations, discrete

the apple

has words on it
in chinese

the apple
has

words on it in chinese

Figure 3: Upper: A parse output by the best run of
VC-PCFG. Bottom: The corresponding gold tree.

tree structure of language, by using visual ground-
ings. We propose a model for the task within the
contrastive learning framework. Learning involves
estimating concreteness of spans, which general-
izes word-level concreteness (Turney et al., 2011;
Kiela et al., 2014).

In the vision and machine learning community,
unsupervised induction of structured image rep-
resentations (aka scene graphs or world models)
has been receiving increasing attention (Eslami
et al., 2016; Burgess et al., 2019; Kipf et al., 2020).
However, they typically rely solely on visual signal.
An interesting extension of our work would be to
consider joint induction of structured representa-
tions of images and text while guiding learning by
an alignment loss.

6 Conclusion

We have presented visually-grounded compound
PCFGs (VC-PCFGs) that use compound PCFGs
and generalize the visually grounded grammar
learning framework. VC-PCFGs exploit visual
groundings via contrastive learning, with learn-
ing signals derived from minimizing an image-text
alignment loss. To tackle the issues of mislead-
ing and insufficient learning signals from purely
agreement-based learning, we propose to comple-
ment the image-text alignment loss with a loss de-
fined on unlabeled text. We resort to using com-
pound PCFGs which enables us to complement the
alignment loss with a language modeling objec-
tive, resulting in a fully-differentiable end-to-end
visually grounded learning. We empirically show
that our VC-PCFGs are superior to models that are
trained only through visually grounded learning or
only relying on text.
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