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Abstract

Dialogue participants often refer to entities
or situations repeatedly within a conversation,
which contributes to its cohesiveness. Subse-
quent references exploit the common ground
accumulated by the interlocutors and hence
have several interesting properties, namely,
they tend to be shorter and reuse expressions
that were effective in previous mentions. In
this paper, we tackle the generation of first and
subsequent references in visually grounded di-
alogue. We propose a generation model that
produces referring utterances grounded in both
the visual and the conversational context. To
assess the referring effectiveness of its output,
we also implement a reference resolution sys-
tem. Our experiments and analyses show that
the model produces better, more effective re-
ferring utterances than a model not grounded
in the dialogue context, and generates subse-
quent references that exhibit linguistic patterns
akin to humans.

1 Introduction

When speakers engage in conversation, they often
refer to the same objects or situations more than
once. Subsequent references (McDonald, 1978) are
dependent on the shared knowledge that speakers
accumulate during dialogue. For example, dialogue
participants may first mention “a white fuzzy dog
with a wine glass up to his face” and later refer to
it as “the wine glass dog”, as shown in Figure 1,
dialogue 1. Speakers establish ‘conceptual pacts’,
i.e., particular ways of conceptualising referents
that condition what is perceived as coherent in a
given dialogue (Garrod and Anderson, 1987; Bren-
nan and Clark, 1996). While “the wine glass dog”
may be odd as a standalone description, it is an
appropriate referring expression in the above con-
versational context. Yet, uttering it in a different
context (such as dialogue 2 in Figure 1, after the
participants had successfully referred to the image

Referring utterances extracted from dialogue 1
A: a white fuzzy dog with a wine glass up to his face
~> B: I see the wine glass dog
~> A:no I don’t have the wine glass dog

Referring utterances extracted from dialogue 2
C: white dog sitting on something red

~> D: yes I have the dog on the red chair

~» C: white dog on the red chair

Figure 1: Two chains of referring utterances from two
games with different participants, including the first de-
scription of the target image in that dialogue and two
subsequent references (~). In the game, each partici-
pant sees 5 additional images besides the target shown
here. The distractor images change at every round of
the game, i.e., each co-referring utterance within a dia-
logue is produced in a slightly different visual context.

as “the dog on the red chair”) may disrupt the co-
hesion of the dialogue and lead to communication
problems (Metzing and Brennan, 2003).

In this paper, we tackle the generation of refer-
ring utterances—i.e., utterances that contain refer-
ring descriptions, as in Figure 1—grounded both
in the visual environment and the dialogue context.
These utterances have several interesting properties
that make their automatic generation challenging.
First, they are produced with the communicative
goal of helping the addressee identify the intended
referent. Second, because humans operate under
cognitive and time-bound constraints, dialogue par-
ticipants will aim to fulfil this communicative goal
while optimising the use of their limited cogni-
tive resources. This results in two common fea-
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tures of subsequent mentions: (1) Reduction: Utter-
ances tend to become shorter—a well attested phe-
nomenon since the work of Krauss and Weinheimer
(1967)—as a result of interlocutors’ reliance on
their common ground (Stalnaker, 2002): As more
shared information is accumulated, it becomes pre-
dictable and can be left implicit (Grice, 1975; Clark
and Wilkes-Gibbs, 1986; Clark and Brennan, 1991;
Clark, 1996). Sentence compression also takes
place in discourse, as predicted by the entropy
rate principle (Genzel and Charniak, 2002; Keller,
2004). (2) Lexical entrainment: Speakers tend to
reuse words that were effective in previous men-
tions (Garrod and Anderson, 1987; Brennan and
Clark, 1996) possibly due to priming effects (Pick-
ering and Garrod, 2004). Thus, besides being a
challenging problem intriguing from a linguistic
and psycholinguistic point of view, computation-
ally modelling the generation of subsequent ref-
erences can contribute to better user adaptation
in dialogue systems and to more natural human-
computer interaction.

For our study, we use data from the PhotoBook
dataset (Haber et al., 2019), developed to elicit
subsequent references to the same images within
task-oriented dialogue. To isolate the issue we are
interested in, we extract, from each dialogue, the
utterances that refer to a given image. This re-
sults in a dataset of dialogue-specific chains of co-
referring utterances: For example, Figure 1 shows
two chains of co-referring utterances from two dif-
ferent dialogues, both referring to the same image.
Figure 2 shows another example. We then for-
mulate the problem as the generation of the next
utterance in a chain given the current visual context
and the common ground established in previous co-
referring utterances (whenever these are available).
To computationally model this problem, we pro-
pose three variants of a generation system based on
the encoder-decoder architecture (Sutskever et al.,
2014). We evaluate their output with metrics com-
monly used in the domain of Natural Language
Generation and with several linguistic measures.
In addition, to assess the communicative effective-
ness of the generated references, we implement a
reference resolution agent in the role of addressee.

We find that conditioning the generation of refer-
ring utterances on previous mentions leads to better,
more effective descriptions than those generated by
a model that does not exploit the conversational his-
tory. Furthermore, our quantitative and qualitative

analysis shows that the context-aware model gen-
erates subsequent references that exhibit linguistic
patterns akin to humans’ regarding markers of new
vs. given information, reduction, and lexical en-
trainment, including novel noun-noun compounds.
Our data, code, and models are available at
https://dmg-photobook.github.io.

2 Related Work

Generation of distinguishing expressions Our
work is related to Referring Expression Genera-
tion (REG), a task with a long tradition in com-
putational linguistics that consists in generating a
description that distinguishes a target from a set
of distractors—Krahmer and van Deemter (2012)
provide an overview of early approaches. Follow-
up approaches focused on more data-driven algo-
rithms exploiting datasets of simple visual scenes
annotated with symbolic attributes (e.g., Mitchell
et al., 2013a,b, among others). More recently,
the release of large-scale datasets with real im-
ages (Kazemzadeh et al., 2014) has made it pos-
sible to test deep learning multimodal models on
REG, sometimes in combination with referring ex-
pression comprehension (Mao et al., 2016; Yu et al.,
2017). While REG typically focuses on describing
objects within a scene, a few approaches at the in-
tersection of REG and image captioning (Bernardi
et al., 2016) have aimed to generate discriminative
descriptions of full images, i.e., image captions
that can distinguish the target image from a pool of
related ones (Andreas and Klein, 2016; Vedantam
et al., 2017; Cohn-Gordon et al., 2018). Similarly
to these approaches, in the present work, we gener-
ate utterances that refer to a full image with the aim
of distinguishing it from other distractor images.
In addition, our setup has several novel aspects:
The referring utterances are the result of interac-
tive dialogue between two participants and include
subsequent references.

Generation of subsequent references Follow-
up work within the REG tradition has extended
the early algorithms to deal with subsequent refer-
ences (Gupta and Stent, 2005; Jordan and Walker,
2005; Stoia et al., 2006; Viethen et al., 2011).
These approaches focus on content selection (i.e.,
on generating a list of attribute types such as
color or kind using an annotated corpus) or
on choosing the type of reference (definite or in-
definite noun phrase, pronoun, etc.) and do not
directly exploit visual representations. In contrast,
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we generate the surface realisation of first and sub-
sequent referring utterances end-to-end, grounding
them in continuous visual features of real images.

Our work is related to a recent line of research
on reference resolution in visually-grounded dia-
logue, where previous mentions have been shown
to be useful (Shore and Skantze, 2018; Haber et al.,
2019; Roy et al., 2019). Here we focus on genera-
tion. To our knowledge, this is the first attempt at
generating visually grounded referring utterances
taking into account earlier mentions in the dialogue.
Some work on generation has exploited dialogue
history in order to make lexical choice decisions
that align with what was said before (Brockmann
et al., 2005; Buschmeier et al., 2009; Stoyanchev
and Stent, 2009; Lopes et al., 2015; Hu et al., 2016;
Dusek and Jurc¢icek, 2016). Indeed, incorporat-
ing entrainment in dialogue systems leads to an
increase in the perceived naturalness of the system
responses and to higher task success (Lopes et al.,
2015; Hu et al., 2016). As we shall see, our genera-
tion model exhibits some lexical entrainment.

Dialogue history in visual dialogue Recent
work in the domain of visually grounded dialogue
has exploited dialogue history in encoder-decoder
models trained on large datasets of question-
answering dialogues (Das et al., 2017; De Vries
et al., 2017; Chattopadhyay et al., 2017). Recently,
Agarwal et al. (2020) showed that only 10% of
the questions in the VisDial dataset (Das et al.,
2017) genuinely require dialogue history in order
to be answered correctly, which is in line with
other shortcomings highlighted by Massiceti et al.
(2018). More generally, visually grounded dia-
logue datasets made up of sequences of questions
and answers lack many of the collaborative as-
pects that are found in natural dialogue. For our
study, we focus on the PhotoBook dataset by Haber
et al. (2019), where dialogues are less restricted
and where the common ground accumulated over
the dialogue history plays an important role.

3 Data

3.1 PhotoBook Dataset

The PhotoBook dataset (Haber et al., 2019) is a
collection of task-oriented visually grounded En-
glish dialogues between two participants. The task
is set up as a game comprised of 5 rounds. In each
round, the two players are assigned private ‘photo
books’ of 6 images, with some of those images

being present in both photo books. The goal is to
find out which images are common to both play-
ers by interacting freely using a chat interface. In
each round, the set of 6 images available to each
player changes, but a subset of images reappears,
thus triggering subsequent references to previously
described images. This feature of the PhotoBook
dataset makes it a valuable resource to model the
development of conversational common ground be-
tween interlocutors. The dataset consists of 2,500
games, 165K utterances in total, and 360 unique
images from MS COCO (Lin et al., 2014).

3.2 Dataset of Referring Utterance Chains

As mentioned above, in PhotoBook participants
can freely interact via chat. The dialogues thus
include different types of dialogue act besides re-
ferring utterances. While utterances performing
other functions are key to the dialogue and may
provide useful information, in the present work we
abstract away from this aspect and concentrate on
referring utterances.! To create the data for our
generation task, we extract utterances that contain
an image description and their corresponding im-
age target from the dialogues as follows. Within
a game round, we consider all the utterances up
to the point where a given image ¢ has been iden-
tified by the participants® as candidate referring
utterances for i — see Figure 2. We then compare
each candidate against a reference set of descrip-
tions made up of the MS COCO (Lin et al., 2014)
captions for i and the attributes and relationship
tokens of i in the Visual Genome (Krishna et al.,
2017). We score each candidate utterance with
the sum of its BERTScore? (Zhang et al., 2020)
for captions and its METEOR score (Banerjee and
Lavie, 2005) for attributes and relationships. The
top-scoring utterance in the game round is selected
as a referring utterance for i and used as an addi-
tional caption for extracting subsequent references
in the following game rounds. As a result of this
procedure, for a given dialogue and an image i, we
obtain a reference chain made up of the referring
utterances—maximum one per round—that refer
to i in the dialogue. Since images do not always
reappear in each round, chains can have different

"Haber et al. (2019) extracted co-reference chains made
up of multi-utterance dialogue excerpts. Our chains include
single utterances, which is more suitable for generation.

*Image identification actions are part of the metadata.

*BERTScore uses contextualised embeddings (Devlin
et al., 2019) to assess similarity between a target sentence
and one or more reference sentences.
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Hi
Hello.

>»ErEwe

DIALOGUE FRAGMENT AND IMAGES VISIBLE TO PARTICIPANT A
IN THE FIRST ROUND OF A GAME

do you have a white cake on multi colored striped cloth?
: I see a guy taking a picture. What about you?

: is it of a cake with construction trucks on it?

: Yeah. I don’t see the cake you mentioned.

: <common img_4>

RESULTING REFERRING UTTERANCE CHAIN WITH SUBSEQUENT
REFERENCES EXTRACTED FROM THE FOLLOWING GAME ROUNDS

1. I see a guy taking a picture. What about you?
2. guy with camera

3. I have the guy with camera

4. The last one is the camera guy.

Figure 2: Example from our new dataset of referring utterance chains. Given a target image selected by a partic-
ipant (here <common img_4>), the utterances in the dialogue prior to that selection action are scored by their
likelihood of referring to the target. In this example, the utterance in bold is selected as the first description. To
construct the reference chain, subsequent references are extracted in a similar manner from the dialogue in the
following game rounds. The set of distractor images available to a participant changes across rounds.

length. Two examples of chains of length 3 are
shown in Figure 1 and a chain of length 4 in Fig-
ure 2. Given that each utterance in a chain belongs
to a different game round, each utterance was pro-
duced in a slightly different visual context with
different distractor images. Figure 2 shows the vi-
sual context available to participant A in the first
round of a game, when the participant produced
the first description in the dialogue for target image
number 4. The other three descriptions in the chain
were produced while seeing different distractors.

We evaluate the referring utterance extraction
procedure and the resulting chains using 20 dia-
logues hand-annotated by Haber et al. (2019) with
labels linking utterances to the target image they de-
scribe. Using our best setup, we obtain a precision
of 0.86 and a recall of 0.61. The extracted chains
are very similar to the human-annotated ones in
terms of chain and utterance length.

Our new dataset is made up of 41,340 refer-
ring utterances and 16,525 chains (i.e., there are
16,525 first descriptions and 24,815 subsequent ref-
erences). The median number of utterances in a
chain is 3. We use the splits defined by Haber et al.
(2019) to divide the dataset into Train, Validation,
and Test, and all hand-annotated dialogues are ex-
cluded from these splits. Table 1 reports relevant
descriptive statistics of the dataset. More details
about the extraction procedure and the dataset are
available in Appendix A. Appendix B describes
how the dataset is further processed to be used in
our models.

. First Later
Split | Games N Length N Length
Train 1725 | 11540 | 10.52 (4.80) | 17393 | 7.52 (4.15)
Val 373 | 2503 | 10.49 (4.81) | 3749 | 7.70 (4.22)
Test 368 | 2482 | 10.52(4.85) | 3673 | 7.59 (4.17)

Table 1: Number of games and referring utterances in
the splits of our dataset with their average length in to-
kens (standard deviation in brackets) broken down by
first mentions vs. subsequent (‘Later’) references.

4 Models

With the new dataset of referring utterance chains
in place, we operationalise the problem of gen-
erating a referring utterance taking into account
the visual and conversational context as follows.
The model aims to generate a referring utterance
given (a) the visual context in the current game
round made up of 6 images from the perspective
of the player who produced the utterance, (b) the
target among those images, and (c) the previous
co-referring utterances in the chain (if any). Be-
sides being contextually appropriate, the generated
utterance has to be informative and discriminative
enough to allow an addressee to identify the target
image. We thus also develop a reference resolution
model that plays the role of addressee. The two
models are trained independently.

4.1 Generation Models

We propose three versions of the generation model,
which all follow the encoder-decoder architec-
ture (Sutskever et al., 2014). These versions differ
from each other with respect to whether and how
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they exploit earlier referring utterances for the tar-
get image: (1) a baseline model that does not use
the dialogue context at all (hence, Ref); (2) a model
that conditions the generation on the previous refer-
ring utterance, if available, and operates attention
over it (hence, ReRef); (3) a model that builds
on (2) by adding a ‘copy’ mechanism (See et al.,
2017) (hence, Copy). We describe them below and
provide further details in Appendix C.

Ref This model is provided only with the infor-
mation about the visual context in the current game
round—and not with the linguistic context in pre-
vious rounds. We encode each image in the con-
text by means of visual features extracted from
the penultimate layer of ResNet-152 (He et al.,
2016) pretrained on ImageNet (Deng et al., 2009).
First, the visual features of the 6 candidate images
are concatenated. This concatenated vector goes
through dropout, a linear layer and ReLU (Nair
and Hinton, 2010). The same process is applied
for the single target image. We then concatenate
the final visual context vector with the target image
vector, apply a linear transformation, and use the
resulting hidden representation A, to initialise an
LSTM decoder, which generates the referring ut-
terance one word at a time. At each timestep, the
input to the decoder is a multimodal vector, i.e.,
the concatenation of hy4 and the word embedding
of token t;. The weights of the embeddings are
initialised uniformly in the range (—0.1,0.1) and
learned from scratch for the task at hand.

ReRef With this model, we aim to simulate a
speaker who is able to re-refer to a target image
in accordance with what has been established in
the conversational common ground (Clark, 1996;
Brennan and Clark, 1996). The model enriches
Ref by incorporating linguistic information into
the encoder (in addition to visual information) and
an attention mechanism applied over the hidden
states of the encoder during decoding. The model
thus generates a new utterance conditioned on both
the visual and the linguistic context.

The encoder is a one-layer bidirectional LSTM
initialised with the same visual input fed to Ref. In
addition, it receives as input the previous referring
utterance used in the dialogue to refer to the target
image,* or else is fed the special <nohs> token,
indicating that there is no conversational history for

“The latest description seems to contain the most relevant

information. Including all referring utterances in the chain up
to that point in the dialogue did not lead to improvements.

the target image yet. We utilise the attention mech-
anism proposed by Bahdanau et al. (2018) and used
by See et al. (2017). During decoding, attention
contributes to determining which aspects of the
multimodal context are most critical in generating
the next referring utterance. We expect this atten-
tion mechanism to be able to identify the words in
a previous utterance that should be present in a sub-
sequent reference, resulting in lexical entrainment.

Copy This model builds on ReRef and incorpo-
rates a means of simulating lexical entrainment
more explicitly, by regulating when a word used
in the previous mention should be used again in
the current referring utterance (i.e., should be pro-
duced by the decoder). Given the shortening prop-
erty of subsequent references mentioned in the In-
troduction, our task bears some similarity to text
summarisation. We thus draw inspiration from
the summarisation model proposed by See et al.
(2017). In particular, we equip the model with
their ‘copy’ mechanism, which combines the prob-
ability of copying a word present in the encoded
input with the probability of generating that word
from the vocabulary. We expect this mechanism
to contribute to generating rare words present in
preceding referring utterances that are part of a
‘conceptual pact’ (Brennan and Clark, 1996) be-
tween the dialogue participants, but may have low
generation probability overall.

4.2 Reference Resolution Model

Given an utterance referring to a target image and
a 6-image visual context, our reference resolution
model predicts the target image among the candi-
dates. This model is similar to the resolution model
proposed by Haber et al. (2019) for the PhotoBook
dataset, but includes several extensions: (1) We use
BERT embeddings from the uncased base BERT
model (Devlin et al., 2019; Wolf et al., 2019) to
represent the linguistic input rather than LSTMs;>
(2) The input utterance is encoded taking into ac-
count the visual context: We compute a multimodal
representation of the utterance by concatenating
each BERT token representation with the visual
context representation, obtained in the same way
as for the generation models;® (3) We apply at-

>In the generation models, we did not use BERT due to the
difficulties of using contextualised embeddings in the decoder,
and the desirability of using the same word embeddings in
both the encoder and the decoder.

SWe also tried using multimodal representations obtained
via LXMERT (Tan and Bansal, 2019). No improvements were
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tention over the multimodal representations of the
utterance in the encoder instead of using the output
from a language-only LSTM encoder. The utter-
ance’s final representation is given by the weighted
average of these multimodal representations with
respect to the attention weights.

Each candidate image is represented by its
ResNet-152 features (He et al., 2016) or, if it has
been previously referred to in the dialogue, by the
sum of the visual features and the representation
of the previous utterance (obtained via averaging
its BERT embeddings).” To pick a referent, we
take the dot product between the representation of
the input utterance and each of the candidate im-
age representations. The image with the highest
dot-product value is the one chosen by the model.

4.3 Model Configurations

For each model, we performed hyperparameter
search for batch size, learning rate, and dropout;
also, the search included different dimensions for
the embedding, attention, and hidden layers. All
models were trained for up to 100 epochs (with
a patience of 50 epochs in the case of no im-
provement to the validation performance) using
the Adam optimiser (Kingma and Ba, 2015) to
minimise the Cross Entropy Loss with sum reduc-
tion. BERTScore F1 (Zhang et al., 2020) in the
validation set was used to select the best model for
the generation task, while we used accuracy for
the resolution task. In the next section, we report
average scores and standard deviations over 5 runs
with different random seeds. Further details on hy-
perparameter selection, model configurations, and
reproducibility can be found in Appendix E.

5 Results

5.1 Evaluation Measures

We evaluate the performance of the reference reso-
lution model by means of both accuracy and Mean
Reciprocal Rank (MRR). As for the generation
models, we compute several metrics that are com-
monly used in the domain of Natural Language
Generation. In particular, we consider three mea-
sures based on n-gram matching: BLEU-2 (Pa-
pineni et al., 2002),8 ROUGE (Lin, 2004), and

observed.

"Thus, some of the candidate images have multimodal rep-
resentations (if they were already mentioned in the dialogue),
while others do not.

8BLEU-2, which is based on bigrams, appears to be more
informative than BLEU with longer n-grams in dialogue re-

CIDEr (Vedantam et al., 2015). We also compute
BERTScore F1 (Zhang et al., 2020) (used for model
selection), which in our setup compares the contex-
tual embeddings of the generated sentence to those
of the set of referring utterances in the given chain.
Further details of the metrics are in Appendix D.

All these measures capture the degree of simi-
larity between generated referring utterances and
their human counterparts. In addition, to assess the
extent to which the generated utterances fulfil their
communicative goal, we pass them to our reference
resolution model and obtain accuracy and MRR.
While this is not a substitute for human evaluation,
we take it to be an informative proxy. In Section 6,
we analyse the generated utterances with respect to
linguistic properties related to phenomena that are
not captured by any of these metrics.

5.2 Reference Resolution Results

Our reference resolution model achieves an accu-
racy of 85.32% and MRR of 91.20% on average
over 5 runs. This is a substantial result. A model
that predicts targets at random would yield an accu-
racy of roughly 16.67% (as the task is to pick one
image out of 6 candidates), while a baseline that
simply takes one-hot representations of the image
IDs in the context achieves 22.37% accuracy.’

Subset ACC MRR Instances
First 80.27 (0.46) | 87.78 (0.28) 2482
Later 88.74 (0.18) | 93.51 (0.09) 3673
Overall | 85.32 (0.19) | 91.20 (0.10) 6155

Table 2: Test set scores of the reference resolution
model: averages of 5 runs with the best configuration,
with the standard deviations in parentheses.

In Table 2, the results are presented by break-
ing down the test set into two subsets: the first
referring utterances in a chain, and later referring
utterances, i.e., subsequent references where the
target image among the candidates has linguistic
history associated with it. The model performs bet-
ter on subsequent references. Exploiting dialogue
history plays a role in this boost: an ablated version
of the model that does not have access to the lin-
guistic history of subsequent references yields an
accuracy of 84.82% for the Later subset, which is
significantly lower than the 88.74% obtained with
sponse generation (Liu et al., 2016)

°In this simple baseline, one-hot vectors are projected to
scalar values, and a softmax layer assigns probabilities over

them. The fact that this is slightly higher than random accuracy
seems due the different frequencies of images being the target.
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our model (p < 0.01 independent samples ¢-test).
This confirms the importance of accessing informa-
tion about previous mentions in visually grounded
reference resolution (Haber et al., 2019).

We use the best model run to assess the commu-
nicative effectiveness of our generation models.

5.3 Generation Model Results

As we did for the reference resolution model, we
break down the test set into first referring utterances
in a chain and subsequent references, for which
generation is conditioned on a previous utterance.
The outcomes of this breakdown are provided in
Table 3, where we report the test set performances
of our three generation models. Overall results on
the validation set are available in Appendix F.

ReRef obtains the highest scores across all mea-
sures, followed by Copy, while Ref achieves sub-
stantially lower results. Regarding the compari-
son between first and subsequent references, the
context-aware models ReRef and Copy attain sig-
nificantly higher results when generating later men-
tions vs. first descriptions (p < 0.001, independent
samples t-test). As expected, no significant differ-
ences are observed in this respect for Ref.!”

As for the communicative effectiveness of the
generated utterances as measured by our resolu-
tion model, both accuracy and MRR are particu-
larly high (over 90%) for ReRef. Across all model
types, generated subsequent references are easier
to resolve by the model, in line with the pattern
observed in Table 2 for the human data.

All in all, the addition of the copy mechanism
does not provide improvements over ReRef’s per-
formance that can be detected with the current eval-
uation measures. We do find, however, that the
Copy model uses a substantially larger vocabulary
than ReRef: 1,791 word types vs. 760 (the hu-
man vocabulary size on the test set is 2,332, while
Ref only uses 366 word types). An inspection of
the vocabularies shows that Copy does generate
a good deal of low-frequency words, in line with
what is expected from the dedicated copy mecha-
nism (less desirably, this also includes words with
spelling errors). Further analysis also shows that
Copy generates utterances that include more repe-
titions: 18% of the utterances generated by Copy
in the test set contain two identical content words
e.g. “do you have the runway runway woman?”,

OWhile first descriptions do not require linguistic context,

ReRef and Copy perform better on first description generation
than Ref. This is likely due to their higher complexity.

while only 7% of those generated by ReRef do.!!
Adding a means to control for repetitions, such
as the ‘coverage’ mechanism by See et al. (2017),
could be worth exploring in the future.

We compare our best performing model ReRef
to a baseline consisting in reusing the first gener-
ated utterance verbatim in later mentions. In this
case, the model does not learn how to reuse pre-
vious referring utterances taking into account the
changing visual context, but simply keeps repeat-
ing the first description it has generated. We expect
this baseline to be relatively strong given that exper-
iments in the lab have shown that dialogue partici-
pants may stick to an agreed description even when
some properties are not strictly needed to distin-
guish the referent in a new visual context (Brennan
and Clark, 1996; Brown-Schmidt et al., 2015). The
results (reported in Table 3 baseline) show that the
model significantly outperforms this baseline when
generating later mentions.

Overall, our results confirm that referring utter-
ances do evolve during a dialogue and indicate that
the models that exploit the conversational context
are able to learn some of the subtle modifications
involved in the re-referring process. In the next
section, we look into the linguistic patterns that
characterise this process.

6 Linguistic Analysis

We analyse the linguistic properties of the utter-
ances generated by the best performing run of each
of our models and compare them with patterns ob-
served in the human data. Extensive descriptive
statistics are available in Appendix G.

6.1 Main Trends

Givenness markers We first look into the use
of markers of new vs. given information, in par-
ticular indefinite and definite articles as well as
particles such as again or before (as in “I have
the X one again” or “the X from before”), which
are anaphoric and presuppose that an image has
been discussed previously in the dialogue. Fig-
ure 3a shows the proportion of givenness markers
(the, one, same, again, also, before) in first vs. sub-
sequent references. Not surprisingly, this propor-
tion increases in the human subsequent references.
ReRef and Copy both display an amplified version

"'The Ref model is even more repetitive: 21% of the gener-
ated utterances contain repeated content words.
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Model | Subset | BLEU-2 ROUGE CIDEr BERT-F1 ACC MRR
Ref | First [ 2080 (1.02) [ 29.74(1.59) | 4126 (3.14) | 5448 (1.38) | 57.12(4.85) | 72.47 (3.19)
Later | 23.06 (1.20) | 31.88 (1.66) | 40.79 (2.83) | 55.54 (1.40) | 60.94 (2.67) | 75.34 (1.59)
ReRep | First | 33.09(0.79) | 42.32(0.42) | 94.63 (2.12) | 62.55(0.12) | 90.36 (1.73) | 94.49 (1.14)
Later | 52.15 (1.19) | 56.74 (0.63) | 143.59 (5.84) | 71.25 (0.39) | 92.21 (0.73) | 95.62 (0.45)
baseline | 36.66 (0.92) | 45.37 (0.57) | 96.41 (2.69) | 64.13 (0.24) | 90.14 (2.28) | 94.38 (1.41)
Copy | ISt | 2525(040) | 33.31(050) | 6051 (121) | 5761 (0.36) | 8136 (0.53) | 88.70 (0.49)
Later | 43.08 (0.36) | 48.79 (0.41) | 128.45 (1.98) | 66.07 (0.17) | 83.96 (0.53) | 90.60 (0.32)

Table 3: Test set scores of the generation models (averaged over 5 runs) for first vs. subsequent references, includ-
ing word-overlap metrics, BERTScore F1, and accuracy/MRR obtained by our resolution model on the generated
utterances. ReRef baseline uses the first generated description verbatim in all later mentions. All differences across

model types are statistically significant (p < 0.001, independent samples ¢-test).
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Figure 3: Linguistic patterns in human referring utterances and in referring utterances generated by our three
models. Givenness markers and proportion of nouns per utterance are displayed for first and later references.

of this trend, while Ref, which cannot capture any
given information, shows no difference.

Reduction Regarding referring utterance length,
we observe a significant shortening in subsequent
mentions in human dialogues (11.3 vs. 8.3 tokens
on average in first and subsequent mentions, re-
spectively). This shortening is also observed in the
utterances generated by ReRef (11.3 vs. 7.2) and
Copy (10.8 vs. 7.8). Ref tends to generate longer
utterances across the board (13.7 vs. 13.6).
Shortening may be linked to compression, i.e., to
an increase in information density (Shannon, 1948).
To analyse this aspect, we consider the proportion
of content words in the utterances, since such pro-
portion can capture mechanisms such as syntactic
reduction (e.g., the removal of the complementiser
that), which has been shown to be a good predictor
of information density increase (Levy and Jaeger,
2006). Haber et al. (2019) reported a rise in the
proportion of content words for all utterance types
in later rounds of the PhotoBook games. We also
observe such an increase in our referring utterance
chains, and a similar trend is exhibited as well by
the output of the ReRef and Copy models: In par-
ticular, generated subsequent references contain a

significantly higher proportion of nouns and ad-
jectives compared to first descriptions. Figure 3b
shows this pattern for nouns, which are the most
prominent type of content word in our data.

Entrainment In order to analyse the presence
of lexical entrainment, we compute the proportion
of expressions in subsequent references that are
reused from the previous mention. We compare
reuse at the level of unigrams and bigrams. Fig-
ure 3c shows this information focusing on content
words. Around 60% of content tokens are reused
by humans. The proportion is even higher in the
utterances generated by our context-aware models.
Digging deeper into the types of content tokens
being reused, we find that nouns are reused signifi-
cantly more than other parts of speech by humans.
This is also the case in the subsequent references
generated by the ReRef and Copy models.
Humans also reuse a substantial proportion of
content word bigrams—as do, to a smaller degree,
the context-aware models. For example, given
the gold description “pink bowls rice and broccoli
salad next to it”, ReRef generates the subsequent
reference “pink bowls again”. Noun-noun com-
pounds are a particularly interesting case of such
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bigrams, which we qualitatively analyse below.

6.2 A Case Study: Noun-Noun Compounds

A partial manual inspection of the human utter-
ances in our chains reveals that, as they proceed
in the dialogue, participants tend to produce refer-
ring expressions consisting of a noun-noun com-
pound.'? For example, in Figure 2 we observe
the compound “camera guy” being uttered after
the previous mention “guy with camera”. (reused
nouns are underlined). Another example is “wine
glass dog” in Figure 1. This is in line with Down-
ing (1977), who argues that novel (i.e., not yet
lexicalised) noun-noun compounds can be built
by speakers on the fly based on a temporary, im-
plicit relationship tying the two nouns, e.g., ‘the
guy taking a picture with a camera’. Such noun-
noun compounds are thus prototypical examples of
reuse and reduction: On the one hand, the novel
interpretation (which needs to be pragmatically in-
formative, diagnostic, and plausible; Costello and
Keane, 2000) can only arise from the established
common ground between speakers; on the other
hand, compounds are naturally shorter than the
‘source’ expression since they leave implicit the
relation between the nouns.

We check whether our best performing genera-
tion models produce compounds as humans do, i.e.,
by reusing nouns that were previously mentioned
while compressing the sentence. We perform the
analysis with a qualitative focus, by manually in-
specting a subset of the generated utterances.'? In
Figure 4, we show two noun-noun compounds gen-
erated by ReRef (similar cases were observed for
Copy). The example on the left is a noun-noun
compound, “basket lady”, that is consistent with
the dialogue context: both nouns are indeed reused
from the previous mention. In contrast, the com-
pound on the right does not build on the conversa-
tional history; the noun “tatfoo” is not in the previ-
ous mention and never uttered within the reference
chain (not reported), and thus may be perceived as
breaking a conceptual pact (Metzing and Brennan,
2003). The compound is grounded in the image,
but not in the conversational context.

"2This is consistent with the fact that the proportion of noun-
noun bigrams is significantly higher in subsequent references
(0.05 vs. 0.08 on average in first and subsequent references,
respectively; p < 0.001 independent sample ¢-test).

3The subset is obtained by applying simple heuristics to
the set of generated utterances, such as length and PoS tags.

P: lady with basket?
~+ ReRef: basket lady?

P: do you have headband guy?

~> ReRef: tattoo guy?

Figure 4: Two examples from the test set where ReRef
generates a noun-noun compound based on the previ-
ous human mention (P). Left: a genuine reuse case;
right: a non-reuse case. Reused words are underlined.

7 Conclusion

We have addressed the generation of descriptions
that are (1) discriminative with respect to the visual
context and (2) grounded in the linguistic common
ground established in previous mentions. To our
knowledge, this is the first attempt at tackling this
problem at the level of surface realisation within a
multimodal dialogue context.

We proposed an encoder-decoder model that is
able to generate both first mentions and subsequent
references by encoding the dialogue context in a
multimodal fashion and dynamically attending over
it. We showed that our best performing model is
able to produce better, more effective referring ut-
terances than a variant that is solely grounded in the
visual context. Our analysis revealed that the gener-
ated utterances exhibit linguistic properties that are
similar to those observed in the human utterances
regarding reuse of words and reduction. Gener-
ating subsequent references with such properties
has the potential to enhance user adaptation and
successful communication in dialogue systems.

Yet, in our approach we abstracted away from
important interactive aspects such as the collabo-
rative nature of referring in dialogue (Clark and
Wilkes-Gibbs, 1986), which was considered by
Shore and Skantze (2018) for the task of reference
resolution. In the present work, we simplified the
interactive aspects of reference by extracting refer-
ring utterances from the PhotoBook dialogues and
framing the problem as that of generating the next
referring utterance given the previous mention. We
believe that the resulting dataset of referring utter-
ance chains can be a useful resource to analyse and
model other dialogue phenomena, such as saliency
or partner specificity, both on language alone or on
the interaction of language and vision.
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Appendices
A Reference chain extraction

For our generation task, we extract reference chains
of single referring utterances from the PhotoBook
dataset (Haber et al., 2019). Given a dialogue and
a target image, a reference chain is comprised of
utterances—maximum one per round—that refer
to the target image in that dialogue. Due to the
size of the PhotoBook dataset (see Section 3.1), we
perform this procedure automatically, with a three-
step heuristic method described in the following
sections. The chain extraction code is available at
https://dmg-photobook.github.io.

Extracting dialogue segments The goal of seg-
ment extraction is to identify all utterances that may
include a description of a given target image. To
identify relevant segments, we leverage the partici-
pants’ recorded actions, i.e. selecting an image as
common or different (more details on the available
metadata in Haber et al., 2019). When an image is
selected by a participant as common in a dialogue
round, we extract all utterances up to that point in
the round as candidate referring expressions. We
collect referring expressions for a given image in a
dialogue starting from the round when both speak-
ers observe it. The speakers are then more likely to
have established a conceptual pact (see Section 1).

Scoring referring utterances In this second
step, we assign a score to each utterance in the ex-
tracted segments indicating how likely it is for that
utterance to be a description of a given image. To
produce these scores, we use as reference the MS
COCO image captioning dataset (Lin et al., 2014)
and the Visual Genome dataset of scene graphs (Kr-
ishna et al., 2017). All 360 pictures in PhotoBook
are taken from MS COCO, so we have access to
at least 5 captions for each target image. Instead,
the Visual Genome dataset provides detailed scene
graphs for 37% of the PhotoBook images.

To measure the similarity of a candidate utter-
ance to a reference MS COCO caption, we use the
BERTScore (Zhang et al., 2020). We experiment
with BERTScore Precision, Recall, F1, and select
BERTScore F1. As, in our dialogue setting, ut-
terances often contain lexical material that is not
part of a referring expression, we filter out stop-
words from both the captions and the utterances.
We use spaCy’s stop-word list for English from
which we remove numerals and prepositions that
encode spatial information.!#. Furthermore, to cap-
ture dyad-specific variation in referring language,
we add the utterance with the highest BERTScore
in a round to the reference set, and use it as an
additional caption for the following rounds.

To take into account visual attributes and rela-
tionships, for each image we collect attribute to-
kens T'4(i) (e.g. leafy, tree from leafy(tree)) and
relationship tokens T (i) (e.g. man, playing, fris-
bee from playing(man, frisbee)) from the Visual
Genome dataset of scene graphs. We only consider
the intersection Ty ¢ (i) = Ta(i) N Tr(7) between
the sets of attribute and relationship tokens to retain
only the most relevant tokens. The set difference
Tya(ix) \ Ugln‘#z’* between the Visual Genome
tokens of the target image and the tokens of the
11 distractors is then used as a reference set. To
score an utterance, we compute its METEOR score
(Banerjee and Lavie, 2005) with respect to this ref-
erence set. For all images annotated in the Visual
Genome dataset, the final utterance score is the
sum of BERTScore and METEOR.!>

“The English stop-word list is available at
https://github.com/explosion/spaCy/blob/
master/spacy/lang/en/stop_words.py and our
edits at https://dmg-photobook.github.io.

SWe implement BERTScore and use NLTK’s code
for METEOR (https://www.nltk.org/api/nltk.
translate.html). We set METEOR’s alignment penalty
to 0 as our references are unordered collections of tokens.
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Chains | Utterances | Unique utterances | Target images | Image domains | Chain length | Utterance length
Train 11540 28933 27288 360 30 2.51(0.85) 8.71(4.66)
Validation 2503 6252 6009 360 30 2.50 (0.85) 8.82 (4.67)
Test 2482 6155 5876 360 30 2.48 (0.86) 8.77(4.68)
Extracted-20 327 824 807 199 24 2.52(0.85) 9.50 (4.75)
Gold-20 327 756 740 199 24 2.31(0.94) 9.47 (4.77)

Table 4: Descriptive statistics of all portions of the extracted dataset of reference utterance chains. Gold-20 is a set
of 20 hand-annotated PhotoBook dialogues, with referent labels linking utterances to the target image they describe
(see Section 3.2) whereas Extracted-20 are the reference chains extracted from the same 20 dialogues, as if they
were not annotated. Duplicate utterances are due to chance: PhotoBook participants have uttered them in different
dialogues, potentially to describe the same target image. Image domains refers to the number of MS COCO image
categories covered by a dataset portion; the 360 PhotoBook images come from a total of 30 domains.

Selecting referring utterances The last step, ut-
terance selection, produces reference chains con-
sisting of single utterances—maximum one per
round. As PhotoBook dialogues are made up of
five rounds, reference chains will have a minimum
length of 1 and a maximum possible length of 5.
First, given an extracted dialogue segment, we dis-
card all utterances produced by speakers who do
not have that image in their visual context. Then,
for each target image in the corresponding dialogue
round, we collect a ranked candidate list of n top-
scoring utterances. As an utterance can be selected
as a candidate for multiple images in the same
round, we discard a candidate (utterance, image)
pair if its score is lower than that of any other (utter-
ance’, image) pair in the same round. Finally, we
pick the utterance with the highest score among the
remaining candidates. For some images, all of the
n top-scoring utterances are assigned to other im-
ages, and with higher scores. This causes a slight
decrease in the number of utterances in the ex-
tracted dataset. We set n = 4 to minimise the
number of discarded utterances. Table 4 reports rel-
evant statistics for the dataset splits of our extracted
reference utterance chains.

B Data processing for models

We further process the dataset of automatically
extracted utterance chains. Every utterance is
uniquely identified by the game ID, round number,
message number and the ID of the image that they
refer to. From these utterances and their contexts,
we build the data we feed into our models.

While providing the 6 candidate images to the
reference resolution models, we also keep track
of the respective histories of candidates (the last
utterance up to that time in the game).

As the distribution of the 6 images and the po-
sitions of the target is not uniform for each target-

context pair, this may constitute a bias in the refer-
ence resolution model. Therefore, to overcome this,
we shuffle the images in the context for all splits
at the beginning of each epoch. In the generation
models, this shuffling is done once at the beginning
of training for all splits.

B.1 BERT representations

Since utilising pre-trained BERT models and rep-
resentations has proven to be beneficial to many
NLP tasks (Devlin et al., 2019), we also decided to
use BERT to encode the linguistic input in the ref-
erence resolution models. For this purpose, we use
the BERT-base-uncased model and the tokeniser
as provided in the HuggingFace’s Transformers li-
brary (Wolf et al., 2019). The utterances are first
encoded into the correct format for BERT models.
Afterwards, they go through the BERT model to
produce the hidden states that correspond to the
representations of each of the input wordpieces.
Finally, all utterances are fed into the reference
resolution model in the form of a set of BERT rep-
resentations.

We also experimented with using BERT-large-
uncased model as well as extracting hidden states
from multiple layers and aggregating them. Nei-
ther option provided further improvements on the
results we obtained with the final hidden states
from the BERT-base-uncased model. Hence, we
opted to use the base model’s outputs, where each
hidden state is of size 768.

B.2 Embeddings from scratch

For the generation models where we do not use
BERT representations, we create a vocabulary of
tokens from the training set with the help of Tweet-
Tokenizer from the NLTK library'®. We then map
the words that occurred only once in the training

Yhttps://www.nltk.org/api/nltk.
tokenize.html
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split to *<unk>’. This results in a vocabulary of
size 2816 (including <pad>, <unk>, <sos>, and
<eos>). In addition to these special tokens, we
also add <nohs> to point out that there was no
history (no previous utterance) for the target image
at that point in the game. This token is utilised in
the models that base their generation on the pre-
vious utterance. An input of <nohs> means that
what the generation model is expected to produce is
the very first utterance for that image in the game.

The tokens in all 3 splits are converted to indices
using this final vocabulary. For the copy model, we
need to keep track of what the actual form of an
<unk> token is. For this purpose, we build a full
vocabulary from the whole dataset to have access
to every word in all splits in their actual surface
forms. This vocabulary is of size 5793 (including
all 5 special tokens mentioned above).

Since we do not want the generation model to
output the <nohs> token, the search space of the
decoder does not include this token. The Copy
model needs to keep track of unknown tokens in the
previous utterance and map the previous utterance
using an extended vocabulary so that the decoder
would be able to ‘copy’ from the input itself, rather
than only generating words from the reduced vo-
cabulary. Mapped expected next utterance is used
in calculating the loss. Actual inputs to the encoder
and the decoder still contain unknown words, as we
do not maintain special embeddings for the surface
forms of each of the unknown tokens.

C Model architectures

Below are more details about our generation mod-
els and our reference resolution model.

C.1 Generation models

In these models, we apply teacher forcing during
training; therefore, a token embedding at timestep
t is the embedding of the expected token from the
ground-truth utterance. During validation, the mod-
els use the embedding of the word they generated
in the previous timestep.

C.1.1 ReRef model

This model obtains the visual input as in the Ref
model (consisting of the context and the target).
However, instead of initialising the decoder as in
the prior model, here, this visual representation
initialises the encoder. The encoder receives as
input a sentence that was previously used in the
same game to refer to the target image (or simply

<nohs>, if there was no history for the target im-
age in the game at that point). The embeddings of
this input go through dropout.

We concatenate the last hidden states of the for-
ward and backwards directions of the BiLSTM
encoder. This concatenated vector is then projected
to hidden dimensions and used to initialise the de-
coder. The input to the decoder during training is
an embedding of the ground-truth utterance.

For the attention mechanism, each hidden output
of the encoder A, (concatenation of forward and
backward hidden states for timestep t) goes through
a linear layer that projects it from double the size
of hidden dimensions to the attention dimensions.
In addition, the current hidden state of the decoder
haect is projected from the hidden dimensions to
the attention dimensions.

enct - Wehenct (1)
dec® = W/dhdecC )
et = vg(tanh(enc' + dec)) 3)

Attention weights are calculated based on the sum
of enc! and dec®, on which we apply tanh non-
linearity and a linear layer. Padded tokens are
masked and softmax is applied over all remaining
encoder timesteps i:

a; = softmazx(e;) 4
h* = Z aihénc o)

To predict the word that the decoder will gener-
ate, we concatenate the decoder’s current hidden
state hge." with the weighted average from the en-
coder, i.e. encoder context vector A*. This con-
catenation is projected to the size of the vocabulary
minus 1, as we do not want the model to predict
the <nohs> token.

C.1.2 Copy model

The encoder part of this model is the same as that
of the model explained in the previous subsection.
However, this model uses various versions of the
input and the decoder is altered to accommodate
the copy mechanism.

First of all, we keep track of the unknown tokens
in the input to provide the ability to predict them
in the decoder phase. For this, we map the input
utterance to temporary indices in a new extended
vocabulary. This extended vocabulary contains the
unknown words existing in the input utterance in
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their original forms appended to the end of the orig-
inal vocabulary. Since we do not want <nohs> to
be predicted, we take additional precautions when
it exists in the encoder input. The decoder input
stays the same with unknown embeddings; never-
theless, the target utterance can include temporary
indices assigned to unknown words encountered in
the given input utterance, so that we can calculate
the loss according to them as well.

The attention mechanism works in the same man-
ner as in the previous model. However, we change
what comes afterwards in line with the copy mecha-
nism, where the attention for each word in the input
utterance is added to their generation probabilities
in the vocabulary. Here, we scatter the attention
scores for the temporary indices of unknown words
onto the distribution of the extended vocabulary, as
well. For this reason, we maintain multiple versions
of the input and output (mapped to the reduced vo-
cabulary and mapped to the full vocabulary), as
well as keeping track of the set of unknown words
in the previous utterance and their temporary in-
dices. Crucial here is the calculation of the genera-
tion probability pye,,, which requires the addition of
several more linear layers that process the encoder
context vector h}, decoder input x;, and the current
decoder state s;. As compared to the calculation of
Dgen by See et al. (2017), we altered the formula for
this value by adding tanh non-linearities: pge, =
o(tanh(w]. h})-+tanh(w! s;)+tanh(w? z;)).

C.2 Reference resolution model

In this model, BERT embeddings go through a
dropout layer, then a linear layer projecting the
size to hidden dimensions. Finally, ReLU is ap-
plied (Nair and Hinton, 2010).

All 6 images in the context are concatenated and
the concatenation goes through dropout, a linear
layer and ReL.U to produce the final visual context
vector. We then concatenate each of the BERT rep-
resentations with the visual context vector to obtain
multimodal token representations. This multimodal
vector goes through a linear layer and ReLLU, which
finalises the multimodal input vectors. The model
then determines the attention to be paid to each of
the multimdal vectors as indicated below:

e; = vg(tanh(Weh;)) (6)

h; is the multimodal output for each token, W, is
a linear layer projecting from hidden dimensions
to attention dimensions, v, is a linear layer that

projects the output from the attention dimensions
to a scalar. The model than masks the pad tokens
before applying softmax over e; scores to obtain
the attention weights a;:

a; = softmax(e;) (7

The final multimodally-encoded utterance represen-
tation is then the weighted average of all h;, given
their attention weights a;:

hL = Za@'hi (8)

Candidate images also separately go through
dropout, a linear layer and ReLLU. Finally, we nor-
malise the outcomes for each image separately with
L2 normalisation.

The history of each candidate image is deter-
mined by looking at their respective chains in the
given game. Crucially, we only look at the chain
items that were uttered before the current utterance
we are trying to resolve. We take only the last ut-
terance in the history, if such a history exists for a
candidate image. In this case, we take the average
of the BERT representations in the last utterance
for that image. This average then goes through
dropout, a linear layer and ReLU.

The final history representation for a candidate
image is added to this image’s final visual represen-
tation to obtain its final candidate representation.
Please note that not all images in the context neces-
sarily have histories associated with them. There-
fore, some candidate representations will be multi-
modal, whereas the others will remain in the visual
domain, with no linguistic history being added.

To determine the target image, we take the dot
product between the candidate representations and
the multimodally-encoded utterance representation.
The candidate with highest value is then predicted
to be the referent of the input utterance.

Ablation: As an ablation of the model described
above, we train another type of model where the
history is not added to the candidate images. Hence,
the candidates are always represented only in the
visual modality.

Baseline: This model only uses one-hot vectors
based on image IDs. These vectors go through the
same operations as the image features go through in
the models described above (dropout, linear layer,
ReLLU and normalization). At the end, instead of
a dot-product, the outputs for the candidates are
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Model Runtime
Baseline 1 hour
Proposed | 5.5 hours
Ablation | 2.8 hours

Table 5: Resolution: approximate training runtimes.

Model Parameters
Baseline 182K
Proposed 8.9M
Ablation 8.5M

Table 7: Resolution models: number of parameters.

Model | Runtime
Ref 6.5h
ReRef 7.5h
Copy 14h

Table 6: Generation: approximate training runtimes.

projected to scalar values and the model tries to
predict the target via applying softmax directly over
these scalars.

D Evaluation metrics

For the evaluation of the reference resolution mod-
els, we use accuracy and mean reciprocal rank
(MRR) implemented by us. Accuracy is a stricter
measure as it is either 0 or 1 for a given instance.
For the generation models, we use the
compute_metrics function provided in the library
at https://github.com/Maluuba/nlg-eval tO
obtain corpus-level BLEU, ROUGE, and CIDEr.
We also report BERTScore (Zhang et al., 2020)
for the generation models. To obtain this score,
we use the library provided by the authors at
https://github.com/Tiiiger/bert_score and
import the score function in our evaluation scripts.
We use the BERT-uncased-model, we do not ap-
ply rescaling to baseline or importance weight-
ing. The hash code for BERTScore that we
used in evaluation is ‘bert-base-uncased_L9_no-
idf_version=0.3.2(hug_trans=2.6.0)’. We obtain
precision, recall and F1 variants of BERTScore.

E Model configurations and
reproducibility

The models are implemented in Python 3.7.5!7 and
PyTorch 1.4.1'8. In training our models, we use the
Adam optimizer (Kingma and Ba, 2015) to mini-
mize the Cross Entropy Loss with sum reduction.'”

We experimented with learning rate (0.001,
0.0001, 0.00001), dimensions for the embeddings
(512, 1024), hidden and attention dimensions (512,

"https://www.python.org/downloads/
release/python-375/

Bhttps://pytorch.org/

Copy model in fact uses the Negative Log-Likelihood
Loss that receives log-softmax probabilities. This is equivalent
to Cross Entropy Loss with logits.

Model | Parameters
Ref 16.1M
ReRef 24.9M
Copy 24.0M

Table 8: Generation models: number of parameters.

1024), batch size (16, 32) and dropout probability
(0.0, 0.3, 0.5). We selected the best configurations
per model type via manual tuning.

We train each model type with their selected
configuration with 5 different random seeds setting
the random behaviour of PyTorch and NumPy. We
also turn off the cuDNN benchmark and also set
cuDNN to deterministic.

In all the models, the biases in linear layers were
set to 0 and the weights were uniformly sampled
from the range (-0.1, 0.1). In the models that learn
embeddings from scratch, embedding weights were
initialised uniformly in the range (-0.1, 0.1). The
hidden and cell states of the LSTMs were initialised
with task-related input at the first timestep.

Computing infrastructure: The models were
trained and evaluated on a computer cluster with
Debian Linux OS. No parallelization was imple-
mented, each model used a single GPU GeForce
1080Ti, 11GB GDDRS5X, with NVIDIA driver ver-
sion 418.56 and CUDA version 10.1.

Average runtimes: Please see Table 5 and 6.
These durations indicate the total approximate run-
time of training. The best models are reached in a
shorter amount of time.

Number of parameters in each model: Please
see Table 7 and Table 8.

E.1 Configurations of the reference
resolution models

We select the reference resolution models based
on their performance in accurately predicting the
correct target among 6 images. We also report
MRR, as it also provides further information in
terms of the ranking of the correct image among
the distractors.

After hyperparameter search, we decided on a
batch size of 32, a learning rate of 0.0001, atten-
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Model | BLEU-2 ROUGE CIDEr BERT-F1 ACC MRR

Ref 22.40 (1.22) | 31.29 (1.56) | 41.26 (3.18) | 55.24 (1.38) | 59.60 (3.48) | 74.41 (2.21)
ReRef | 4541 (0.89) | 51.14 (0.42) | 127.08 (4.17) | 67.94(0.23) | 91.70 (1.09) | 95.32 (0.70)
Copy | 3644 (0.31) | 43.00 (0.35) | 10427 (1.16) | 62.93 (0.21) | 83.28 (0.77) | 90.07 (0.49)

Table 9: Average metric scores of the 3 generation models on the validation set. We report the average of 5 runs
and standard deviations in parentheses. ACC is the reference resolution accuracy of the sentences generated by the
generation models and MRR is their mean reciprocal rank as obtained through our best reference resolution model.

tion and hidden dimensions both set to 512, and
a dropout probability of 0.5 for the proposed ref-
erence resolution model. We trained the ablation
model with the same settings.

Subset ACC MRR Instances
First 81.85 (0.45) | 88.88 (0.29) 2503
Later 88.51 (0.19) | 93.33 (0.12) 3749
Overall | 85.85(0.10) | 91.55 (0.07) 6252

Table 10: Validation set scores of the reference resolu-
tion model: averages of 5 runs with the best configura-
tion, with the standard deviations in parentheses.

E.2 Configurations of the generation models

Best-performing generation models for each model
type were selected based on their performance with
respect to the F1 component of BERTScore. We
also performed hyperparameter search for beam
width used in decoding, after which we decided to
use a beam width of 3. The best-performing model
for each model type outperformed the other models
in its own category over all metrics.

As revealed by hyperparameter search, all re-
ported generation models use 1024 dimensions for
embeddings and 512 dimensions for hidden and
attention layers. They all use a learning rate of
0.0001. Ref and Copy models use a batch size of
32 and the ReRef model, 16. Ref and ReRef mod-
els use a dropout probability of 0.3, whereas the
Copy model yielded better results without dropout.

F Results on the validation set

For each model we report in the main text, we also
provide the validation set performances in Table 9
for the generation and Table 10 for the resolution
models.

G Linguistic measures

The linguistic measures used were chosen to quan-
titatively explore whether artefacts of the compres-
sion, reuse and grounding present in the human
utterances, as well as other human-like linguistic

patterns, can be seen in the generated utterances.
We compare performance of the generation models
with regards to the similarity of their generated sen-
tences to human traits, namely a) whether there is a
change in token use between first and last mention
(Table 11) and b) whether this relative distance, or
the values in the first mention differ significantly
between human and model references (Table 12).

In the case of givenness markers, we measure
this as the proportion of tokens which correspond
to definite (the), indefinite (some, a, an) and other
markers of the existence of shared context (again,
before, one, same, also) which occur in the utter-
ance. In the case of compression, we measure the
lengths of the utterances in terms of tokens, and
content tokens (tokens which are not in the stop-
word list from from nltk version 3.4.5 (Loper and
Bird, 2002). We also measure the proportion of
content words in an utterance which correspond
to nouns, verbs and adjectives. Finally, for en-
trainment, examining only later utterances (not the
first referent to an image), we measure firstly what
proportion of the utterance in question consists of
reused unigrams and bigrams from the previous
utterance. We also measure within the reused to-
kens, the proportion of which is made up of nouns,
adjectives and verbs, in order to discover their rela-
tive importance in terms of reuse. These measures
can all be found in Tables 11 and 12. For these
analyses we compared the generated output from
the best seed for each model variant. These were
seeds 1, 1, and 24 for the Ref, Copy and ReRef
models respectively. We report both effect size (d)
as measured by Cohen’s d, and p-value (*p < 0.05,
*p < 0.005, ***p < 0.001) for each compari-
son. We use the Scipy stats package (scipy version
1.3.3. ) ttest_ind to perform the independent t-test,
and our own implementation to calculate Cohen’s
d effect size.

Additionally to check general fluency, we evalu-
ate the coherence and vocabulary use of the models
in comparison to humans. We measure Type To-
ken Ratio (TTR), the proportion of unique tokens
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Human ReRef Copy Ref

first later d first later d first later d first later d
Givenness
givenness 0.05 0.08 -0.36* 0.02 0.10 -0.89% 0.04 0.09 -0.53* 0.05 0.05 -0.03
definite 0.03 0.05 -0.27* 0.01 0.08 -0.85% 0.03 0.06 -0.48%* 0.04 0.05 -0.04
seen 0.01 0.03 -0.26* 0.00 0.02 -0.43%* 0.01 0.03 -0.29% 0.00 0.00 0.03
indefinite 0.07 0.02 0.77* 0.15 0.01 1.88%* 0.10 0.01 1.14% 0.15 0.15 0.03
Compression
length_c 11.29 828  0.63* | 11.32 7.22 1.15*% | 10.77 7.79  0.65* | 13.66 13.59  0.00
prop content 0.53 057 -0.20% 041 0.54 -0.70% 0.50 0.58 -0.39% 0.40 0.39 0.01
prop noun 0.37 041 -0.29* 0.30 044 -0.86* 0.37 043 -037* 0.28 0.28 -0.01
prop adj 0.09 0.10 -0.02 0.06 0.07 -0.14% 0.08 0.09 -0.10% 0.08 0.08 0.04
prop verb 0.13 0.11 0.12% 0.19 0.11 0.76%* 0.13 0.12 0.12* 0.17 0.17  0.01

Table 11: Trends in Subsequent mentions across humans, ReRef, Copy and Ref. The presence of * indicates
significant differences between first and later means, with p < 0.001. d shows effect size measured by Cohen’s d.

Human ReRef

Copy Ref

mean | mean d

p | mean d p | mean d P

Lexical Entrainment:
reuse prop within mention:

—reuse_c 0.562 | 0.660 -0.334
—reuse_bigrams_c 0.325 | 0.304  0.050
reuse prop within reused:

—noun 0.701 | 0.746  -0.161
—adj 0.158 | 0.146  0.054
—verb 0.095 | 0.066  0.165

—NN bigrams 0.064 | 0.051  0.069

R 10612 -0.168 kR 10.320  0.868  kEE

#0283 0103 k| 0091 0682
ek | 0716 -0.050 €1 0740 -0.124 e
* 10146  0.057 * 10180 -0.079  *
w0097 -0.011  0.653 | 0.063  0.172

*¥*1°0.056  0.043 0.064 | 0.013  0.328  k**

Table 12: Human comparison with ReRef, Copy and Ref for givenness markers and Compression. The presence
of * indicates a significant difference between the human mean and that of the model. (***: p < 0.001, **: p <

0.005, *: p < 0.01)

in an utterance. This can capture ungrammatical
repetition patterns in the generation, and, if fol-
lowing human trends, should increase in subse-
quent mentions. Although both models have sig-
nificantly lower TTR than the human data, ReRef,
unlike Copy, shows a significant increase in subse-
quent mentions, with much higher TTR than Copy,
even though both models show similar average ut-
terance length for later utterances (ReRef: 7.22,
Copy: 7.79). In terms of vocabulary, for the gen-
erated outputs, ReRef has a much smaller (first:
492, later: 705) vocabulary than Copy (first: 1098,
later: 1469), although these are both much lower
than Human vocabulary size (first: 1836, later:
1727) and show an increase rather than a decrease
in later mentions.

Overall, Tables 11 and 12 show that both of our
context-aware speaker models ReRef and Copy are
able to generate referring utterances which make
use of the dialogue history in a manner akin to hu-
mans with respect to multiple aspects of language
style.

Comparing the context-aware models, ReRef
shows a stronger degree of shortening than Copy,
with very similar levels of bigram reuse to humans

while Copy shows more similar traits to humans
in terms of proportion of markers and PoS tags (as
revealed by smaller effect sizes). In general, both
models are successful at generating human-like ut-
terances as we measure them, however it seems
that while Copy does generate utterances with the
most similar proportional similarities to humans
and exhibits similar proportions of unigram reuse,
it does so at the expense of coherence. In terms
of content bigram reuse, Copy seems to be less
selective in what it repeats from previous referring
utterances than ReRef, most likely due to the in-
creased overall level of repetition in the generation.
ReRef on the other hand shows amplified versions
of the human trends, yet very similar content bi-
gram and noun-noun bigram reuse proportion to
humans, while maintaining low levels of same con-
tent word repetition as well as a high TTR, which
indicates that coherence is also maintained.
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