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Abstract
Neural language models learn, to varying de-
grees of accuracy, the grammatical properties
of natural languages. In this work, we in-
vestigate whether there are systematic sources
of variation in the language models’ accuracy.
Focusing on subject-verb agreement and re-
flexive anaphora, we find that certain nouns
are systematically understood better than oth-
ers, an effect which is robust across grammati-
cal tasks and different language models. Sur-
prisingly, we find that across four orders of
magnitude, corpus frequency is unrelated to a
noun’s performance on grammatical tasks. Fi-
nally, we find that a novel noun’s grammatical
properties can be few-shot learned from vari-
ous types of training data. The results present
a paradox: there should be less variation in
grammatical performance than is actually ob-
served.

1 Introduction

Neural language models (Howard and Ruder, 2018;
Devlin et al., 2019; Dai et al., 2019; Yang et al.,
2019; Radford et al., 2019) have achieved success
in both text prediction and downstream tasks such
as question-answering, text classification, and natu-
ral language inference. The strong performance of
these models raises scientific questions about the
knowledge they have acquired, in particular, about
the abstractness and generality of their linguistic
representations.

Previous work has investigated the linguistic rep-
resentations of neural language models in several
domains, and found varying evidence for how lin-
guistically adequate these representations are (Lau
et al., 2017; Marvin and Linzen, 2018; Goldberg,
2019; Futrell et al., 2019). This work has em-
ployed psycholinguistic methodology in order to
elicit grammatical judgments from these models,
inferring the models’ underlying representations
from the patterns of judgments.

In the current work, we focus on the variation
in grammatical knowledge that potentially exists
within a neural language model. Just as in human
psycholinguistic tasks, previous work on neural
LMs has observed variability in grammatical judg-
ments between different sentences; not all viola-
tions of a grammatical constraint are judged to be
equally bad. It is not clear, however, whether there
are systematic sources of variation in these judg-
ments, and if so, what the sources are.

We will focus on variation among lexical items,
using English subject-verb agreement and reflexive
anaphora as a case study. We first ask whether lan-
guage models learn the grammatical properties of
some nouns more accurately than for others. We do
this by measuring the accuracy of language models
when making grammatical judgments involving dif-
ferent nouns. We find systematic variation among
nouns: nouns that perform well on one task or lan-
guage model are more likely to perform well on
other tasks or other language models. We then
consider possible sources of the observed varia-
tion between nouns, finding that the grammatical
properties of nouns are paradoxically easy to learn;
our results suggest that there should be much less
variation than is actually observed.1

Related work

A number of other studies have investigated the
linguistic representations of neural models, both
language models specifically and networks trained
using other objectives. Linzen et al. (2016); Gulor-
dava et al. (2018); Kuncoro et al. (2018) probe the
ability of LSTMs to learn hierarchical structures.
Warstadt et al. (2019b) introduces a large-scale cor-
pus of grammatical acceptability judgements, trains
RNNs to predict these judgments, and concludes

1All code and experimental materials are avail-
able at https://github.com/CharlesYu2000/
lm-variation

https://github.com/CharlesYu2000/lm-variation
https://github.com/CharlesYu2000/lm-variation


4041

that the models outperform unsupervised baselines,
but fall far short of human performance. Lepori
et al. (2020) finds that tree-based RNNs outper-
form sequential RNNs on number prediction tasks,
but that fine-tuning on an artificially-generated aug-
mentation set can bring the models closer to parity.

Other work has focused on probing whether
neural language models have acquired adequate
representations of specific linguistic phenomena.
Marvin and Linzen (2018) and Goldberg (2019)
use a minimal pair methodology to assess the
grammatical knowledge of RNNs and BERT, look-
ing at subject-verb number agreement, reflexive
anaphora, and negative polarity items. Wilcox et al.
(2018) examines whether RNN language models
exhibit wh-licensing interactions on surprisal as-
sociated with gaps, concluding they can represent
long-distance filler-gap dependencies and learn cer-
tain island constraints. Futrell et al. (2019) studies
whether neural language models show evidence
for incremental syntactic state representations us-
ing psycholinguistic methodology. Warstadt et al.
(2019a) studies BERT’s knowledge of NPI’s, fo-
cusing on differences between tasks: boolean clas-
sification (e.g. Linzen et al. 2016 and Warstadt
et al. 2019b), minimal pair comparisons (e.g. Mar-
vin and Linzen 2018 and Wilcox et al. 2019), and
probing tasks (e.g. Giulianelli et al. 2018).

2 Approach

We use the minimal pair methodology of Mar-
vin and Linzen (2018) in order to investigate the
grammatical judgments of neural language models.
Given a minimal pair of sentences, i.e. a pair that
differ from each other in their acceptability due to a
difference in just one grammatical property. If the
model understands the grammatical phenomenon
being studied, it should assign higher probability to
the grammatical sentence than to the ungrammati-
cal sentence.

2.1 Grammatical tasks

Table 1 shows the 10 grammatical tasks (Marvin
and Linzen, 2018) and the templates used for gener-
ating minimal pairs. The tasks fall into two general
categories: subject-verb agreement (SVA) and re-
flexive anaphora (RA). The first SVA task, SVA
Simple, probes whether the model understands that
subject number must agree with the number of
third-person present verbs:

(1) a. The cat walks.

b. *The cat walk.

The other SVA tasks probe whether the models
have more sophisticated representations of number
agreement. For example, the SVA PP task mea-
sures whether the model is able to ignore distrac-
tors (“boys”) which occur between the head of the
subject and the verb:

(2) a. The cat next to the boys jumps.

b. *The cat next to the boys jump.

The object relative clause tasks probe whether the
model accurately maintains the head’s number in
the presence of an embedded clause. Marvin and
Linzen (2018) provide extensive discussion of the
linguistic motivation for these tasks.

The RA tasks measure whether the language
model understands the structural conditions on the
binding of reflexive pronouns. The tasks make use
of the following property of English reflexives: a
reflexive pronoun needs to agree in number with
its antecedent. The RA Sent.Comp task evaluates
whether the model understands that reflexives must
be in the same clause as their antecedents:

(3) a. The lawyers said the defendant incrim-
inated himself.

b. *The lawyers said the defendant incrim-
inated themselves.

The RA tasks involving object relative clauses eval-
uate whether the models understand that reflexive
anaphora do not bind to the noun in an embedded
clause but rather to the head noun.

2.2 Measuring the performance of a noun
We use these tasks in order to measure how well
the model understands the grammatical properties
of a particular target noun. Given a specific target
noun, it is substituted as the TargetNoun in each of
the task templates shown in Table 1. This gives a
partially specified template. For example, substi-
tuting the target noun “zombie” in the SVA Simple
template results in:

(4) The zombie 〈Verb〉.

Given each of these partially specified templates,
500 minimal pairs are randomly sampled by filling
in the remaining lexical items. Finally, the model’s
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Task Template
SVA Simple The 〈TargetNoun〉 〈Verb〉.
SVA Subj.Rel.Clause The 〈TargetNoun〉 that liked the 〈Noun〉 〈Verb〉.
SVA Sent.Comp. The 〈Noun〉 said the 〈TargetNoun〉 〈Verb〉.
SVA PP The 〈TargetNoun〉 next to the 〈Noun〉 〈Verb〉.
SVA Obj.Rel.Clause.That The 〈TargetNoun〉 that the 〈Noun〉 liked 〈Verb〉.
SVA Obj.Rel.Clause.NoThat The 〈TargetNoun〉 the 〈Noun〉 liked 〈Verb〉.
RA Simple The 〈TargetNoun〉 〈PastTransVerb〉 〈himself/themselves〉.
RA Sent.Comp. The 〈NonGenderedNoun〉 said the 〈TargetNoun〉 〈PastTransVerb〉 〈himself/themselves〉.
RA Obj.Rel.Clause.That The 〈TargetNoun〉 that the 〈NonGenderedNoun〉 liked 〈PastTransVerb〉 〈himself/themselves〉.
RA Obj.Rel.Clause.NoThat The 〈TargetNoun〉 the 〈NonGenderedNoun〉 liked 〈PastTransVerb〉 〈himself/themselves〉.

Table 1: Templates used for sentence generation. TargetNoun indicates the position of the target noun whose
performance score is being calculated.

grammatical judgments on the 500 minimal pairs
are computed (by taking the difference in scores
between the grammatical and ungrammatical vari-
ants) and averaged, resulting in a task performance
score for the noun.

2.3 Limitations
These analyses are limited in several respects. First,
only two grammatical tasks are used. By using a
wider range of tasks, it will be possible to investi-
gate a larger set of grammatical phenomena outside
of number agreement.

Second, while the study focuses on the gram-
matical information carried by nouns, other lexical
types such as verbs are likely to carry this informa-
tion as well. Future work can determine whether
the approach generalizes to verbs and other lexical
types.

Finally, while the study uses acceptability judg-
ments in order to determine the models’ grammati-
cal knowledge, other probing tasks exist and may
produce different results (Warstadt et al., 2019a).
We use acceptability judgments because, to the best
of our knowledge, feature probing has not been ex-
tensively studied for GPT-2 or Transformer-XL.
Different probing architectures may produce differ-
ent results for these models. It would be desirable
to understand the robustness of the current results
to the choice of experimental readout.

3 Methods

In this section we describe the process of calculat-
ing a target noun’s task performance score in more
detail.

3.1 Sentence generation
Using WordNet (Fellbaum, 1998) and VerbNet
(Schuler, 2005), we compiled a list of lexical items

as shown in Table 2. The target nouns were drawn
from the Noun list, which consisted of animate
nouns. Only nouns with distinct singular and plu-
ral forms were included. All verbs in the Verb set
have an intransitive reading. For each pair of task
template and target noun, 500 sentences were ran-
domly sampled by choosing lexical items from the
appropriate word lists.

For each sampled sentence, 2*2 or 2*2*2 ver-
sions were generated (depending on the template).
These versions varied the grammaticality of the
sentence and the plurality of the target noun and
any distractor nouns. For example, for the SVA
Simple task, 2*2 versions are generated for every
sampled sentence:

(5) a. Singular-Grammatical: The horse walks.

b. Singular-Ungrammatical: *The horse
walk.

c. Plural-Grammatical: The horses walk.

d. Plural-Ungrammatical: *The horses
walks.

3.2 Models
Our experiments use three models, Transformer-
XL (Dai et al., 2019), GPT-2 (Radford et al., 2019),
and BERT (Devlin et al., 2019). We use the Hug-
ging Face implementations (Wolf et al., 2019) with
the pre-trained models transfo-xl-wt103, which is
trained on the WikiText-103 dataset, gpt2-xl, which
is trained on the WebText dataset, and bert-base-
uncased, which is trained on BookCorpus and En-
glish Wikipedia.

3.3 Sentence scoring
We now describe how a score was calculated for
a particular sampled sentence. For each of the
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Set Name Transformer-XL GPT-2 BERT
Noun 916 723 704
Verb 615 228 406

NonGenderedNoun 870 679 663
PastTransVerb 1298 1034 1298

Table 2: Size of word sets for each model.

sentence variants (e.g. Example 5), the model com-
putes a score. In the case of Transformer-XL and
GPT-2, this score is simply the the log probability
of the string. For example, for Transformer-XL:

Scorestring(s) = logPTXL(s) (1)

where PTXL is the Transformer-XL language model
probability distribution.

For BERT, given its masked language model ar-
chitecture, we follow the approach of Goldberg
(2019). For the SVA tasks, we compute the log
conditional probability of the verb whose number
must agree with the target noun. For the RA tasks,
we compute the log conditional probability of the
reflexive pronoun. Both conditional probabilities
are computed conditional on the left and right con-
texts.

Given the scores for a sentence’s variants, we
compute an overall score for the sentence, which
captures how much the model prefers the grammat-
ical variants to the ungrammatical variants. For
each sampled sentence S, there are either 2 or 4
minimal pairs among its variants. In Example 5, a.
and b. is a minimal pair, and c. and d. is a minimal
pair. Letting sa, ..., sd denote these variants, the
overall score for the sentence is given by:

Scoresent(S) =
1

2
(Scorestring(sa)− Scorestring(sb)

+Scorestring(sc)− Scorestring(sd))

The formula when there are four minimal pairs is
similar.

3.4 Noun scoring

We next compute an overall score for the target
noun. As described in Section 3.1, for a specific
target noun n and task, we sample 500 sentences
S1, ..., S500. The noun’s score for this task is then
given by:

Scorenoun(n) =
1

500

500∑
i=1

Scoresent(Si) (2)

3.5 Word filtering and tokenization
Words were removed from a particular model if
either their singular or plural form was tokenized
to unk, or if their singular and plural forms were
assigned different numbers of tokens.2 For BERT,
words in the Verb set were removed if they were
assigned more than one token, as BERT does not
model the joint distribution over multiple masked
tokens.

For Transformer-XL, we add a padding text3

and a start-of-sentence-token (〈SOS〉) to the begin-
ning of the sentence and an end-of-sentence token
(〈EOS〉) to the end of the sentence. For GPT-2, we
make no modifications to the generated sentence
(although prefix spaces are added to the strings for
tokenization purposes). For BERT, since it is a
masked language model, we replace the Verb (for
SVA) or reflexive pronoun (for RA) with a [MASK]
token after tokenization. Thus, each sentence will
have a single mask token corresponding to the word
that should agree with the target noun.

4 Results

4.1 Noun performance is correlated across
tasks

We first examine how each noun’s performance
varies across the grammatical tasks. For each noun-
task pair, we measure the average performance of
the noun on that task, as described above. This
gives 10 features per noun, corresponding to the 10
grammatical tasks.

Figure 1 shows the pairwise comparisons be-
tween performance on the different tasks for
Transformer-XL. Results for BERT and GPT-2 are
similar and are shown in the appendix. The fig-
ure shows that performance is correlated across the
tasks; for many pairs of tasks, nouns which have
higher performance on one task are likely to have
higher performance on the other.

Using principal component analysis, we found
that a single principal component explains 47% of
task variance for Transformer-XL, and two prin-
cipal components explain 73%. Results are sim-
ilar for BERT and GPT-2, and are shown in the
appendix. The first PC primarily measures per-
formance on the four reflexive anaphora tasks,
while the second PC measures performance on the
subject-verb agreement across relative clause tasks.

2The latter constraint was used in order to simplify batch-
ing.

3https://tinyurl.com/y9kjuj5q

https://tinyurl.com/y9kjuj5q
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Figure 1: Pairwise comparisons between tasks with
Transformer-XL. Rows and columns represent tasks,
and one point represents a single noun’s performance
on a pair of tasks. The four tasks on the lower
right, with strongest correlations, all involve reflexive
anaphora.

This suggests that there is a dimension that char-
acterizes whether the model understands how re-
flexive binding constraints operate for a noun, and
a dimension for whether the model understands
subject-verb agreement for the noun. Note that
Figure 1 additionally demonstrates correlations be-
tween the reflexive tasks and the subject-verb agree-
ment tasks.

These results provide evidence that language
models’ variation in performance on the grammat-
ical tasks is, in part, explained by properties of
the nouns which are stable across tasks. The mod-
els understand number agreement better for some
nouns, and worse for others.

4.2 Noun performance is correlated across
models

We next investigate whether nouns exhibit stable
behavior across different neural language models.
For each pair of the three language models, we
measured how well a noun’s task performance in
one language model predicted its task performance
in the other language model.

Figure 2 shows comparisons between pairs of
language models on the 10 grammatical tasks. Of
the 30 comparisons, 24 show significant positive
correlations between the pairs of language mod-
els. 22 of the correlations remain significant after
Bonferroni correction.

GPT-2 and Transformer-XL show the strongest
correlation in performance. It is possible that this is
due to methodological differences between the task
setup for GPT-2 and Transformer-XL compared to
BERT: GPT-2 and Transformer-XL are performing
a language modeling task in which the probability
of a full sentence is queried, while BERT performs
masked language modeling on a single target word.
The difference may also be due to corresponding
training differences between BERT and the autore-
gressive language models.

The results provide evidence that nouns exhibit
stable task performance across language models.
The source of the correlation across language mod-
els must come from features of the training data.
Properties of the natural text distribution of nouns
lead some of these nouns to be better understood
than others.

4.3 Effect of frequency on task performance

In Sections 4.1 and 4.2, we found evidence that
nouns exhibit stable performance across different
grammatical tasks and language models. One obvi-
ous explanation of these results is that nouns vary
in their frequency in natural text, and language
models learn more accurate grammatical represen-
tations for more frequent nouns.

In order to investigate this, we measured the fre-
quency of each noun in two corpora: WikiText-103,
a 103 million token subset of Wikipedia, which was
used for training Transformer-XL; and Open Web-
Text (Gokaslan and Cohen, 2019), an open-source
implementation of the web corpus used to train
GPT-2.4 Word frequencies were measured sepa-
rately for singular and plural noun forms. Figure 3
shows the relationship between frequency and task
performance on each of the ten grammatical tasks.
The appendix shows the results broken down by
task type.

The results show no clear relationship between
noun frequency and task performance. Frequency
explains no more than 0.1% of the variation in
performance. This holds true over more than four
orders of magnitude in frequency. This provides
evidence that 1) differences in corpus frequency
do not explain the systematic differences observed
between nouns, and 2) relatively few observations
suffice for transformer language models to learn

4BERT was trained on a mix of Wikipedia text and Book-
Corpus. Because, as of this writing, BookCorpus is no longer
distributed, WikiText-103 was used as a proxy for BERT train-
ing frequencies.
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Figure 2: Pairwise comparisons between GPT-2, Transformer-XL, and BERT on the 10 grammatical tasks. Each
row corresponds to a pair of language models, and each column is a single task. One point represents the perfor-
mance of a noun on a single task.

Figure 3: Relationship between corpus frequency and task performance for Transformer-XL, BERT, and GPT-2.
Performance scores are z-normalized. Colors indicate the ten grammatical tasks and singular/plural form of the
noun (s indicates singular, p indicates plural). Each point represents task performance for a single noun.

correct number agreement behavior for a noun. In
the next section, we investigate this finding further.

5 Few-shot learning for novel lexical
items

The results in the previous section provide evidence
that nouns systematically vary in their performance
on grammatical tasks; some nouns perform better
than others across tasks and language models. How-
ever, this variation is not explained by frequency of
occurrence in natural text. Nouns that occur on the
order of 100 times in a corpus do not have system-
atically worse performance than nouns that occur
106 times.

The results raise a question: if frequency does
not influence how well a noun is understood, what
does? If low frequency nouns are understood as
well as higher frequency nouns, then this suggests
that language models few-shot learn the grammati-
cal properties of nouns. We suggest that by study-

ing what makes a noun learnable in a few-shot
setting, it may be psosible to better understand the
sources of the observed variation.

We use a few-shot learning paradigm, introduc-
ing a new lexical item into the vocabulary of the
language model, either “wug” (intended as a new
singular noun), or “wuz” (intended as a plural). We
then fine-tune the language model using several
example sentences containing this word. Note that
this paradigm is distinct from nearly all of the few-
shot learning experiments performed in Radford
et al. (2019); Brown et al. (2020), which operate
on a known vocabulary.5

5.1 Learning agreement from syntactic data

We first look at whether training data containing
explicit syntactic markers of number agreement is
sufficient for few-shot learning. Table 3 describes

5Brown et al. (2020) perform several experiments on novel
vocabulary items.
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Training data type Template
Simple The wug/wuz 〈PresentTenseVerb〉.
Pred-adj The wug/wuz is/are 〈Adj〉.
Reflexive The wug/wuz 〈Verb〉 himself/themselves.

Table 3: The three types of training data used for syn-
tactic fine-tuning.

the types of training data we examine. The three
types of training data use different syntactic mark-
ers of plurality to indicate whether the new noun is
singular or plural.

The language models are fine-tuned with 5 sen-
tences drawn from a single training data type. GPT-
2 was fine-tuned for 2 epochs, and BERT was
fine-tuned for 4 epochs.6 Transformer-XL was
not used for the fine-tuning experiments, due to is-
sues with introducing new vocabulary items given
Transformer-XL’s adaptive weight embedding.

After fine-tuning, each model was evaluated on
the 10 grammatical tasks in Table 1. For each gram-
matical task, 500 sentences were sampled from
the task template, and a performance score was
calculated by averaging scores of the samples, as
described in Section 3.4.

Figure 4 shows results for fine-tuning on the
three types of syntactic data. Compared to model
performance on real lexical items (shown in the left-
most column), both BERT and GPT-2 achieve qual-
itatively similar performance given the Pred-adj
and Reflexive training data, but worse performance
given the Simple training data. Performance is
weakest on subject-verb agreement (SV-agreement)
tasks involving relative clauses. When trained on
data containing reflexive anaphora, both models
achieve notably higher performance on the gram-
matical tasks involving reflexive anaphora.

The results provide evidence that small amounts
of syntactic training data support learning the agree-
ment properties of novel nouns. They also pro-
vide evidence of heterogeneity among different
types of training data. Training from bare present
tense verbs is least effective, and training from
sentences containing reflexives leads to improved
performance on tasks which require understanding
of the conditions on reflexive binding.

5.2 Learning agreement from semantic data

We next examine whether purely semantic indica-
tors of plurality are sufficient for learning a noun’s

6Prior to more systematic experiments, we informally opti-
mized the number of fine-tuning epochs.

Figure 4: Few-shot learning from syntactic examples
(averaging over plural and singular results). Columns
show different types of training data, and rows show
the 10 grammatical tasks. The bert-base and gpt2-xl
columns indicate model performance on known lexi-
cal items, i.e. summarizing results from Section 4.
The baseline columns indicate performance of non-
fine-tuned models on the novel wug/wuz lexical items.
Scores are differences of log-probabilities between
grammatical and ungrammatical. The 95% confidence
interval around each point estimate is always smaller
than ±0.25.

number agreement properties. We look at several
types of constructions which provide information
about the plurality of a noun, but using predicates
with past tense verbs that don’t inflect for number
so that there is no grammatical number agreement.
In particular, we note the different possible read-
ings with reference to the distributive and collec-
tive distinction described in the semantics literature
(Lønning, 1997; Lasersohn, 2011; Champollion,
2015). For documentation of predicates that re-
quire a collective NP subject, see Levin (1993).

We use the fine-tuning method from Section 5.1.

Singular constructions
In order to induce singular noun interpretations,
we use the singular-biased constructions shown at
the top of Table 4. For example, if a wug worked
all alone or came unaccompanied, it is likely that
“wug” is both semantically and grammatically sin-
gular. However, these constructions do not gramat-
ically require the head noun to be singular: they
are compatible with distributive readings where
the predicate individually applies to members of a
group (e.g. “the lawyers worked all alone” means
each lawyer worked alone).

BERT and GPT-2 were fine-tuned on 5 exam-
ples of each of the singular constructions. Figure 5
shows the results. None of the constructions con-
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Training data type Example

Si
ng

ul
ar

all-alone The wug worked all alone.
unaccompanied The wug came unaccompanied.
separated-entire The wug became separated from the entire group.
personally The wug personally thanked me.

Pl
ur

al

unison The wuz nodded in unison.
together The wuz ate together.
simultaneously The wuz jumped simultaneously.
outnumbered The wuz outnumbered the cats.
constituted The wuz constituted a majority of the team.
gathered The wuz gathered quietly.

Table 4: Types of training data used for semantic fine-
tuning.

Figure 5: Few-shot learning from singular semantic ex-
amples. The bert-base and gpt2-xl columns indicate
model performance on known lexical items, i.e. sum-
marizing results from Section 4. The baseline columns
indicate performance of non-fine-tuned models on the
novel wug token.

sistently induced correct performance on the gram-
matical tasks across both models. Three of the con-
structions — all-alone, unaccompanied, and per-
sonally — led to strong performance on the reflex-
ive anaphora tasks (stronger than the average per-
formance calculated in Section 4). The separated-
entire construction consistently decreased perfor-
mance on the tasks relative to baseline.

Plural constructions
In order to provide the models with data indicating
that a novel noun is plural, we use constructions
which force either collective or distributive read-
ings. For example, in Table 4, if the wuz constituted
the majority of the team, then the word “wuz” must
be semantically plural. The construction consti-
tuted a majority is collective because it must apply
to the group as a whole:

(6) The doctors constituted a majority of the
team.

a. *Distributive reading: each of the doctors
constituted a majority.

Figure 6: Few-shot learning from plural semantic ex-
amples. The baseline columns indicate performance of
non-fine-tuned models on the novel wuz token.

b. Collective reading: the doctors as a group
constituted a majority.

While the argument of a collective predicate must
be semantically plural, it is not necessarily gram-
matically plural. For example, the singular “the
group” could constitute the majority of the team.

Three of the constructions in Table 4 are col-
lective: outnumbered, constituted, and gathered.
The other three are distributive phrasal predicates,
which force distributive readings:

(7) The architects nodded in unison.

a. Distributive reading: each of the archi-
tects nodded.

b. *Collective reading: the group of archi-
tects itself nodded.

Figure 6 shows the plural learning results. The
6 types of training data perform comparably on
the subject-verb agreement tasks (and similar
to the baseline model, which represents perfor-
mance prior to fine-tuning). The three distribu-
tive phrasal constructions perform better on the
reflexive anaphora tasks than the three collective
constructions, though all constructions improve rel-
ative to the baseline.

6 Discussion

We have investigated the sources of variation in neu-
ral language models’ grammatical judgments. We
found that there are systematic differences between
nouns: when a language model exhibits knowledge
of a noun’s grammatical properties in one task, it
is more likely to do so in other tasks. Moreover,
when one language model exhibits this knowledge,
other language models are more likely to as well.
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The study found two latent dimensions of variation
between nouns: one corresponding to how well the
models understood its behavior with reflexive pro-
nouns, and the other corresponding to subject-verb
agreement.

Subsequent analyses demonstrate a pair of em-
pirical phenomena:

1. It is relatively easy to learn the number agree-
ment properties of a noun. The models learn
the agreement properties of a novel noun from
just a few samples, and the data supporting
few-shot learning appears to be densely dis-
tributed; nearly all types of syntactic and se-
mantic data examined lead to improvements
on the reflexive pronoun or subject-verb agree-
ment tasks.

2. Nouns that occur more frequently during train-
ing are not learned more accurately. Many
nouns that occur with high frequency are not
learned accurately.

These results suggest that nouns should vary less
in their grammatical performance than is actually
observed; the study finds excess variation in gram-
matical performance. If number agreement can be
correctly learned from a few samples (FSL sam-
ples), then one would expect model performance to
either a) improve with more data, as more FSL sam-
ples are observed, or b) improve with more data
up to some threshold, and then asymptote after
learning has saturated. In either case, for high fre-
quency nouns, a sufficient number of FSL samples
should be observed for these nouns to be learned
very accurately.

A potential explanation of the results is that
they are caused by catastrophic forgetting (Ratcliff,
1990; French, 1999): although a sufficient num-
ber of FSL samples are observed for a noun, these
samples are forgotten during training, causing the
performance of the noun to degrade. This expla-
nation is implausible. If catastrophic forgetting is
occurring, then the problem should be more severe
for infrequent nouns than for frequent nouns, as the
interval between training samples will be longer
for infrequent nouns. This would predict better
performance for frequent nouns.
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the three language models (Tables 5-8); pairwise
comparison between task performance for BERT
and GPT-2 (Figures 7 and 8); and more fine-grained
comparisons between word frequency and model
performance (Figures 9 and 10).
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PC Number Transformer-XL BERT GPT-2
1 0.4663 0.3865 0.4146
2 0.7299 0.5619 0.6873
3 0.8511 0.7073 0.8059
4 0.9083 0.8034 0.8720
5 0.9499 0.8919 0.9175

Table 5: Cumulative proportion of variance explained by the top (of 10) PCs for each model as detailed in Section
4.1.

Contributor by Rank PC 1 PC 2 PC 3
1 RA ObjRelClauseNoThat - 0.386980 SV SubjRelClause - 0.449504 SV SentComp - 0.534710
2 RA ObjRelClauseThat - 0.376354 SV ObjRelClauseNoThat - 0.442445 SV Simple - 0.516031
3 RA SentComp - 0.359096 SV ObjRelClauseThat - 0.439015 RA ObjRelClauseThat - 0.402452
4 RA Simple - 0.347978 RA Simple - 0.376192 SV ObjRelClauseThat - 0.312466

Table 6: Top contributors (tasks) to top few (of 10) PCs for Transformer-XL’s noun performance as detailed in
Section 4.1. Cells contain the task name followed by their (absolute) component value in the eigenvector.

Contributor PC 1 PC 2 PC 3
1 RA ObjRelClauseNoThat - 0.456096 SV ObjRelClauseThat - 0.577452 SV SentComp - 0.686402
2 RA ObjRelClauseThat - 0.444272 SV ObjRelClauseNoThat - 0.576572 SV Simple - 0.499513
3 RA Simple - 0.383953 SV PP - 0.353213 SV SubjRelClause - 0.346437
4 RA SentComp - 0.383866 RA Simple - 0.288091 SV PP - 0.248977

Table 7: Top contributors (tasks) to top few (of 10) PCs for BERT’s noun performance as detailed in Section 4.1.
Cells contain the task name followed by their (absolute) component value in the eigenvector.

Contributor PC 1 PC 2 PC 3
1 RA ObjRelClauseNoThat - 0.454492 SV ObjRelClauseNoThat - 0.477923 SV SentComp - 0.549969
2 RA Simple - 0.447148 SV SubjRelClause - 0.444648 SV Simple - 0.525072
3 RA SentComp - 0.441366 SV ObjRelClauseThat - 0.426385 SV ObjRelClauseThat - 0.478782
4 RA ObjRelClauseThat - 0.425359 SV SentComp - 0.385486 SV ObjRelClauseNoThat - 0.362165

Table 8: Top contributors (tasks) to top few (of 10) PCs for GPT-2’s noun performance as detailed in Section 4.1.
Cells contain the task name followed by their (absolute) component value in the eigenvector.
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Figure 7: BERT: Pairwise comparisons between tasks.
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Figure 8: GPT-2: Pairwise comparisons between tasks.
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Figure 9: Noun Frequency vs. Model Performance on Subject-Verb Agreement Tasks

Figure 10: Noun Frequency vs. Model Performance on Reflexive Anaphora Tasks


