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Abstract

We study the detection of propagandistic text
fragments in news articles. Instead of merely
learning from input-output datapoints in train-
ing data, we introduce an approach to inject
declarative knowledge of fine-grained propa-
ganda techniques. Specifically, we leverage
the declarative knowledge expressed in both
first-order logic and natural language. The for-
mer refers to the logical consistency between
coarse- and fine-grained predictions, which is
used to regularize the training process with
propositional Boolean expressions. The latter
refers to the literal definition of each propa-
ganda technique, which is utilized to get class
representations for regularizing the model pa-
rameters. We conduct experiments on Propa-
ganda Techniques Corpus, a large manually
annotated dataset for fine-grained propaganda
detection. Experiments show that our method
achieves superior performance, demonstrating
that leveraging declarative knowledge can help
the model to make more accurate predictions.

1 Introduction

Propaganda is the approach deliberately designed
with specific purposes to influence the opinions
of readers. Different from the fake news which is
entirely made-up and has no verifiable facts, pro-
paganda is possibly built upon an element of truth,
and conveys information with strong emotion or
somewhat biased. This characteristic makes pro-
paganda more effective and unnoticed through the
rise of social media platforms. Some examples of
propagandistic texts and definitions of correspond-
ing techniques are shown in Figure 1.

We study the problem of fine-grained propa-
ganda detection in this work, which is possible
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1. Appeal to fear: Seeking to build
support for an idea by instilling
anxiety.

�Our convention occurs at a
moment of cr is i s for our
nation1,� said Trump. “The
attacks on our police, and the
terrorism in our cities, threaten
our very way of life1.�

3. Loaded language: Using
specific words and phrases with
strong emotional implications to
influence an audience.

“To all Americans tonight, in all
our cities and towns, I make this
promise: We Will Make
America Strong Again. We Will
Make America Proud Again.
We Will Make America Safe
Again. And We Will Make
America Great Again 3, 4.”

4. Slogan: A brief and striking
phrase that may include labeling
and stereotyping.

2. Repetition: Repeating the same
message over and over again.

Trump tweeted: “I’m building a
wall, OK? I’m building a wall2. I
am going to do very well with the
Hispanics, the Mexicans.”

Figure 1: Examples of propagandistic texts, and defi-
nitions of corresponding propaganda techniques (Bold
denotes propagandistic texts).

thanks to the recent release of Propaganda Tech-
niques Corpus (Da San Martino et al., 2019). Dif-
ferent from earlier works (Rashkin et al., 2017;
Wang, 2017) that mainly study propaganda detec-
tion at a coarse-grained level, namely predicting
whether a document is propagandistic or not, the
fine-grained propaganda detection requires to iden-
tify the tokens of particular propaganda techniques
in news articles. Da San Martino et al. (2019)
propose strong baselines in a multi-task learning
manner, which are trained by binary detection of
propaganda at sentence level and fine-grained pro-
paganda detection over 18 techniques at token level.
Such data-driven methods have the merits of con-
venient end-to-end learning and strong generaliza-
tion, however, they cannot guarantee the consis-
tency between sentence-level and token-level pre-
dictions. In addition, it is appealing to integrate
human knowledge into data-driven approaches.

In this paper, we introduce an approach named
LatexPRO that leverages logical and textual
knowledge for propaganda detection. Following
Da San Martino et al. (2019), we develop a BERT-
based multi-task learning approach as the base
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model, which makes predictions for 18 propaganda
techniques at both sentence level and token level.
Based on that, we inject two types of knowledge
as additional objectives to regularize the learning
process. Specifically, we exploit logic knowledge
by transforming the consistency between sentence-
level and token-level predictions with propositional
Boolean expressions. Besides, we use the textual
definition of propaganda techniques by first repre-
senting each of them as a contextual vector and then
minimizing the distances to corresponding model
parameters in semantic space.

We conduct extensive experiments on Propa-
ganda Techniques Corpus (PTC) (Da San Martino
et al., 2019), a large manually annotated dataset
for fine-grained propaganda detection. Results
show that our knowledge-augmented method sig-
nificantly improves a strong multi-task learning
approach. In particular, our model greatly im-
proves precision, demonstrating leveraging declar-
ative knowledge expressed in both first-order logic
and natural language can help the model to make
more accurate predictions. More importantly, fur-
ther analysis indicates that augmenting the learning
process with declarative knowledge reduces the
percentage of inconsistency in model predictions.

The contributions of this paper are summarized
as follows:

• We introduce an approach to leverage declar-
ative knowledge expressed in both first-order
logic and natural language for fine-grained
propaganda techniques.

• We utilize both types of knowledge as regu-
larizers in the learning process, which enables
the model to make more consistent between
sentence-level and token-level predictions.

• Extensive experiments on the PTC dataset
(Da San Martino et al., 2019) demonstrate that
our method achieves superior performance
with high F1 and precision.

2 Task

Task Definition. Following the previous work
(Da San Martino et al., 2019), we conduct ex-
periments on two different granularities tasks:
sentence-level classification (SLC) and fragment-
level classification (FLC). Formally, in both tasks,
the input is a plain-text document d. A document
includes a set of propagandistic fragments T , in

Propaganda Technique Instances

Train Dev Test

Loaded Language 1,811 127 177
Name Calling,Labeling 931 68 86
Repetition 456 35 80
Doubt 423 23 44
Exaggeration,Minimisation 398 37 44
Flag-Waving 206 13 21
Appeal to fear-prejudice 187 32 20
Causal Oversimplification 170 24 7
Slogans 120 3 13
Black-and-White Fallacy 97 4 8
Appeal to Authority 91 2 23
Thought-terminating Cliches 70 4 5
Whataboutism 55 1 1
Reductio ad hitlerum 44 5 5
Red Herring 24 0 9
Straw Men 11 0 2
Obfus.,Int. Vagueness,Confusion 10 0 1
Bandwagon 10 2 1

Total 5,114 380 547

Table 1: The statistics of all 18 propaganda techniques.

that each fragment is represented as a sequence of
contiguous characters t = [ti, ..., tj ] ⊆ d. For the
SLC task, the target is to predict whether a sentence
is propagandistic which can be regarded as a binary
classification problem. For the FLC task, the target
is to predict a set S with propagandistic fragments
s = [sm, ..., sn] ⊆ d and identify s ∈ S to one of
the propagandistic techniques.

Dataset. This paper utilizes Propaganda Tech-
niques Corpus (PTC) (Da San Martino et al., 2019)
for experiments. PTC is a manually annotated
dataset for fine-grained propaganda detection, con-
taining 293/ 57/ 101 articles and 14,857/ 2,108/
4,265 corresponding sentences for training, vali-
dation and testing, respectively. Each article is
annotated with the start and end of the propaganda
text span as well as the type of propaganda tech-
nique. As the annotations of the official testing set
are not publicly available, we divided the official
validation set into a validation set of 22 articles
and a test set of 35 articles. The statistics of all
18 propaganda techniques and their frequencies
(instances per technique) are shown as Table 1.

Evaluation. For the SLC task, we evaluate the
models with precision, recall and micro-averaged
F1 scores. As for the FLC task, we adopt the eval-
uation script provided by Da San Martino et al.
(2019) to calculate precision, recall, and micro-
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Figure 2: Overview of our proposed model. A BERT-based multi-task learning approach is adopted to make
predictions for 18 propaganda techniques at both sentence level and token level. We introduce two types of knowl-
edge as additional objectives: (1) logical knowledge about the consistency between sentence-level and token-level
predictions, and (2) textual knowledge from literal definitions of propaganda techniques.

averaged F1, in that giving partial credit to imper-
fect matches at the character level. The FLC task
is evaluated on two kinds of measures: (1) Full
task is the overall task, which includes detecting
the existence of propaganda techniques in text frag-
ments and identifying the type of them, while (2)
Spans is a special case of the Full task, which only
considers the spans of propagandistic fragments
except for their propaganda techniques.

3 Method

In this section, we present our approach LatexPRO
as shown in Figure 2, which injects declarative
knowledge of fine-grained propaganda techniques
into neural networks. We first present our base
model (§3.1), which is a multi-task learning frame-
work that slightly extends the model of Da San Mar-
tino et al. (2019). Afterward, we introduce two
ways to regularize the learning process with logical
knowledge about the consistency between sentence-
level and token-level predictions (§3.2) and textual
knowledge from literal definitions of propaganda
techniques (§3.3). At last, we describe the training
and inference procedures (§3.4).

3.1 Base Model

To better exploit the sentence-level information
and further benefit token-level prediction, we de-

velop a fine-grained multi-task method as our base
model, which makes predictions for 18 propa-
ganda techniques at both sentence level and to-
ken level. Inspired by the success of pre-trained
language models on various natural language pro-
cessing downstream tasks, we adopt BERT (De-
vlin et al., 2019) as the backbone model here. For
each input sentence, the sequence is modified as
“[CLS]sentence tokens[SEP ]”. Specifically, on
top of BERT, we add 19 binary classifiers for fine-
grained sentence-level predictions, and one 19-way
classifier for token-level predictions, where all clas-
sifiers are implemented as linear layers. At sen-
tence level, we perform multiple binary classifica-
tions and this can further support leveraging declar-
ative knowledge. The last representation of the spe-
cial token [CLS] which is regarded as a summary
of the semantic content of the input, is adopted to
perform multiple binary classifications, including
one binary classification to predict the existence
of propaganda techniques, and 18 binary classifi-
cations to identify the types of them. We adopt
sigmoid activation for each binary classifier. At
token level, the last representation of each token
is fed into a linear layer to predict the propaganda
technique over 19 categories (i.e., 18 categories of
propaganda techniques plus one category for “none
of them”). We adopt Softmax activation for the
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19-way classifier. Two different losses are applied
for this multi-task learning process, including the
sentence-level loss Lsen and the token-level loss
Ltok. Lsen is the binary cross-entropy loss of mul-
tiple binary classifications. Ltok is the focal loss
(Lin et al., 2017) of 19-way classification for each
token, which could address the class imbalance
problem.

3.2 Inject Logical Knowledge
There are some implicit logical constraints between
sentence-level and token-level predictions. How-
ever, neural networks are less interpretable and
need to be trained with a large amount of data to
make it possible to learn such implicit logic. There-
fore, we consider tackling the problems by exploit-
ing logic knowledge. In particular, we propose to
employ propositional Boolean expressions to ex-
plicitly regularize the model with a logic-driven ob-
jective, which improves the logical consistency be-
tween two different grained predictions, and makes
our method more interpretable. For instance, in
this work, if a propaganda class c is predicted by
the multiple binary classifiers (indicates the sen-
tence contains this propaganda technique), then
the token-level predictions belonging to the propa-
ganda class c should also exist. We thus consider
the propositional rule F = A⇒ B, formulated as:

P (F ) = P (A⇒ B)

= ¬P (A) ∨ P (B)

= 1− P (A) + P (A)P (B)

= P (A)(P (B)− 1) + 1

(1)

where A and B are two variables. Specifically,
substituting fc(x) and gc(x) into above formula as
F = ∀c : fc(x) ⇒ gc(x), then the logic rule can
be written as:

P (F ) = P (fc(x))(P (gc(x))− 1) + 1 (2)

where x denotes the input, fc(x) is the binary clas-
sifier for the propaganda class c, and gc(x) is the
probability of fine-grained predictions that contains
x being category of c. gc(x) can be obtained by
max-pooling over all the probability of predictions
for class c. Note that the probabilities of the un-
predicted class are set to 0 to prevent any violation,
i.e., ensuring that each class has a probability cor-
responding to it. Our objective here is maximizing
P (F ), i.e., minimizing Llogic = −log (P (F )), to
improve the logical consistency between coarse-
and fine-grained predictions.

3.3 Inject Textual Knowledge
The literal definitions of propaganda techniques
in this work, can be regarded as textual knowl-
edge which contains useful semantic information.
To exploit this kind of knowledge, we adopt an
additional encoder to encode the literal definition
of each propaganda technique. Specifically, for
each definition, the input sequence is modified
as “[CLS]definition[SEP ]” and fed into BERT.
We adopt the last representation of the special to-
ken [CLS] as each definition representation D(ci),
where ci represents the i-th propaganda technique.
We calculate the Euclidean distance dist2 between
each predicted propaganda category representation
W (ci) and the definition representationD(ci). Our
objective is minimizing the textual definition loss
Ldef , which regularizes the model to refine the
propaganda representations.

Ldef =

18∑
i=1

dist2 (W (ci), D(ci)) (3)

3.4 Training and Inference
Training. To train the whole model jointly, we in-
troduce a weighted sum of losses Lj which consists
of the token-level loss Ltok, fine-grained sentence-
level loss Lsen, textual definition loss Ldef and
logical loss Llogic:

Lj = α∗Ltok+β ∗ (Lsen + Ldef ∗ λ)+γ ∗Llogic

(4)
where hyper-parameters α, β, λ and γ are em-
ployed to control the tradeoff among losses. During
the training stage, our goal is minimizing Lj .

Inference. For the SLC task, our method output
the “propaganda” only if the probability of propa-
gandistic binary classification for the positive class
is above 0.7. This threshold is chosen according
to the ratio of propaganda to non-propaganda sam-
ples in the training set. For the FLC task, to better
exploit the coarse-grained (sentence-level) infor-
mation to guide the fine-grained (token-level) pre-
diction, we design a way that can explicitly make
constraints on 19-way predictions when doing in-
ference. Prediction probabilities of 18 fine-grained
binary classifications above 0.9 are set to 1, and
vice versa to 0. Then the Softmax probability of
19-way predictions (except for the “none of them”
class) of each token is multiplied by the correspond-
ing 18 probabilities of propaganda techniques. This
means that our model is conservative, which makes
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Model
Spans Full Task

P R F1 P R F1 MC

BERT (Da San Martino et al., 2019) 50.39 46.09 48.15 27.92 27.27 27.60 -
MGN (Da San Martino et al., 2019) 51.16 47.27 49.14 30.10 29.37 29.73 -

LatexPRO 58.95 42.37 49.30 40.98 26.99 32.54 16.05
LatexPRO (L) 61.61 43.41 50.93 42.44 28.25 33.92 21.86
LatexPRO (T) 61.20 42.67 50.28 41.91 28.06 33.61 19.29
LatexPRO (L+T) 61.22 45.18 51.99 42.64 29.17 34.65 23.62

Table 2: Overall performance on fragment-level experiments (FLC task) in terms of Precision (P), recall (R) and
F1 scores on our test set. MC denotes the metric of consistency between sentence-level predictions and token-
level predictions. Full task is the overall task of detecting both propagandistic fragments and identifying the
technique, while Spans is a special case of the Full task, which only considers the spans of fragments except for
their propaganda techniques. Note that (L+T), (L), and (T) denote injecting of both logical and textual knowledge,
only logical knowledge, and only textual knowledge, respectively.

predictions for the fragments of propaganda tech-
niques only if with high confidence.

4 Experiments

4.1 Experimental Settings

In this paper, we conduct experiments on Propa-
ganda Techniques Corpus (PTC)1 (Da San Martino
et al., 2019) which is a large manually annotated
dataset for fine-grained propaganda detection, as
detailed in Section 2. F1 score is adopted as the
final metric to represent the overall performance of
models. We select the best model on the dev set.

We adopt BERT-base-cased (Devlin et al., 2019)
as the pre-trained model. We implement our model
using Huggingface (Wolf et al., 2019). We use
AdamW as the optimizer. In our best model on the
dev set, the hyper-parameters in loss optimization
are set as α = 0.8, β = 0.2, λ = 0.001 and
γ = 0.001. We set the max sequence length to 256,
the batch size to 16, the learning rate to 3e-5 and
warmup steps to 500. We train our model for 20
epochs and adopt an early stopping strategy on the
average validation F1 score of Spans and Full Task
with patience of 5 epochs. For all experiments, we
set the random seed to 42 for reproducibility.

4.2 Models for Comparison

We compare our proposed methods with several
baselines. Moreover, three variants of our method
are provided to reveal the impact of each compo-

1Note that the annotations of the official PTC test set
are not publicly available, thus we split the original dev set
into dev and test set as Section 2. We use the released code
(Da San Martino et al., 2019) to run the baseline.

nent. The notations of LatexPRO (L+T), LatexPRO
(L), and LatexPRO (T) denote our model which
injects both logical and textual knowledge, only
logical knowledge and only textual knowledge, re-
spectively. Each of these models are described as
follows.

BERT (Da San Martino et al., 2019) adds a
linear layer on the top of BERT, and is fine-tuned
on the SLC and FLC tasks, respectively.

MGN (Da San Martino et al., 2019) is a multi-
task learning model, which regards the SLC task as
the main task and drive the FLC task on the basis
of the SLC task.

LatexPRO is our base model without leveraging
any declarative knowledge.

LatexPRO (L) injects logical knowledge into
LatexPRO by employing propositional Boolean ex-
pressions to explicitly regularize the model.

LatexPRO (T) arguments LatexPRO with tex-
tual knowledge in the literal definitions of propa-
ganda techniques.

LatexPRO (L+T) is our full model in this paper.

4.3 Experiment Results and Analysis

Fragment-Level Propaganda Detection. The
results for the FLC task are shown in Table 2. Our
base model LatexPRO achieves better results than
other baseline models, which verifies the effective-
ness of our fine-grained multi-task learning struc-
ture. It is worth noting that, our full model Latex-
PRO (L+T) achieves superior boost than MGN by
10.06% precision and 2.85% F1 on the Spans task,
12.54% precision and 4.92% F1 on the Full task,
which is considered as significant progress. This
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Propaganda Technique MGN LatexPRO LatexPRO (L+T)

P R F1 P R F1 P R F1

Appeal to Authority 0 0 0 0 0 0 0 0 0
Appeal to fear-prejudice 8.41 18.26 11.52 15.69 14.90 15.28 13.53 14.90 14.18
Bandwagon 0 0 0 0 0 0 0 0 0
Black-and-White Fallacy 31.97 43.12 36.72 66.67 7.23 13.05 81.63 15.04 25.41
Causal Oversimplification 12.43 12.09 12.66 12.43 30.00 17.59 16.53 28.57 20.94
Doubt 27.12 12.38 17.00 18.06 9.09 12.09 40.82 9.26 15.10
Exaggeration,Minimisation 33.95 11.94 17.67 42.85 5.86 10.31 31.57 8.56 13.47
Flag-Waving 45.61 37.71 41.29 44.18 36.13 39.75 35.16 41.30 37.98
Loaded Language 37.20 46.45 41.31 51.69 39.19 44.58 50.28 44.39 47.15
Name Calling,Labeling 36.15 25.86 30.15 38.87 29.14 33.31 43.09 31.12 36.14
Obfus.,Int. Vagueness,Confusion 0 0 0 100.00 98.61 99.30 50.00 98.61 66.35
Red Herring 0 0 0 0 0 0 0 0 0
Reductio ad hitlerum 45.40 49.02 47.14 99.85 59.88 74.87 100.00 45.74 62.77
Repetition 35.05 24.09 26.93 46.06 28.75 35.40 48.24 26.86 34.51
Slogans 30.10 31.25 30.66 44.30 38.46 41.17 41.53 43.43 42.46
Straw Men 0 0 0 0 0 0 0 0 0
Thought-terminating Cliches 21.05 23.85 22.36 90.83 14.80 25.45 89.49 19.60 32.16
Whataboutism 0 0 0 9.09 66.50 15.99 18.75 14.50 16.35

Table 3: Detailed performance on the full task of fragment-level experiments (FLC task) on our test set. Precision
(P), recall (R) and F1 scores per technique are provided.

demonstrates that leveraging declarative knowl-
edge in text and first-order logic helps to predict
the propaganda types more accurately. Moreover,
our ablated models LatexPRO (T) and LatexPRO
(L) both gain improvements over LatexPRO, while
LatexPRO (L) gains more improvements than Lat-
exPRO (T). This indicates that injecting each kind
of knowledge is useful, and the effect of different
kinds of knowledge can be superimposed and un-
coupled. It should be noted that, compared with
baseline models, our models achieve a superior per-
formance thanks to high precision, but the recall
slightly loses. This is mainly because our mod-
els tend to make predictions for the high confident
propaganda types.

To further understand the performance of models
for the FLC task, we make a more detailed analy-
sis of each propaganda technique. Table 3 shows
detailed performance on the Full task. Our models
achieve precision and F1 improvements of almost
all the classes over baseline model, and can also pre-
dict some low-frequency propaganda techniques,
e.g., Whataboutism and Obfus.,Int. This
further demonstrates that our method can stress
class imbalance problem, and make more accurate
predictions.

Sentence-Level Propaganda Detection. Table
4 shows the performances of different models for
SLC. The results indicate that our model achieves
superior performances over other baseline mod-

Model P R F1

Random 30.48 51.04 38.16
All-Propaganda 30.54 100.00 46.80

BERT (Da San Martino et al., 2019) 58.26 57.81 58.03
MGN (Da San Martino et al., 2019) 57.41 62.50 59.85

LatexPRO 56.18 69.79 62.25
LatexPRO (L) 56.53 73.17 63.79
LatexPRO (T) 58.33 67.50 62.58
LatexPRO (L+T) 59.04 71.66 64.74

Table 4: Results on sentence-level experiments (SLC
task) in terms of Precision (P), recall (R) and F1 scores
on our test set. Random is a baseline which predicts
randomly, and All-Propaganda is a baseline always pre-
dicts the propaganda class.

els. Compared with MGN, our LatexPRO (L+T)
increases the precision by 1.63%, recall by 9.16%
and F1 score by 4.89%. This demonstrates the ef-
fectiveness of our model, and shows that our model
can find more positive samples which will further
benefit the token-level predictions for FLC.

4.4 Effectiveness of Improving Consistency
We further define the following metric MC to mea-
sure the consistency between sentence-level pre-
dictions Yc which is a set of predicted propaganda
technique classes, and token-level predictions Yt
which is a set of predicted propaganda techniques
for input tokens:

MC(Yc, Yt) =
1

|Yt|
∑
yt∈Yt

1Yc(yt) (5)
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Figure 3: Qualitative comparison of 2 different
models on a news article. The baseline MGN
predicts spans of fragments with wrong propa-
ganda techniques, while our method can make
more accurate predictions. Here are 5 propa-
ganda techniques: 1.Thought-terminating
Cliches, 2.Loaded Language, 3.Causal
Oversimplification, 4.Flag waving and
5.Repetition. (Best viewed in color)

where |Yt| denotes a normalizing factor, 1A(x) rep-
resents the indicator function:

1A(x) =

{
1 if x ∈ A
0 if x /∈ A (6)

Table 2 presents the consistency scores MC . The
higher the score indicates the better consistency.
Results illustrate that our methods with declarative
knowledge can substantially outperform the base
model LatexPRO. Compared to the base model,
our declarative-knowledge-augmented methods en-
rich the source information by introducing textual
knowledge from propaganda definitions, and logi-
cal knowledge from implicit logical rules between
predictions, which enables the model to make more
consistent predictions.

4.5 Case Study
Figure 3 gives a qualitative comparison example
between MGN and our LatexPRO (L+T). Different
colors represent different propaganda techniques.
The results show that although MGN could pre-
dict the spans of fragments correctly, it fails to
identify their techniques to some extent. However,
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Figure 4: Visualization of confusion matrix result of
our LatexPRO (L+T), where O represents the none
of them class.

our method shows promising results on both spans
and specific propaganda techniques, which further
confirms that our method can make more accurate
predictions.

4.6 Error Analysis
Although our model has achieved the best per-
formance, it still some types of propaganda
techniques are not identified, e.g., Appeal to
Authority and Red Herring as shown in Ta-
ble 3. To explore why our model LatexPRO (L+T)
cannot predict for those propaganda techniques, we
compute a confusion matrix for the Full Task of
FLC task, and visualize the confusion matrix us-
ing a heatmap as shown in Figure 4. We find that
most of the off-diagonal elements are in class O
which represents none of them. This demon-
strates most of the cases are wrongly classified
into O. We think this is due to the imbalance of
the propaganda and non-propaganda cate-
gories in the dataset. Similarly, Straw Men, Red
Herring and Whataboutism are the relatively
low frequency of classes. How to deal with the
class imbalance still needs further exploration.

5 Related work

Our work relates to fake news detection and the in-
jection of first-order logic into neural networks. We
will describe related studies in these two directions.

Fake news detection draws growing attention as
the spread of misinformation on social media be-
comes easier and leads to stronger influence. Vari-
ous types of fake news detection problems are intro-
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duced. For example, there are 4-way classification
of news documents (Rashkin et al., 2017), and 6-
way classification of short statements (Wang, 2017).
There are also sentence-level fact checking prob-
lems with various genres of evidence, including nat-
ural language sentences from Wikipedia (Thorne
et al., 2018), semi-structured tables (Chen et al.,
2020), and images (Zlatkova et al., 2019; Naka-
mura et al., 2019). Our work studies propaganda de-
tection, a fine-grained problem that requires token-
level prediction over 18 fine-grained propaganda
techniques. The release of a large manually anno-
tated dataset (Da San Martino et al., 2019) makes
the development of large neural models possible,
and also triggers our work, which improves a stan-
dard multi-task learning approach by augmenting
declarative knowledge expressed in both first-order
logic and natural language.

Neural networks have the merits of convenient
end-to-end training and good generalization, how-
ever, they typically need a lot of training data and
are not interpretable. On the other hand, logic-
based expert systems are interpretable and require
less or no training data. It is appealing to leverage
the advantages from both worlds. In NLP commu-
nity, the injection of logic to neural network can be
generally divided into two groups. Methods in the
first group regularize neural network with logic-
driven loss functions (Xu et al., 2018; Fischer et al.,
2019; Li et al., 2019). For example, Rocktäschel
et al. (2015) target on the problem of knowledge
base completion. After extracting and annotating
propositional logical rules about relations in knowl-
edge graph, they ground these rules to facts from
knowledge graph and add a differentiable training
loss function. Kruszewski et al. (2015) map text to
Boolean representations, and derive loss functions
based on implication at Boolean level for entail-
ment detection. Demeester et al. (2016) propose
lifted regularization for knowledge base comple-
tion to improve the logical loss functions to be
independent of the number of grounded instances
and to further extend to unseen constants, The ba-
sic idea is that hypernyms have ordering relations
and such relations correspond to component-wise
comparison in semantic vector space. Hu et al.
(2016) introduce a teacher-student model, where
the teacher model is a rule-regularized neural net-
work, whose predictions are used to teach the stu-
dent model. Wang and Poon (2018) generalize
virtual evidence (Pearl, 2014) to arbitrary potential

functions over inputs and outputs, and use deep
probabilistic logic to integrate indirection supervi-
sion into neural networks. More recently, Asai and
Hajishirzi (2020) regularize question answering
systems with symmetric consistency and symmet-
ric consistency. The former creates a symmetric
question by replacing words with their antonyms in
comparison question, while the latter is for causal
reasoning questions through creating new exam-
ples when positive causal relationship between two
cause-effect questions holds.

The second group is to incorporate logic-specific
modules into the inference process (Yang et al.,
2017; Dong et al., 2019). For example, Rocktäschel
and Riedel (2017) target at the problem of knowl-
edge base completion, and use neural unification
modules to recursively construct model similar
to the backward chaining algorithm of Prolog.
Evans and Grefenstette (2018) develop a differen-
tiable model of forward chaining inference, where
weights represent a probability distribution over
clauses. Li and Srikumar (2019) inject logic-driven
neurons to existing neural networks by measur-
ing the degree of the head being true measured by
probabilistic soft logic (Kimmig et al., 2012). Our
approach belongs to the first direction, and to the
best of knowledge our work is the first one that
augments neural network with logical knowledge
for propaganda detection.

6 Conclusion

In this paper, we propose a fine-grained multi-
task learning approach, which leverages declara-
tive knowledge to detect propaganda techniques in
news articles. Specifically, the declarative knowl-
edge is expressed in both first-order logic and nat-
ural language, which are used as regularizers to
obtain better propaganda representations and im-
prove logical consistency between coarse- and fine-
grained predictions, respectively. Extensive ex-
periments on the PTC dataset demonstrate that
our knowledge-augmented method achieves supe-
rior performance with more consistent between
sentence-level and token-level predictions.
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