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Abstract

Cross-lingual semantic role labeling (SRL)
aims at leveraging resources in a source lan-
guage to minimize the effort required to con-
struct annotations or models for a new target
language. Recent approaches rely on word
alignments, machine translation engines, or
preprocessing tools such as parsers or taggers.
We propose a cross-lingual SRL model which
only requires annotations in a source language
and access to raw text in the form of a par-
allel corpus. The backbone of our model is
an LSTM-based semantic role labeler jointly
trained with a semantic role compressor and
multilingual word embeddings. The compres-
sor collects useful information from the output
of the semantic role labeler, filtering noisy and
conflicting evidence. It lives in a multilingual
embedding space and provides direct supervi-
sion for predicting semantic roles in the tar-
get language. Results on the Universal Propo-
sition Bank and manually annotated datasets
show that our method is highly effective, even
against systems utilizing supervised features.1

1 Introduction

Semantic role labeling (SRL) is the task of iden-
tifying the arguments of semantic predicates in a
sentence and labeling them with a set of prede-
fined relations (e.g., “who” did “what” to “whom,”
“when,” and “where”). It has emerged as an impor-
tant technology for a wide spectrum of applications
ranging from machine translation (Aziz et al., 2011;
Marcheggiani et al., 2018) to information extrac-
tion (Christensen et al., 2011), and summarization
(Khan et al., 2015).

There have been considerable efforts on develop-
ing annotated resources for semantic role labeling
(Palmer et al., 2005; Zaghouani et al., 2010) which

1Our code and data can be downloaded from https://
github.com/RuiCaiNLP/SRL_CPS.

in turn have greatly facilitated the development
of the various models designed to automatically
predict semantic roles. Recent years have seen
the successful application of neural network mod-
els to SRL (Zhou and Xu, 2015; He et al., 2017;
Marcheggiani et al., 2017) which forego the need
for extensive feature engineering. Despite recent
advances in representational learning, a perennial
problem with building SLR systems lies in the
paucity of training data since semantic role annota-
tions are available for only a handful of the world’s
languages. As a result, much previous work has
focused on cross-lingual SRL which aims at lever-
aging existing resources in a source language to
minimize the effort required to construct a model
or annotations for a new target language.

Annotation projection is a popular approach
which transfers annotations from a source to a
target language via automatic word alignments
(Padó and Lapata, 2005; van der Plas et al., 2011;
Aminian et al., 2019). Although very intuitive, it
is sensitive to the quality of the parallel data, the
performance of the source-language SRL model,
and the accuracy of alignment tools, all of which
introduce noise. Translation-based approaches
(Täckström et al., 2012; Fei et al., 2020; Ra-
sooli and Collins, 2015) aim to alleviate the noise
brought by the the source-side labeler by directly
translating the gold-standard data into the target
language. A third alternative is model transfer
where a source-language model is modified in a
way that it can be directly applied to a new lan-
guage, e.g., by employing cross-lingual word rep-
resentations (Täckström et al., 2012; Swayamdipta
et al., 2016; Daza and Frank, 2019a) and universal
POS tags (McDonald et al., 2013).

Word alignment noise poses serious problems
for both annotation-projection and translation-
based methods (the latter still rely on alignment
tools to transfer word-level labels from source to

https://github.com/RuiCaiNLP/SRL_CPS
https://github.com/RuiCaiNLP/SRL_CPS
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target). For example, there could be many-to-one
alignments, leading to semantic role conflicts in
the target language. Some form of filtering is of-
ten introduced to reduce the impact of this noise,
e.g., parallel sentence pairs are discarded accord-
ing to projection density (Aminian et al., 2019) or
alignment confidence (Fei et al., 2020). In addition,
translation-based approaches rely on high perfor-
mance translation engines, which are often trained
on large-scale parallel corpora. Unfortunately, nei-
ther adequate MT nor high-quality parallel data
can be guaranteed when dealing with low-resource
languages. Model transfer is an appealing alterna-
tive, however, it relies on accurate features based
on lemmas, POS tags, and syntactic parse trees
(Kozhevnikov and Titov, 2013; Fei et al., 2020)
which are themselves obtained with access to ad-
ditional annotation. It is not realistic to assume
that treebank-style resources will be available for
low-resource languages.

In this paper, we propose a novel method for
cross-lingual SRL which does not rely on word
alignments, machine translation or pre-processing
tools such as parsers or taggers. Aside from se-
mantic role annotations in the source language, we
only assume access to raw text in the form of a
parallel corpus. The backbone of our model is an
LSTM-based semantic role labeler jointly trained
with multi-lingual word embeddings and a seman-
tic role compressor. The compressor distills use-
ful information pertaining to arguments, predicates
and their roles from the output of the semantic role
labeler (e.g., by automatically filtering unrelated or
conflicting information). Importantly, the compres-
sor lives in a multilingual space and can provide di-
rect supervision for predicting semantic roles in the
target language, sidestepping intermediaries like
word-level alignments and machine translation.

For evaluation, we make use of several multi-
lingual benchmarks. These include the Univer-
sal Proposition Bank (UPB; Akbik et al. 2016),
a recently released resource which contains semi-
automatically created annotations under a uni-
fied labeling scheme for several languages, and
a French corpus (van der Plas et al., 2010) which
follows PropBank-style annotations (Palmer et al.,
2005). We also release two additional manually
labeled resources in Chinese and German, which
we hope will be useful for future research.2 Ex-

2Our annotations are available from https://github.
com/RuiCaiNLP/ZH_DE_Datasets.

perimental results show that our method is highly
effective across languages and annotation schemes,
even compared against systems making use of su-
pervised features.

Our contributions can be summarizes as follows:
(a) we propose a knowledge-lean model which does
not rely on alignments, machine translation or so-
phisticated linguistic preprocessing; (b) we intro-
duce the concept semantic role compressor which
is important at filtering noisy information and can
be potentially useful for other crosslingual tasks
(e.g., dependency parsing); (3) we release two man-
ually annotated datasets which will further advance
cross-lingual semantic role labeling complement-
ing previous work (Aminian et al., 2019; Fei et al.,
2020) which reports result on semi-automatically
created annotations).

2 Model

Figure 1 provides a schematic overview of our
model. We assume we have access to semantic role
annotations in a source language (e.g., English)
and a parallel corpus of source-target sentences
(e.g., English-French). Our model is jointly trained
to predict semantic roles in the source and target
languages. It has two main components, namely a
semantic role labeler, and a semantic role compres-
sor. The role labeler consists of:

• an input layer which takes multilingual word
embeddings and predicate indicator embed-
dings as input;
• a bidirectional LSTM (BiLSTM) encoder

which takes as input the representation of
each word in a sentence and produces context-
dependent representations;
• a biaffine scorer to calculate the score of each

semantic role for each word.

While the semantic role compressor consists of:

• an input layer which again combines multi-
lingual word embeddings and semantic role
distributions for each word in the sentence;
• a bidirectional LSTM (BiLSTM) encoder

which produces compressed semantic role in-
formation for an input sentence;
• a biaffine scorer which calculates the simi-

larity between compressed representations of
semantic roles and input words.

In the following sections we describe these two
components more formally.

https://github.com/RuiCaiNLP/ZH_DE_Datasets
https://github.com/RuiCaiNLP/ZH_DE_Datasets
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Figure 1: Model overview: semantic role labeler (left-bottom) and semantic role compressor (left-top). The right-
top part presents the process of decompression after obtaining R. The right-bottom part illustrates cross-lingual
training given an English-French sentence pair (SS and ST ) from the Europarl parallel Corpus, where RS and RT

are the output of the compressor taking SS and ST as input, respectively. Best viewed in color.

2.1 Semantic Role Labeler

Input Layer and Encoder For each sentence,
the representation of i-th word wi is the concate-
nation of multilingual contextualized word embed-
dings ew

wi
and predicate indicator embedding ep

wi .
The former are pretrained on a large-scale unla-
beled corpus and their parameters stay frozen dur-
ing the training of our model. Predicate embed-
dings are randomly initialized and updated con-
stantly during model training. Unlike previous su-
pervised SRL approaches (Roth and Lapata, 2016;
Cai and Lapata, 2019; He et al., 2019), our model
does not make use of any syntactic information
(e.g., POS-tags, dependency relations) since we
cannot assume it will be available for low-resource
languages.

Following Marcheggiani et al. (2017), sentences
are represented using a multi-layer bi-directional
LSTM (Hochreiter and Schmidhuber, 1997); the
BiLSTM receives at time step t representation x for

each word and recursively computes two hidden
states, one for the forward pass (

−→
h t), and another

one for the backward pass (
←−
h t). Each word is the

concatenation of its forward and backward LSTM
state vectors ht =

−→
h t ◦
←−
h t .

Biaffine Role Scorer Once the high-level BiL-
STM encoder produces representations h for each
word, two distinct non-linear transformations are
applied to predicate wp (being considered at the
time) and word wi, respectively:

h
′
wp

= f (Wphwp +bp)

h
′
wi
= f (Wwhwi +bw)

(1)

where f is a non-linear activation function (we use
Leaky ReLu). The score s(r j,h

′
wi
,h
′
wp
) of semantic

role r j between current predicate wp and word wi

is calculated as:

s(r j,h
′
wi
,h
′
wp
) = h

′>
wi

Wr j h
′
wp

+Ur j(h
′
wi
◦h

′
wp
)+br j

(2)
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where Wr j , Ur j , and br j are parameters specific to
role r j, and are updated during training.

Both the binaffine role scorer and SRL encoder
are illustrated in Figure 1 (bottom left part).

Predicate Identification and Disambiguation
The SRL labeler presented thus far assumes that
predicates are known. Although in most SRL
datasets predicates are explicitly annotated, such
annotations are absent from unlabeled parallel data,
and our model would need to automatically iden-
tify predicates if it were to be useful in practice.
To this end, we run two modules on top of the sen-
tence encoder in order to identify the predicate and
disambiguate its senses. Each module is a multi-
layer perceptron (MLP) with a softmax layer, and
is trained jointly with semantic role labeler.

2.2 Semantic Role Compressor
The semantic role compressor operates over the
output of the semantic role labeler; it aims to relate
each semantic role to specific words and compress
this information into a fixed-size matrix.

Semantic Information Compression Although
the semantic role labeler produces a label for each
word in the sentence, most words will bear the
label “NULL”, which indicates that they are not ar-
guments of the predicate of interest. In order to pro-
vide useful supervision to the target language, we
filter out information about non-argument words.
Specifically, we compress the output of the seman-
tic role labeler into a hidden representation which
only records information about arguments. In the-
ory, each semantic role appears no more than once
in a sentence, so we propose to use a fixed-size
matrix R ∈ Rnr×dr to represent compressed infor-
mation, where nr is the size of semantic role set,
and dr denotes the length of hidden representation
for each semantic role.

The semantic role compressor will bind word wi

to its corresponding role. Like the semantic role
labeler, the compressor also operates over word em-
beddings (see upper left part in Figure 1); for sen-
tence S, word wi is represented by Pθ(r|wi,wp,S)◦
ew

wi
, where ew

wi
is the multilingual embedding of wi,

and Pθ(r|wi,wp,S) is the probability distribution
over roles produced by the semantic role labeler:

Pθ(r|wi,wp,S) = softmax{s(r1,h
′
wi
,h
′
wp
),

...,s(rnr ,h
′
wi
,h
′
wp
)}

(3)

where θ are the parameters of the semantic role

labeler. Analogously to the semantic role labeler,
a multi-layer BiLSTM yields sentence representa-
tions (see upper block in Figure 1). At time step t,
forward and backward hidden states

−→
h t and

←−
h t

are concatenated and then fed to a non-linear layer.
A max-pooling layer thereafter gathers global in-
formation from hidden features at each time step,
and compresses them into a fixed-size vector:

R =
n

max
t=1

f (W1[
−→
h t ◦
←−
h t ]+b1) (4)

where W1 is a weight matrix, b1 is a bias term for
the hidden state vector, and n is the length of sen-
tence. For the sake of decompression (see next
section), R is reshaped from a vector into a ma-
trix with nr rows and dr columns (see very top in
Figure 1, left side).

Decompression Semantic roles in a sentence can
be obtained by combining compressed information
in R with the multilingual embedding of each word,
and this process is referred to as decompression.
Concretely, for i-th word and j-th role, we use a
biaffine scorer3 to calculate the similarity between
ew

wi
and R j. We first perform a non-linear transfor-

mation for word embedding ew
wi

:

zi = f (W2ew
wi
+b2) (5)

where zi contains hidden features for word wi. And
then, use a biaffine scorer to calculate the similarity
score between zi and R j:

ŝ(zi,R j) = zi>WsimR j

+Usim(zi ◦R j)+bsim
(6)

where Wsim, Usim, and bsim are parameters updated
during training. For word wi, the final probabil-
ity distribution over semantic roles is obtained by
applying a softmax operation on the scores of all
semantic roles:

P̂
θ̂
(r|wi,R) = softmax{ŝ(zi,R1),

...,ŝ(zi,Rnr)}
(7)

where θ̂ are the parameters of the compressor. Fig-
ure 1 (right upper part) illustrates decompression.

Gaussian Noise In order to improve the robust-
ness of the compressor, we inject Gaussian noise
to word embeddings. This is an effective regular-
ization method (Liu et al., 2019) which improves

3The score for the label ”NULL” is fixed to 0, as R does
not record information for non-argument words.
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the model’s ability to generalize to unseen inputs
from different languages. The final embeddings are:
ew = [ew

w1
+N1, ...,ew

wn
+Nn], where N∼N (0,0.1I)

and n is the length of the sentence.

2.3 Training
In our learning setting, semantic role annotations
are only available in the source-language. We there-
fore rely on (unlabeled) parallel data to provide
cross-lingual supervision for the target-language.
During each iteration, we randomly select a batch
from the annotated source-language for supervised
training and a batch from the parallel data for cross-
lingual training.

Supervised Training We train the semantic role
labeler in the source language in a supervised fash-
ion, using a cross-entropy loss objective:

Lce =
1
n

n

∑
i=1

ti logPθ(r|wi,wp,S) (8)

where n is the length of sentence and ti ∈ Rnr are
one-hot ground truth representations. When train-
ing the compressor network, the objective is de-
fined as the KL-divergence between the input dis-
tribution (produced by semantic role labeler) and
the output distribution of the compressor:

Lcom =
1
n

n

∑
i=1

D(Pθ(r|wi,wp,S), P̂θ̂
(r|wi,R)) (9)

where D is a distance function between probability
distributions (we use the Kullback-Leibler diver-
gence). The final objective Lsup for supervised
learning is the sum of Lce and Lcom.

Cross-lingual Training Given an unlabeled par-
allel source-target sentence pair (SS and ST ), we
first perform predicate identification on both sen-
tences and randomly choose a predicate wS

p in SS

as the current predicate of interest. We then find,
amongst all words identified as predicates in ST ,
predicate wT

p which has the highest word embed-
ding similarity with wS

p.
By feeding word embeddings and predicate in-

formation into our model, we obtain compressed
role representations RS and RT for source and tar-
get sentences SS and ST . Recall that we must apply
decompression in order to obtain role specific in-
formation for SS and ST . Since decompression
operates over multilingual representations, it is rel-
atively straightforward to obtain semantic roles for
source and target sentences. In fact, we apply RS

PropBank v3 UPB
EN DE FR IT ES PT FI

272,380 997 298 489 1,995 936 716

CoNLL-09 van der Plas et al. (2010)
EN FR

39,279 1,000

ProBank v3 UPB (manually re-labeled)
EN ZH DE

272,380 304 258

Table 1: Annotated data used in our experiments. We
show the English source annotations (left column) used
for training and corresponding target annotations used
for testing in various languages.

and RT on both SS and ST and compare the out-
come (see Figure 1, bottom part, right side). The
training objectives are defined as:

LS
cross =

1
nS

n

∑
i=1

D(P̂
θ̂
(r|wS

i ,R
S), P̂

θ̂
(r|wS

i ,R
T )) (10)

LT
cross =

1
nT

n

∑
i=1

D(P̂
θ̂
(r|wT

i ,R
S), P̂

θ̂
(r|wT

i ,R
T )) (11)

where nS and nT are the length of SS and ST , re-
spectively.

In order to improve the performance of the se-
mantic role compressor on the source and target
language, we train it using parallel sentence pairs
by minimizing:

LS
com =

1
nS

n

∑
i=1

D(Pθ(r|wS
i ,w

S
p,S

S), P̂
θ̂
(r|wS

i ,R
S)) (12)

LT
com =

1
nT

n

∑
i=1

D(Pθ(r|wT
i ,w

T
p ,S

T ), P̂
θ̂
(r|wT

i ,R
T )) (13)

The final training loss during cross-lingual training
Lcross is the sum of above losses:

Lcross = LS
cross +LT

cross +LS
com +LT

com (14)

3 Experiments

3.1 Datasets

We trained our model using English as the source
language and obtained semantic role labelers in
German (DE), Spanish (ES), Finish (FI), French
(FR), Italian (IT), Portuguese (PT), and Chinese
(ZH). For English, we used the Proposition Bank
(v3; Palmer et al. 2005) and the annotations pro-
vided as part of the CoNLL-09 shared task (Hajič
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et al., 2009). We used the Europarl parallel corpus
(Koehn, 2005) for the European languages and a
large-scale EN-ZH parallel corpus (Xu, 2019) for
Chinese. We provide details regarding the size of
the parallel corpora in the Appendix. We compared
our model against previous methods on the Uni-
versal Proposition Bank (UPB, v1.0; Akbik et al.
2016), which is built upon the Universal Depen-
dency Treebank (UDT, v1.4) and the Proposition
Bank (PB, v3.0). All languages in the UBP follow a
unified dependency-based SRL annotation scheme.
In order to comply with this scheme, we converted
argument spans in the English Proposition Bank
to dependency-based arguments by labeling the
syntactic head of each span.

As UPB adopts a semi-automatic annotation pro-
cedure, it unavoidably contains a certain amount
of errors. We therefore also tested our model on
manually annotated datasets which are few and far
between, presumably due to the labeling effort in-
volved. An existing dataset (van der Plas et al.,
2010) provides SRL labels for French following
an annotation scheme similar to CoNLL-09 for En-
glish (Hajič et al., 2009). The CoNLL-09 shared
task provides semantic role annotations for seven
languages, but the role sets differ across languages,
and it is far from trivial to unify them. To this end,
we created two manual resources, by randomly
sampling 258 German and 304 Chinese sentences
from UPB. The manual annotation was performed
by native speakers following the annotation guide-
lines of UPB which in turn follows the English
Proposition Bank. Table 1 provides a breakdown
of labeled data used in our experiments.

3.2 Model Configuration
Our model was implemented in PyTorch and opti-
mized using the Adam optimizer (Kingma and Ba,
2014). Word embeddings were initialized using the
officially released multilingual BERT (base; cased
version; Devlin et al. 2019). The parameters of
BERT are fixed during training in order to preserve
the cross-lingual nature of the embeddings. Hyper-
parameter values (for all languages) are shown in
Table 2.

3.3 Results on Universal Proposition Bank
We compared our model against several baselines
on the UPB test set. These include two transfer
methods: Bootstrap (Aminian et al., 2017) and
CModel (Aminian et al., 2019), which perform an-
notation projection through parallel data and filter

Hyperparameters value
multilingual BERT embeddings size 768
predicate indicator embeddings size 16
batch size 30
learning rate 0.001
Bi-LSTM hidden states size 400
BiLSTM depth 3
hidden feature size in biaffine scorer 300
Bi-LSTM hidden states size 256
BiLSTM depth 2
compressed role representation size 30
hidden feature size in biaffine scorer 30

Table 2: Hyperparameter settings for input and training
(first block), semantic role labeler (second block) and
semantic role compressor (third block).

word alignments empirically. We also report the
results of two strong mixture-of-experts models
which focus on combining language specific fea-
tures automatically (MOE; Guo et al. 2018), and
also on learning language-invariant features with
a multinomial adversarial network as a shared fea-
ture extractor (MAN-MOE; Chen et al. 2019). We
also include a recently proposed translation-based
model (PGN; Fei et al. 2020) which performs com-
petitively on UPB; this system directly translates
the source annotated corpus into the target lan-
guage, and then performs annotation projection
and filtering similar to Bootstrap and CModel.

Table 3 shows labeled F-scores (using automat-
ically predicted predicate senses) on the test por-
tion of the Universal Proposition Bank. The var-
ious languages are ordered according to their ty-
pological distance to English based on word or-
der (Ahmad et al., 2019a) with Portuguese being
closest and Finnish farthest. As can be seen, our
model outperforms previous systems on DE, FR
and PT, and is on average better. It is worth not-
ing that, in addition to pretrained word-alignment
tools, both Bootstrap and PGN utilize supervised
part-of-speech (POS) tags for the target language.
However, our model still achieves the best aver-
age F-score (61.1%) without employing any addi-
tional features. Pairwise differences in F1 between
our model MAN-MOE, CModel, and PGN) are all
statistically significant (p < 0.05) using stratified
shuffling (Noreen, 1989).

3.4 Results on Human-labeled Data

As UPB annotations are semi-automatic and possi-
bly contain projection errors, we further compared
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Models PT FR ES IT DE FI avg
Dist. to EN 0.09 0.09 0.12 0.12 0.14 0.20 0.13
Bootstrap 53.9 63.4 52.2 52.3 55.0 53.1 55.0
CModel 56.5 58.5 56.0 55.5 57.0 58.9 57.1
MAN-MOE 55.2 65.3 62.8 57.1 64.3 52.3 59.4
MoE 55.5 63.3 60.3 56.7 63.2 50.6 58.2
PGN 56.0 64.8 62.5 58.7 65.0 54.5 60.3
Ours 57.8 66.2 61.5 57.6 65.7 57.6 61.1

Table 3: Results (F1) on UPB test sets for six languages.
Results for comparison systems are taken from previ-
ous papers (Aminian et al., 2019; Fei et al., 2020).

Models FR DE ZH avg
CModel 68.5 66.9 62.3 65.9
MAN-MOE 72.8 69.2 64.7 68.9
PGN 73.2 70.1 65.4 69.5
Ours 75.3 71.4 68.5 71.7

Table 4: Results (F1) on manually annotated test sets
for German, French, and Chinese. Pairwise differences
between our model and previous systems are all statis-
tically significant (p < 0.05) using stratified shuffling
(Noreen, 1989).

our model against manual annotations on French,
German, and Chinese (see Table 1). Since previous
models have not provided results on these datasets,
we re-implemented three strong comparison sys-
tems, i.e., CModel, MAN-MOE, and PGN. Details
on our implementation are in the Appendix.

Our results are summarized in Table 4, where
languages are ordered in terms of their word or-
der distance to English (Ahmad et al., 2019a). We
note that our approach significantly outperforms
previously published models on these three lan-
guages. All systems perform best on French which
is perhaps unsurprising given that it is closest to
English and worst on Chinese which is least related
to English. This suggests that transferring SRL
annotations between languages with similar word
orders could be an easier task.

3.5 Ablation Study and Analysis

To investigate the contribution of the semantic
role compressor and cross-lingual training, we con-
ducted a series of ablation studies on the manually
annotated DE, FR, and ZH datasets. Evaluation in
these experiments excludes the accuracy of predi-
cate disambiguation, since we wish to focus on the
SRL model per se.

Our experiments are summarized in Table 5. The
first block shows the performance of the full model.

Models DE FR ZH
Ours 63.4 68.8 60.4
w/o BERT 47.7 52.6 44.5
w/o BERT (+position) 55.3 60.5 53.0
w/o Gaussian noise 61.7 66.2 57.7
w/o cross-lingual training 52.5 59.8 49.5
w/o compressor (+attention) 51.7 59.5 47.1

Table 5: Ablations on manually annotated datasets.

In the second block, we assess the effect of differ-
ent kinds of word representations. First, we substi-
tute multilingual BERT embeddings with MUSE
embeddings (Lample et al., 2018), which were ob-
tained by aligning (monolingual) fastText embed-
dings for various languages onto a universal space.
We can see that the performance of our model drops
significantly. One important reason is that MUSE
embeddings are not contextualized; as a result, a
word appearing multiple times in the same sen-
tence will receive the same embedding, even when
it occupies different semantic roles, which in turn
leads to conflicts during decompression. One so-
lution is concatenating MUSE with word position
embeddings during compression and decompres-
sion (see Appendix for details). This improves SRL
performance from 47.7% (DE), 52.6% (FR), and
44.5% (ZH) to 55.3%, 60.5% and 53.0%, but is still
inferior to the original model. Next, we remove
Gaussian noise from the model and as can be seen
there is a drop in performance indicating that it
further boosts SRL accuracy.

In the third block, we remove cross-lingual train-
ing, and observe a significant drop in F-score over
the full model. In order to verify the need for se-
mantic role compression, we substitute the com-
pressor with an attention-based module (Bahdanau
et al., 2015) and proceed to train our model as de-
scribed in Section 2.3. Specifically, we obtain soft
alignments and use these to weight all annotations
Pθ(r|wi,wp,S), thereby obtaining an expectation
over role assignments. The alignment module and
the basic semantic role labeler are trained jointly
during cross-lingual training. We can see that per-
formance drops substantially for all three languages
compared to the full model. The reason might be
that the output of the semantic role labeler is noisy
and attention often creates labeling conflicts (e. two
words show high confidence for the same semantic
role). However, our compressor can filter out this
noise and resolve conflicts more effectively.
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French SRL only Ours Frequency(%)
A0 71.9 83.6 26%
A1 65.7 78.8 37%
A2 37.8 43.6 7%
AM-* 46.7 48.5 30%

Chinese SRL only Ours Frequency(%)
A0 59.2 63.7 18%
A1 59.9 74.4 38%
A2 38.6 65.6 15%
AM-* 36.0 37.3 29%

Table 6: Results (F1) on French and Chinese test sets
grouped by gold role labels.

In Table 6, we present model performance for
French and Chinese for different (gold) role labels.
We compare the full model against an SRL only
model without cross-lingual training. As shown in
Table 6, cross-lingual training improves SRL per-
formance in French and Chinese on all semantic
roles.4 For French, the most significant improve-
ment comes from A1; for Chinese, cross-lingual
training benefits labeling A1 and A2 significantly.
Compared with A0, A1, and A2, the improvements
on AM-* (modifiers for current predicate) are mod-
est for both French and Chinese. One possible
reason is that the head words of A0, A1 and A2
are usually nouns or adjectives, which tend to have
fixed positions in parallel sentence pairs. However,
modifiers can be optional and have more varied
positions within and across languages, which in-
creases the difficulty for cross-lingual learning.

4 Related Work

There has been a great deal of interest in cross-
lingual transfer learning for SRL (Padó and Lapata,
2009; van der Plas et al., 2011; Kozhevnikov and
Titov, 2013; Tiedemann, 2015; Zhao et al., 2018;
Chen et al., 2019; Aminian et al., 2019; Fei et al.,
2020). The majority of previous work has focused
on two types of approaches, namely annotation
projection and model transfer.

A variety of methods have been proposed to im-
prove the quality of annotation projections due to
alignment noise. These range from word and argu-
ment filtering techniques (Padó and Lapata, 2005,
2009), to learning syntax and semantics jointly
(van der Plas et al., 2011), and iterative bootstrap-

4The proportion of A2 in Chinese is higher than in French,
as the two languages follow different annotation schemes.

ping (Akbik et al., 2015; Aminian et al., 2017).
In an attempt to reduce the reliance on supervised
lexico-syntactic features for the target language,
Aminian et al. (2019) make use of word and charac-
ter features, and filter projected annotations accord-
ing to projection density. Model transfer does not
require parallel corpora or word alignment tools;
nevertheless, it relies on accurate features such
as POS tags (McDonald et al., 2013) or syntac-
tic parse trees (Kozhevnikov and Titov, 2013) to
enhance the ability to generalize across languages.
Adversarial training is commonly used to extract
language-agnostic features thereby improving the
performance of cross-lingual systems (Chen et al.,
2019; Ahmad et al., 2019b).

Translation-based approaches have been gain-
ing popularity in cross-lingual dependency parsing
(Rasooli and Collins, 2015; Tiedemann, 2015; Con-
neau et al., 2018) and have recently been applied to
SRL (Fei et al., 2020). Daza and Frank (2019b) pro-
pose a cross-lingual encoder-decoder model that
simultaneously translates and generates sentences
with semantic role annotations in a resource-poor
target language. Rather than creating annotations
or models for a target language, other work aims
to exploit the similarities between languages. Mul-
caire et al. (2018) combine resources for multiple
languages to create polyglot semantic role labelers
and show that polyglot training can result in better
labeling accuracy than a monolingual labeler.

An obstacle for developing cross-lingual SRL
models is the absence of a unified annotation
scheme for all languages. Although the CoNLL-09
shared task (Hajič et al., 2009) provides annota-
tions for seven languages, the labeling schemes
and role sets are not shared. To this end, van der
Plas et al. (2010) build a French SRL dataset, fol-
lowing an annotation scheme similar to CoNLL-09
for English. Some recent cross-lingual SRL mod-
els (Aminian et al., 2017, 2019; Fei et al., 2020)
make use of the publicly available Universal Propo-
sition Bank (UPB; Akbik et al. 2015; Akbik and
Li 2016), which annotates predicates and semantic
roles following the English Proposition Bank 3.0
(Palmer et al., 2005). Since annotation projection is
involved in the construction of UPB, the quality of
UPB is also influenced by the quality of the parallel
data, the performance of the source-language SRL
model, and the accuracy of alignment tools.
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5 Conclusions

In this paper we developed a cross-lingual SRL
model and demonstrated it can effectively leverage
unlabeled parallel data without relying on word
alignments or any other external tools. We have
also contributed two quality controlled datasets
(compatible with PropBank-style guidelines) which
we hope will be useful for the development of cross-
lingual models. Directions for future work are
many and varied. Although our focus has been
on dependency-based SRL, our model can be eas-
ily adapted to span-based annotations (Carreras and
Màrquez, 2005; Pradhan et al., 2013). In this case,
the semantic role compressor could be modified to
represent entire spans rather than just head words
while decompression would remain unchanged (it
would still output a probability distribution for each
word over all semantic roles). We also plan to ex-
tend our framework to semi-supervised learning,
where a small number of annotations might also be
available in the target language.
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A Positional Features

When using non-contextualized MUSE embed-
dings (see the ablation study in Section 3.5), we
resort to position embeddings to distinguish words
appearing multiple times in the same sentence. Un-
like standard transformers where positional fea-
tures are bound to word indices, the positional fea-
tures we used for word wi just record the number of
words which are same as wi and appeared before wi

(shown in Figure 2).
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Figure 2: Positional features for English-French paral-
lel sentences.

We adopt these new positional features for two
reasons. Firstly, during cross-lingual training, the
length of parallel sentences SS and ST is usually
different. More importantly, for i-th word wi in SS,
its correspondence w

′
j in ST is not the i-th word in

ST in most cases. When performing cross-lingual
training, it is important that wi and w

′
j have the

same position embeddings, so that they can obtain
similar result after decompression. As shown in
Figure 2, he (”il” in French) appears twice in the
English sentence, and its French counterpart shares
the same positional features. Experimental results
show that positional features can effectively im-
prove cross-lingual training. However, there are
still cases when the word order changes dramat-
ically after translation and our position features
do not work. The only solution seems to be to
use contextualized embeddings like multilingual
BERT or multilingual ELMo, where every word in
a sentence will be assigned unique embeddings.

B External Tools

When implementing previous models, we used
Google Translate5 as our translation engine, and
giza++6 to obtain word alignments. Besides source-
language corpus, translated corpus is also used for
the training of PGN and MAN-MOE. When prepos-
sessing the Chinese part in EN-ZH parallel corpus
(containing about 5 million sentence pairs), we use
Jieba7 for tokenization. The Chinese testset in UPB
is in traditional Chinese, and we use Zhtools8 to
convert it to simplified Chinese to be compatible
with our EN-ZH parallel corpus which is also in
simplified Chinese.

C Parallel Corpus Size

Europarl provides parallel data between English
and 21 European languages. We evaluated our

5ttps://translate.google.com/
6https://github.com/moses-smt/giza-pp
7https://github.com/fxsjy/jieba
8https://github.com/skydark/nstools/tree/

master/zhtools

Language size
German 1,920,209
Spanish 1,965,734
Finnish 1,924,942
Italian 1,909,115
Portuguese 1,960,407
French 2,007,723

Table 7: Number of sentence pairs in Europarl for six
languages.

model on six European languages. Table 7 give
the size of the various parallel corpora used in our
experiments.
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