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Abstract

Word-level information is important in natu-
ral language processing (NLP), especially for
the Chinese language due to its high linguis-
tic complexity. Chinese word segmentation
(CWS) is an essential task for Chinese down-
stream NLP tasks. Existing methods have al-
ready achieved a competitive performance for
CWS on large-scale annotated corpora. How-
ever, the accuracy of the method will drop dra-
matically when it handles an unsegmented text
with lots of out-of-vocabulary (OOV) words.
In addition, there are many different segmen-
tation criteria for addressing different require-
ments of downstream NLP tasks. Excessive
amounts of models with saving different crite-
ria will generate the explosive growth of the to-
tal parameters. To this end, we propose a joint
multiple criteria model that shares all parame-
ters to integrate different segmentation criteria
into one model. Besides, we utilize a transfer
learning method to improve the performance
of OOV words. Our proposed method is evalu-
ated by designing comprehensive experiments
on multiple benchmark datasets (e.g., Bake-
off 2005, Bakeoff 2008 and SIGHAN 2010).
Our method achieves the state-of-the-art per-
formances on all datasets. Importantly, our
method also shows a competitive practicability
and generalization ability for the CWS task.

1 Introduction

In the extensive researches on natural language
processing (NLP), most of the tasks are based on
word-level methods because word is the smallest
linguistic unit in natural languages. It has rich
feature information. However, the situation is to-
tally different when dealing with the Chinese lan-
guage. There is not clearly delimiter between Chi-
nese words, instead the blank space is regarded as
a delimiter in most western languages. Different
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Table 1: Tllustration of different segmentation criteria
on three popular datasets

segmentation results may lead to different feature
information. Thus, Chinese word segmentation
(CWS) is an essential task, which will significantly
affect the effectiveness of downstream Chinese
NLP tasks. Recently, the approaches for CWS
have already achieved a good performance in large-
scale annotated corpora, as reported by related re-
searches (Huang and Zhao, 2007; Zhao et al., 2019).
Most of the effective approaches fall into two ma-
jor research fields: the statistical machine learning
method and the neural network method. The for-
mer is mainly based on Conditional Random Fields
(CRF), which is considered as the most effective
statistical machine learning method for CWS (Zhao
and Kit, 2008; Zhao et al., 2010). However, the
statistical machine learning method always heav-
ily relies on hand-craft features. To minimize the
efforts in feature engineering, more and more re-
searches are focus on neural network method (Pei
et al., 2014; Chen et al., 2015a,b). Furthermore,
following the rapid development of neural network
models, variations on neural network methods for
CWS have already gained comparable results as
the state-of-the-art statistical machine learning tech-
niques (Cai et al., 2017; Zhou et al., 2017; Maet al.,
2018; Meng et al., 2019).

Nevertheless, there are still two important is-
sues on the CWS task. One important issue is
that almost all effective methods are limited by
large-scale annotated corpora, these methods will
lead to a weak generalization ability. The results
may decline rapidly when the methods deal with
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a cross-domain situation. Since there are many
out-of-vocabulary (OOV) words in cross-domain
scenarios, and the character feature information is
different in another unrelated domain. For exam-
ple, the Chinese character “FL(Mo/not to do)” is
always trained as a surname of Chinese people in
most domains, especially when a slice “5 5 (Mo
Yan/not to say)” appears in a sentence, it probably
should be a Chinese person who won the Nobel
Prize for literature. However, the situation is totally
different in the Chinese novel. In Chinese novel
domain, “Z£(Mo/not to do)” always means “not to
do something”. When the slice “5< 5 (Mo Yan/not
to say)” appears in a famous Chinese novel, the
meaning of “E 5 (Mo Yan/not to say)” is “do/does
not to say”’ definitely. The current methods hardly
segment it correctly because of the low generaliza-
tion ability and robustness. The other important
issue is that Chinese word segmentation criterion
is multiple, and most novel methods depend on
large-scale corpora. If the large-scale corpora have
different criteria, which are shown in Table 1, the
method that is trained by a heterogeneous criterion
corpus is hard to segment correctly. In the previous
researches, the usual solutions are to train different
models to adapt to multiple segmentation criteria.

In this paper, we propose a joint multiple criteria
method for both standard and cross-domain simpli-
fied Chinese word segmentation. The method uti-
lizes a novel pre-trained (ROBERTa-WWM) model
(Cui et al., 2019), which adequately trained a rich
Chinese character vector embedding. With the rich-
ness of the pre-trained model, our method for CWS
can obtain a robust generalization ability to deal
with the cross-domain situation. In order to fur-
ther improve the performance of the model, we
consider improving the amount of training data
through the process of transfer learning. We adopt
a strategy that integrates several different segmen-
tation criteria into a single straightforward model.
The benefit is that we do not need many models to
fit multiple segmentation criteria, and the method
improves the amount of training data in disguised
simultaneously.

To sum up, the contributions of this paper are as
follows.

e We present a straightforward transfer learn-
ing method based on RoOBERTa to solve CWS
problems mentioned above, and make use of
the rich pre-trained model that extracted abun-
dant feature information and linguistic con-

text, making the word-formation ability of the
model strong. The method achieves state-of-
the art performance on in-domain and cross-
domain CWS benchmarks.

e There is a large number of parameters in the
RoBERTa-based model. We share all the pa-
rameters without complex neural network ar-
chitectures in the training step. It can control
the explosive growth of the total parameters
while improves the performances on several
datasets for CWS.

e Our proposed method is straightforward and
effective. We do not need to devise much
manual information such as lexicon, n-gram
feature, and statistical information. It matches
with the benefits of neural network properly.

2 Related Work

Since Xue (2003) first formalizes CWS task as a
sequence labeling problem, many researches de-
pending on supervised machine learning methods
have already achieved good performance for CWS.
Peng et al. (2004) utilized the CRF methods for
CWS, since then CRF became the most popular
machine learning method for CWS task. Variations
of CRF based model achieved good performances
for CWS (Tseng et al., 2005; Zhao and Kit, 2008;
Zhao et al., 2010; Sun et al., 2012; Zhang et al.,
2013). With the development of neural network,
more and more researchers made gradual progress
with a wide range of neural methods (Zheng et al.,
2013; Pei et al., 2014; Chen et al., 2015a,b; Cai and
Zhao, 2016; Cai et al., 2017), and the performances
on neural methods have already approximated state-
of-the-art performances on statistical methods.
Neural network methods can incorporate the in-
formation in the model easily and effectively by
means of automatic feature extraction. Thus, it
is possible to train multiple segmentation criteria
into a single model well with neural network meth-
ods while it is a challenge on previous statistical
methods. Chen et al. (2017) was first to propose a
multi-criteria learning method for CWS, in which
the method adopted shared layers and private lay-
ers. However, there is still a gap with independent
segmentation criterion method. He et al. (2018) im-
proved the performance on the same base Bi-LSTM
(bidirectional Long Short-Term Memory Network)
(Graves and Schmidhuber, 2005) model, it adopted
a simple and effective method to integrate differ-
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Figure 1: An overview of proposed model architecture.

ent segmentation criteria by adding two tags in a
sentence (Johnson et al., 2017). Qiu et al. (2019)
changed the base model to Transformer (Vaswani
etal., 2017), and Huang et al. (2019) utilized BERT
(Devlin et al., 2018) that is based on Transformer
to extract feature information. Both of these two
methods achieved the state-of-the-art performances
on benchmark datasets.

The approaches mentioned above mainly focus
on in-domain benchmarks, and there is still much
room for improvement using the neural network
method (Huang et al., 2017; Zhang et al., 2018;
Zhao et al., 2018; Ye et al., 2019). Most of these
methods leverage external resources to alleviate
the OOV issue. Our proposed method is inspired
by this thought, and uses rich pre-trained embed-
dings to relieve the weakness in cross-domain. The
method not only solves the multiple segmentation
criteria issue with a straightforward architecture,
but also solves the cross-domain CWS problem.
With the help of the pre-trained embedding, the
transfer learning method does not need to learn
from scratch, and has a robust generalization abil-

ity.

3 Model Architecture

Figure 1 shows our proposed model architecture
which is quite brief. We do not pay attention to
complicating the neural network. Meanwhile, the
strategy of integrating criteria is first proposed on
Johnson et al. (2017) for machine translation trans-
fers multiple segmentation criteria into one model
with minimal effort.

3.1 Encode Layer

According to Ma et al. (2018), the complexity of
a neural network for CWS can hardly affect the
performance since the CWS is a task on the super-
ficial linguistic representation. The features of the
characters are shallow. There will be a competitive
performance on simple neural network architecture.
The real factor that leads to the gap of CWS task
is under-training instead of bad-training. Thus, we
utilize the Whole Word Masking RoBERTa model,
which is trained by large unlabeled Chinese data.
The input of encode layer consists of three parts
that are token embedding E,, position embedding
E, and segment embedding E;. Given a charac-
ter sentence C = {C105C5...C,_2C,,—1C,} as
the input. The position sequence of the input is
P = {P,P,P;...P,_2P,_1P,}. The sequence is
converted to a vector matrix E;. P is also mapped
into a feature matrix E,. Because of the specificity
for CWS, all segment embeddings of the sequences
are regarded as the same mapping relation E;. The
input is
Einput = E + Ep + Es (D

The encode layer consists of several transformer
encoders(Vaswani et al., 2017), and it is bidirec-
tional. The transformer encoder utilizes several
multi-head self-attention layers to extract the con-
textual feature for each character. The multi-head
self-attention layer adopts “Scaled Dot-Product At-
tention” to compute representation. The “Scaled
Dot-Product Attention” function is:

Attention (Q, K, V) = softmax (%) vV o2
where (), K, V represents a query and a set of key-
value pairs through a linear transformation respec-
tively, and dy, is the dimension of K.

Instead of performing a single attention func-
tion, the multi-head self-attention layer can ex-
tract contextual features from different represen-
tation spaces. Given an input sequence of vector
Einput € RL#dmodel  where L is the length of the
sequence, and d,ode; 1S the dimension of it. A
multi-head self-attention layer is:

MultiHead (Einput) = [heady, ..., heady) we  (3)
head; = Attention (Ein,,uM/iQ Bt WK, Ein,meiV) 4)

where WO, WiQ, WiK , Wiv are trainable parame-
ters. And a layer normalization is adopted in the
end of each multi-head self-attention layer.
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Corpora ~ PKU MSRA CTB CNC UDC SXU ZX Cross-domain
L C M F
Worgs THin LIM_ 24M 07M 66M O.IM O05M 88K | - - - -
Test 0.IM 0.IM 52K 07M 12K 0.IM 34K | 35K 35K 31K 33K
Char TN 18M 40M 12M 10M 02M 08M OUM| - - - -
Test 02M 02M 86K 1.IM 18K 02M 48K | 50K 54K 51K 53K
OOV rate (%) 3.5 21 50 0.7 106 46 55 | 62 68 90 38

Table 2: The sizes of different benchmark datasets. “L” represents literature domain. “C” represents computer
domain. “M” represents medicine domain. “F” represents finance domain.

With the rich pre-trained model, the trainable pa-
rameters have already been covered with a wealth
of character information in the hidden states. These
feature information could compensate for the weak-
nesses of unknown characters. To adapt the pre-
trained model to CWS, we utilize a linear transfer
layer to integrate the hidden states into CWS.

3.2 Multiple Criteria on Solution

There are many parameters in the pre-trained
model, so it would be impractical to train different
models for dealing with different criteria and do-
mains. Inspired by the similarity with the method,
it needs to integrate different languages into one
model. Our proposed strategy considers criteria
as languages. The straightforward and effective
method is that each of the input sentences attaches
a pair of tag identifiers < tag > and < /tag >
at the beginning and end of the sentence respec-
tively. tag represents the specific criterion or do-
main. For instance, if an input sentence C' be-
longs to “PKU” datasets, the sentence changes
into < pku > C' < /pku > as the input of en-
code layer. These specific identifiers can affect
the contextual representation within the scope of
the sentence. It is similar to domain-aware protec-
tion, making the correct decision matching crite-
rion or domain of the unsegmented sentence. We
do not pay attention to producing external comput-
ing. And it will save much room for creating model
architectures.

3.3 Tag Inference

According to Xue (2003), our proposed method
also converts CWS task to a character based se-
quence labeling problem. One commonly used
labeling set is a 4-tag set ' = {B, M, E, S}, rep-
resenting the begin, middle, end of a word, or a
single character forming a word. The aim of the
character based sequence labeling task is to find

hidden state size | 768
optimizer Bert Adam
learning rate uniform-float[1e-5,2e-5,1e-4]
batch size uniform-integer[16,32,64]
dropout uniform-float[0.1,0.2,0.3,0.5]
epochs 15

Table 3: The hyper-parameters settings, the best as-

signments are highlighted.

the most possible path of Y* = {¥1Y5...Y,,_1Y,, }:

Y* =argmazp (Y|X) 3)

Yern

In the previous methods, many researchers adopted
a CRF decode layer to improve the performance for
sequence labeling task (Lample et al., 2016). In par-
ticular, the core algorithm of the neural CRF layer
is a transition matrix during the decode step. The
transition matrix can learn constraint rules between
two tags in order to enhance accuracy. It is effec-
tive for most complicated NLP tasks. However, the
ability of improving accuracy is limited by utilizing
the CRF layer because there is a high accuracy of
each character tag itself on our model. Meanwhile
CRF layer will have larger time complexity and
space complexity. So we utilize a lightweight de-
code layer So ftmax, which increases smaller time
complexity. The loss function is cross-entropy:

Zy

where y denotes the gold sequence labeling, y*
denotes the output of decode layer.

Loss (y,y Jogy™(x 6)

4 Experiment

4.1 Datasets and Experimental Setup

For verifying the high performance of the joint
multiple criteria model in transfer learning for in-
domain and cross-domain CWS, we do compar-
ative experiments on several simplified Chinese
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Models PKU MSRA CTB CNC UDC SXU ZX AvgInd
Single criterion learning

F 9330 9584 9530 - - 9517 - 94.09

Chenetal Q0I7) | (1 cc00 6628 7647 - - 7127 - 70.02

He etal. (2018) RF 95;22 97;29 96;27 97;11 93;98 95;80 95;57 96;15

F | 9574 9646 97.09 - - 9518 - 96.12

Gongetal 2019) | b | 5770 6990 81.80 - - 69.69 - 73.52

. F | 9639 9807 9643 - T 97.08 - 96.70

Qiuetal. 019 | 5 | 5e0 7375 8282 - - 7795 - 76.84

our F | 9667 98.12 97.56 97.26 97.86 9752 96.77 97.47

urs Roos | 79.13  80.65 8824 5805 92.58 8501 8612 83.26
Multiple criteria learning

F | 9432 9604 9618 - - 9604 - 95.65

Chenetal Q0I7T) | b 12567 7160 8248 - - 7710 - 75.96

He etal. (2018) RF 96;06 97;25 96;70 97;00 94;44 96;47 95;72 96;62

F | 9615 9778 9726 - 9725 - 97.11

Gongetal 2019) | b | ¢o88 6420 8389 - - 7869 - 7417

. F | 9641 9805 9699 - 9761 - 97.27

Qiuetal 2019) | b | 7691 7892 8700 - - 8508 - 82.48

Oure F | 9685 9829 9756 97.19 97.69 97.56 9646 97.56

Ro,s | 8235 8175 88.02 59.44 9140 8573 8251  84.46

Table 4: The results on test data of 7 standard CWS datasets. Here, F and R, represent F1 value and the recall
of OOV words respectively. “Avg.In4” is the average of PKU, MSRA, CTB and SXU. The maximum values of

evaluation are highlighted for each dataset.

datasets, including Bakeoff 2005, Bakeoff 2008,
SIGHAN 2010 (cross-domain datasets), and other
open datasets. The sizes of corpora are shown in
Table 2. We randomly pick 10% sentences from the
training data as the development data for model tun-
ing. Similar to a previous paper (Cai et al., 2017),
we convert all digits, punctuation, and Latin let-
ters to half-width, dealing with the full/half-width
mismatch between training and test data. The con-
tinuous Latin characters and digits are generalized
to a unique token. Note that there is no training
data for the cross-domain datasets, so the tag of
cross-domain datasets is set to PKU which is the
most similar to them.

4.2 Multiple Criteria Result

We follow the majority of hyper-parameters of the
original ROBERTa-WWM model, adjusting a few
crucial hyper-parameters. The hypter-parameters
and search ranges that are shown in Table 3. We de-
ploy the model on GPU(Nvidia Tesla K40c). One
epoch with 1.7M tokens costs about 6 hours in
the training step. Our implementation is based on

Pytorch (Wolf et al., 2019; Paszke et al., 2019), a
dynamic neural graph framework for deep learn-
ing.!

Table 4 shows the results of both single criterion
method and multiple criteria method on several

benchmark datasets.

We first compare our method with the previ-
ous popular methods. Three of them are based
on LSTM neural architecture (Chen et al., 2017;
He et al., 2018; Gong et al., 2019). Our method
and Qiu et al. (2019) are based on Transformer. It
is observed that the performance on Transformer is
better than it on LSTM from the table. In particu-
lar, our method utilizes the pre-trained embedding
that is more effective on all seven simplified Chi-
nese benchmark datasets. A full-training language
model can improve the generalization ability and
robustness of model.

Furthermore, our proposed method adopts a strat-
egy to integrate all training datasets into one model.

'0ur code are available at https://github.com/
koukaiu/dlut-nihao
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Models Literature Computer Medicine Finance Avg.

non-DL Huang and Tong (2012) 94.66 95.36 94.69 96.26 9524
Liu et al. (2014) 92.49 94.07 92.63 95.54  93.68

SOTA, 95.5 95.0 93.8 96.0  95.08

Chen et al. (2015b) 92.89 93.71 92.16 95.20 93.49

Cai et al. (2017) 92.90 94.04 92.10 95.38  93.61

DL Huang et al. (2017) 94.33 93.99 92.26 95.81 94.10
Zhao et al. (2018) 93.23 95.32 93.73 95.84  94.53

Zhang et al. (2018) 94.76 94.70 94.18 96.06 94.93

Baseline 93.13 93.19 91.73 94.96 93.25

+pre-trained 94.96 94.86 94.23 96.33  95.10

Ours 96.13 96.08 95.21 96.82  96.06

Table 5: The F1 values on test data of SIGHAN 2010 cross-domain datasets. Here, “SOT A,” represents the
previous maximum F1 values on SIGHAN 2010 open test task of each domain, including three results (Computer,
Medicine, Finance) from Gao and Vogel (2010) and one result (Literature) from Huang et al. (2010). The currently
maximum values of evaluation are highlighted for each domain dataset.

Models P R F Roow

Ours 97.27 9643 96.85 82.35
Baseline 95.44 9496 9520 62.82
+second hidden 96.40 95.34 95.87 77.89
+second-to-last hidden | 96.31 95.31 95.81 80.04
+sum last four hidden | 96.09 95.36 95.73 81.37
+sum all 12 hidden 96.31 95.10 95.70 82.66

Table 6: The results by adopting differnt layers of the
pre-trained model on PKU. Here “P” is the precision,
“R” is the recall, “F” is the F1-value and “R,,,” is the
recall of OOV words.

It not only reduces the sum of parameters by N (the
number of different segmentation criteria) times,
but also improves the performances slightly on four
(PKU, MSRA, CTB, SXU) of seven datasets. The
most important thing is that the knowledge of mul-
tiple segmentation criteria is merged together by
our method. We also compared some open datasets
with He et al. (2018). Our proposed method has
a significant improvement compared to the previ-
ous works. Note that the R,,, of CNC is relatively
lower than others. One possible reason is that the
training set of CNC is extensive, the OOV words
are almost the unconventional words. It is challeng-
ing to segment them on current technology. The
other possible reason is that there are some errors
in the corpus itself.

4.3 Cross-domain Result

We compare our model with the previous effec-
tive methods for cross-domain CWS, shown in
Table 5. No matching development set is pro-
vided for the cross-domain datasets, so we follow

hyper-parameters of PKU set. Both of statistical
method (non-DL) and neural network method (DL)
have competitive performances on cross-domain
datasets. However, according to the results in Table
5, it is observed that neural CWS methods fall short
of the performances compared with statistical meth-
ods in the previous works. With external resources,
some neural CWS methods are close to the previ-
ous state-of-the-art performances for cross-domain
CWS (Zhao et al., 2018; Zhang et al., 2018). For
verifying the contribution of the pre-trained model,
we adopt a popular neural architecture (Bi-LSTM)
as the baseline model, and utilize the pre-trained
embedding based on the baseline model to improve
the performance. The difference between these two
methods reflects the role of pre-trained embedding
partly. It effectively alleviates the OOV issue by
using rich pre-trained embedding instead of modi-
fying the model architecture. From the results, the
pre-trained method has already achieved the best
performance of statistical methods. It supplies a
gap on a pure neural CWS model that does not uti-
lize any external resources. Our proposed transfer
learning method not only takes full advantages of
pre-trained embedding, but also adopts a strategy
to increase the scale of training sample in disguise.
As we know, the scale of training samples is the key
to improve the performance with neural methods.
Our method has achieved state-of-the-art perfor-
mance compared with the previous non-DL and
DL methods on all of four cross-domain SIGHAN
2010 datasets.

3878



Methods PKU MSRA

Zhao et al. (2010)  96.7 98.0
Cai et al. (2017) 95.8 97.1
Yang et al. (2017) 963  97.5
Zhou et al. (2017)  97.8 96.0
Ma et al. (2018) 96.1 97.4
Huang et al. (2019) 96.6 97.9
Meng et al. (2019)  96.7 98.3
Ours 96.9 98.3

Table 7: The Fl1-values on PKU and MSRA Bakeoff
2005 datasets. The maximum values of evaluation are
highlighted for each column.

- Literature
- - Computer|
- Medicine
- Finance
—e—PKU

97.0 5

Fxem

96.5 4

96.0 4

95.5

Fl-value

95.0 4

94.5 o

94.0 ,

T T T
120 1/10 1/5 12 1
Size of PKU training data

Figure 2: The Fl-values of our method on PKU and
cross-domain SIGHAN 2010 datasets. The X-axis rep-
resents the size of training set, the Y-axis represents the
F1-values. The icons of different datasets are described
at the top right of the figure.

4.4 Generalization Ability

Most of the present neural CWS methods adopt
the pre-trained embedding to avoid the OOV prob-
lem. To varying degrees, the pre-trained embed-
ding improves the performances of the neural CWS
method. In other words, how to utilize the pre-
trained embedding is a key to enhance the gen-
eralization ability of a neural CWS method. We
adopt several types of pre-trained embeddings, the
results are shown in Table 6. Indeed, the different
pre-trained embeddings improve the performance
of the baseline model. However, our method that
utilizes the concept of transfer learning improves
the generalization ability more forcefully. In par-
ticular, the performances of our method on PKU
and MSRA benchmark datasets are state-of-the-art,
shown in Table 7.

Another influencing factor of a supervised neural
method is the size of the training set. In particular,

the Transformer needs a large size of the training
set more than other previous neural architectures.
We utilize different sizes of PKU training data to
evaluate the performances on 5 datasets that include
four cross-domain datasets and a PKU benchmark
dataset, shown in Figure 2. It is observed that there
is a better performance on a larger size of the train-
ing set. In other words, we can enhance the gener-
alization ability by adding training data. Under the
premise of not adding manual annotation, we might
utilize the multiple criteria available to make the
model more robust. According to the results of sev-
eral experiments, our method shows a competitive
practicability and generalization ability.

4.5 Error Analysis

In order to guide future research directions for Chi-
nese word segmentation, we analyze three typical
types of errors in our method by manual and non-
manual.

The first one is that there are many errors due to
annotation inconsistency or annotation errors. For
instance, the word “#&{E 5% (operating system)”
occurs nine times annotated as “#g{E(operate)+ 2
Zi(system)” and more than ten times as “#¢{E
# Yi(operating system)” in the same context.
There are many similar situations in the corpora
through the consistency checking. Besides, “[&
#f(national cultural heritage)” should be regarded
as a word that is even difficult for a Chinese to
understand. In the context “fth i i % FH [E
T # B #2572 T 2% 15 (He established a doctrine
by concluding national cultural heritage), the
gold result is given as “ftfi(He)/i# 1 (pass by)/F&
P (conclude)/[E (nation)/#{ (heritage)/Tfj (while )/
Bl (help)/# 37 (establish)/ T (an empty word)/*~
Pi(doctrine)”. Furthermore, the word “[E
i (national cultural heritage)” is separated into
two single words. Words that are difficult to
understand are high probability wrong in gold
results. Unfortunately, These errors come from the
original corpus itself, so we argue that it is not an
algorithm problem. It might be proceeded with
amending the corpus.

The second one is that the model hesitates when
a prefix/suffix might be an independent single word.
For instance, “Z&(file)” is a suffix word, frequently
appeared in a word together with another two
characters like “f%1F Z¢(amendment)” and “%E A
Z&(smuggling case)”. When the model predicts
“UU 5B (crime)ZE(case)”, it is great probability to
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merge them together incorrectly. Similarly, the
prefix/suffix problem is trapped in the issue of con-
sistency commonly.

The last one is that the performances of the
longer OOV words are unsatisfactory. In particular,
some longer personal names that do not contain
clearly feature information are hard to segment.
Unlike “#J#] K T.(John David)” and “4¢7] K
#(Tchaikovsky)” that are obviously treated as an
English name and a Russian name, the sequence
of “ll](mountain)fE(deer) Z (element)f T (walk)” is
segmented as four single words, while it is a
Japanese researcher (Yamaga Sokou). In addition,
the errors not only limit to personal names, but also
distinguish the word boundary incorrectly. Should
“[E 5 1)k (state-owned enterprise)” be segmented
as one word or two words “[EE (state-owned)+1E
IV (enterprise)”? It is hard to segment correctly for
human, the model absolutely struggles to distin-
guish the boundary.

5 Conclusion

In this paper, we construct a transfer layer structure
that leverages the pre-trained feature information
for CWS and exploit a transfer tag to boost joint
multiple criteria learning. The model could relieve
the OOV problem for Chinese word segmentation
and achieves the best performance in comparison
with state-of-the-art techniques for both in-domain
and out-of-domain Chinese word segmentation. Ex-
tensive experiments on seven in-domain and four
cross-domain datasets for Chinese word segmenta-
tion confirm the superiority of our model over all
other advanced methods. In summary, the advan-
tages of our model are twofold. First, the model has
a stronger robustness with a straightforward trans-
fer learning method. The performance of our model
is better, especially when dealing with high OOV
rate data. Second, our model effectively solves the
parameters exploding due to different segmentation
criteria. We do not need to design any redundant
structures. Nevertheless, there is still a gap in a
real-word situation. In the future, we will continue
studying the efficiency of the neural architecture,
and pay attention to improving the speed of both
training and testing steps on an ever-increasing
dataset. In particular, we will enhance the practica-
bility of Chinese word segmentation to improve the
effectiveness of other downstream Chinese NLP
tasks.
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