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Abstract

Taking greedy decoding algorithm as it should
be, this work focuses on further strengthen-
ing the model itself for Chinese word seg-
mentation (CWS), which results in an even
more fast and more accurate CWS model. Our
model consists of an attention only stacked
encoder and a light enough decoder for the
greedy segmentation plus two highway con-
nections for smoother training, in which the
encoder is composed of a newly proposed
Transformer variant, Gaussian-masked Direc-
tional (GD) Transformer, and a biaffine atten-
tion scorer. With the effective encoder de-
sign, our model only needs to take unigram
features for scoring. Our model is evaluated
on SIGHAN Bakeoff benchmark datasets. The
experimental results show that with the high-
est segmentation speed, the proposed model
achieves new state-of-the-art or comparable
performance against strong baselines in terms
of strict closed test setting.

1 Introduction

Chinese word segmentation (CWS) is the task of
delimiting word boundaries in a sentence, as a ba-
sic and essential task for Chinese and many other
East Asian languages which are written without
explicit word delimiters, and thus different from
alphabetical languages like English.

Learning from an annotated corpus with segmen-
tation, the CWS task may be generally modeled
as a decoder which performs segmentation based
on a scoring module in terms of contextual feature
based representations. Table 1 summarizes typi-
cal CWS models according to their decoding ways.

∗∗Corresponding author. This paper was partially sup-
ported by National Key Research and Development Program
of China (No. 2017YFB0304100), Key Projects of Na-
tional Natural Science Foundation of China (U1836222 and
61733011), Huawei-SJTU long term AI project, Cutting-edge
Machine reading comprehension and language model.

Markov models such as (Ng and Low, 2004) and
(Zheng et al., 2013) depend on the maximum en-
tropy model or maximum entropy Markov model
both with Viterbi decoding. Besides, conditional
random field (CRF) or Semi-CRF for sequence la-
beling has been used for both traditional and neural
models though with different representations (Peng
et al., 2004; Andrew, 2006; Wang and Xu, 2017;
Ma et al., 2018).

Recent neural CWS research have been con-
cerned about the following three perspectives
(Emerson, 2005).

Decoder. As CWS is a kind of structure learn-
ing task, the decoder module generally determines
which type of detailed algorithm should be adopted
for segmentation, also it may limit the capability of
defining feature. As shown in Table 2, not all mod-
els can support the word-level features as CWS is a
task to predict word boundary. Thus recent works
focus on finding more general or flexible decoder
design to make model learn the representation of
segmentation more effective such as (Cai and Zhao,
2016; Cai et al., 2017).

Encoder. Practice in various natural language
processing tasks has shown that effective represen-
tation is essential to the performance improvement.
For such a module in neural models, it is more than
an encoder now, which is regarded as the most im-
provement perspective against traditional models.
Thus for better CWS, it is crucial to encode the
input character, word or sentence into a distinguish-
able representation. Table 2 summarizes regular
feature sets for typical CWS models including ours
as well. The building blocks that encoders use in-
clude recurrent neural network (RNN) and convolu-
tional neural network (CNN), and long short-term
memory (LSTM) network.

External resources and pre-trained embed-
ding. Using external resource such as pre-trained
embeddings or language representation provides
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Traditional Models Neural Models Decoding
Algorithm

Greedy
Model - Ours Greedy

Markov
Model

(Ng and Low, 2004),
(Low et al., 2005)

MMTNN: (Pei et al., 2014)
(Zheng et al., 2013),
LSTM: (Chen et al., 2015) Viterbi

Sequence
Labeling
Model

CRF: (Peng et al., 2004),
semi-CRF: (Andrew, 2006), (Sun et al., 2009)

CNN+CRF:(Wang and Xu, 2017),
BiLSTM+CRF:(Ma et al., 2018)

General
Graph
Model

(Zhang and Clark, 2007)
LSTM+GCNN: (Cai and Zhao, 2016),
LSTM+GCNN: (Cai et al., 2017)
(Wang et al., 2019a)

Beam
search

Table 1: The classification of Chinese word segmentation model.

Models Characters Words

character based
Ours c0, c1, . . . , ci, ci+1, . . . , cn -

(Zheng et al., 2013), . . . ci−2, ci−1, ci, ci+1, ci+2 -
(Chen et al., 2015) c0, c1, . . . , ci, ci+1, ci+2 -

word based (Zhang and Clark, 2007), . . . c in wj−1, wj , wj+1 wj−1, wj , wj+1

(Cai and Zhao, 2016; Cai et al., 2017) c0, c1, . . . , ci w0, w1, . . . , wj

Table 2: Feature windows of different models. i(j) is the index of current character(word).

an alternative for performance improvement other
than designing better models (Yang et al., 2017).
SIGHAN Bakeoff therefore defines two types of
evaluation settings, closed test limits all the data
for learning not to be beyond the given training set,
while open test does not take this limitation (Emer-
son, 2005). This work will focus on the closed test
setting by finding a better model design for further
CWS.

Generally speaking, both the major difference
between traditional and neural models, and what
mostly distinguishes the neural models are about
the way to represent input sentences, while the op-
tions of decoding algorithms are bounded to how to
formalize the CWS into a structural learning task.
As shown in Table 1, using Markov contextualized
features, Markov models and CRF-based models
are capable of using Viterbi decoders with polyno-
mial time complexity. Furthermore, to accommo-
date more rich features means that the model has
to take a deeper structural learning which also re-
quires more complex decoding algorithms (Zhang
and Clark, 2007; Cai and Zhao, 2016). However,
for such a case, deterministic decoding algorithms
may have an intractable complexity, thus it forces
the model to use an approximate beam search strat-
egy luckily with low-order polynomial time com-
plexity O(Mnb2), where b is beam width,n is the
sentence size, and M is a constant representing the
model complexity. When the beam width b=1, the
beam search will reduce to greedy algorithm with
a much better time complexity O(Mn).

To make the decoding practical, the beam width

b has to be carefully tuned for a tradeoff between
accuracy and efficiency: A larger b will make the
learning and segmentation extremely slow, while a
small b cannot sufficiently guarantee the segmenta-
tion performance. However, there has long been a
unheeded observation that good enough represen-
tations can offer good enough segmentation even
though only using a greedy segmentation algorithm.
(Sproat and Emerson, 2003) create a topline eval-
uation by using only using vocabulary from test
set to perform a greedy segmentation (maximum
matching), which yields around 99% F-scores on
all datasets. For neural models, (Cai et al., 2017)
verify that if the representations are good enough,
beam width 1 can still give state-of-the-art per-
formance compared to their early model with a
full beam search decoder in (Cai and Zhao, 2016).
Therefore, undertaking a fixed greedy segmenta-
tion algorithm, this paper only focuses on more
effective encoder design for even better representa-
tion.

Our model only consists of attention mecha-
nisms as building blocks plus two highway con-
nections via a virtual hidden layer for smooth train-
ing. Our model is simply stacked by a variant of
Transformer encoder (Vaswani et al., 2017) and
a biaffine attention scorer (Dozat and Manning,
2017). Empowered by the self-attention mecha-
nism, the Transformer has been good at capturing
long-range dependencies for input sentence. We
propose Gaussian-masked Directional (GD) multi-
head attention to facilitate the learning of localness,
position and directional information for CWS, so
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that we have the proposed GD-Transformer.
With our further improved encoder, our model

uses only simple unigram features to generate rep-
resentation of sentences for scoring. Our model
will be strictly evaluated on benchmark datasets
from SIGHAN Bakeoff shared task in terms of
closed test setting, and experimental results show
that our model achieves new state-of-the-art.

The technical contributions of this paper can be
summarized as follows.
• To especially enhance the representation of

localness information and directional information,
we propose a new Gaussian-masked Directional
Transformer encoder.
• Motivated from a simple design idea, we

present a new CWS model which is stacked with
only attention blocks.
•With a powerful enough encoder, for the first

time, we show that unigram (character) features
plus greedy segmentation algorithm can support
yielding strong performance instead of using di-
verse n-gram (character and word) features and
highly complex decoding algorithms.

2 Related Work

(Xue, 2003) first formalize CWS as a sequence
labeling task, considering CWS as a supervised
learning from annotated corpus with human seg-
mentation. (Peng et al., 2004) further adopt stan-
dard sequence labeling tool CRFs for CWS mod-
eling, achieving new state-of-the-art. (Zhao et al.,
2006b) show that different character tag sets can
make essential impact for segmentation perfor-
mance. (Zhao et al., 2006a) propose a CWS system
developed for Bakeoff-2006 based on CRF, which
is based on their proposed 6-tag set for character
position tagging and achieved state-of-the-art per-
formance at then. (Zhao and Kit, 2007) present
a novel Character tagging based CRF framework
which is capable of exploiting global information
for performance enhancement.

Neural word segmentation has been widely used
to minimize the efforts in feature engineering.
(Zheng et al., 2013) first introduce the neural model
into CWS with sliding-window based sequence la-
beling. (Chen et al., 2015) use LSTM to enhance
the learning of long distance information.

However, introducing neural models themselves
does not really introduce substantial performance
improvement in terms of strict closed test of
SIGHAN Bakeoff according to (Zhao et al., 2017).

Most researchers actually seek help from joint
learning, extra learning resources including dic-
tionaries, pre-trained embedding, deeper informa-
tion extracted from training set and so on. (1) For
joint learning, (Lyu et al., 2016) explore a joint
model that performs segmentation, POS-Tagging
and chunking simultaneously. (Zhang et al., 2017)
present a joint model to enhance the segmentation
of Chinese microtext by performing CWS and in-
formal word detection simultaneously. (2) For extra
resources or clues, (Wang et al., 2019b) propose to
incorporate unlabeled and partially-labeled data.

Only a few researches are known for concentrat-
ing on strengthening the model itself. To accom-
modate more rich features through a more broadly
structural modeling (Cai and Zhao, 2016) propose
a neural framework that eliminates context win-
dows and utilize complete segmentation history.
(Wang and Xu, 2017) propose a character-based
convolutional neural model to capture n-gram fea-
tures automatically and an effective approach to
incorporate word embeddings. (Cai et al., 2017)
further improve the model in (Cai and Zhao, 2016)
and show that a greedy segmenter can perform fast
and accurately in terms of only presenting effec-
tive representations. This work follows this line
of research by offering even strengthened model
design from simple idea, including the least build-
ing block type for encoder (attention only), the
least feature type for scoring (unigram only) and
the least computational complexity for decoding
(greedy segmentation).

The original Transformer encoder consists of a
stack of N identical layers and each layer has one
multi-head self-attention layer and one position-
wise fully connected feed-forward layer (Vaswani
et al., 2017). One residual connection is around
two sub-layers and followed by layer normaliza-
tion. Several variants are proposed to enhance abil-
ity of capturing the localness relationship. (Shaw
et al., 2018) propose an effcient way to incorpo-
rate relative and absolute position representation.
(Yang et al., 2018) cast localness modeling as a
learnable Gaussian bias to enhance the ability of
capturing useful local context. (Kim et al., 2020)
propose a Transformer with Gaussian-weighted
self-attention to improved speech-enhancement per-
formance. (Zhang et al., 2020b) propose using
syntax to guide the text modeling based on self-
attention network sponsored Transformer-based
encoder. Transformer based pre-trained language
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Figure 1: The architecture of our model.

models have become a standard performance en-
hancement means for various NLP tasks (Zhang
et al., 2020a).

3 Models

Our model for CWS task is composed of an en-
coder to represent the input and a decoder based on
the encoder to perform actual segmentation. Fig-
ure 1 is the architecture of our model. The model
feeds sentence into encoder. Embedding captures
the vector e of the input character sequences of c.
The encoder maps vector sequences of e to two
sequences of vector which are vb and vf as the
representation of sentences. With vb and vf , the bi-
affine scorer scores each segmentation gaps which
makes our decoder is as simple as one layer, using
a threshold to directly and greedily predict every
word boundaries of the input.

3.1 Gaussian-Masked Directional
Transformer

The standard Transformer encoder consists of a
stack of N identical layers and each has one multi-
head self-attention layer and one position-wise
fully connected feed-forward layer. One residual
connection is around two sub-layers and followed
by layer normalization (Vaswani et al., 2017).

The proposed Gaussian-masked Directional
(GD) Transformer encoder adopts two key archi-
tecture revisions over the standard Transformer. (1)

Our encoder includes three parallel directional en-
coding pipelines instead of only one bidirectional
encoder in the original Transformer. (2) By replac-
ing the standard multi-head self-attention with the
proposed Gaussian-masked Directional (GD) multi-
head self-attention which captures representations
from different directions, the resulted encoder may
gain better ability of capturing the localness infor-
mation and position information for the importance
of adjacent characters.

Encoder Stacks In CWS task, word boundary
forms a gap between two adjacent characters and di-
vides one sequence into two parts, one part in front
of the gap and one part in the rear of it. The for-
ward encoder and backward encoder are proposed
to capture information of two directions which cor-
respond to two parts divided by the gap. Assuming
that one unidirectional encoder can capture infor-
mation from one particular direction, we stack three
parallel encoding modules, forward, backward and
center encoders as shown in Figure 1.

The central encoder is to capture information
from both directions, which is with the same ar-
chitecture as the original Transformer. Standard
scaled dot-product attention matrix is calculated by
dotting query Q with all keys K. For the forward
encoder, we forcibly set all values inside the atten-
tion matrix representing the character pair relation
after the concerned character as 0 so that the en-
coder can focus on the forward characters. For the
backward encoder, we take the similar matrix value
setting operations.

The encoder respectively outputs one forward
and one backward representations for each posi-
tion, and then both are fused with the representation
given by the center encoder to form the updated for-
ward and backward representations, respectively.
vb = rb + rc, vf = rf + rc,

where vb and vf represent the backward and for-
ward representation, respectively, rb, rc and rf are
representations from backward encoder, center en-
coder and forward encoder, respectively.

Gaussian-Masked Directional Multi-Head At-
tention Similar as scaled dot-product attention
in the original Transformer (Vaswani et al., 2017),
our proposed Gaussian-masked directional atten-
tion can be described as a function to map queries
and key-value pairs to the representation of input.
Here queries, keys and values are all vectors. Stan-
dard scaled dot-product attention is calculated by



3866

dotting query Q with all keys K, dividing each
values by

√
dk, where

√
dk is the dimension of

keys, and apply a softmax function to generate the
weights in the attention:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Different from scaled dot-product attention,
Gaussian-masked directional attention expects to
pay attention to the adjacent characters of each po-
sitions and cast the localness relationship between
characters as a fix Gaussian weight for attention.
We assume that the Gaussian weight only relies on
the distance between characters.

Firstly we introduce the Gaussian weight matrix
G=(gij) which presents the localness relationship
between each two characters:

gij = Φ(disij) =

√
2

σ2π

∫ −disij
−∞

exp(− x2

2σ2
)dx

(2)
where gij is the Gaussian weight between charac-
ter i and j, disij is the distance between character
i and j, Φ(x) is the cumulative distribution func-
tion of Gaussian, σ is the standard deviation of
Gaussian function and it is a hyperparameter in
our method. Eq. (2) ensures the Gaussian weight
equals 1 when disij is 0. The larger distance be-
tween characteristics, the smaller the weight is,
which lets one character affect its neighbors more
than those non-neighbors.

To combine the Gaussian weight to the self-
attention, we produce the Hadamard product of
Gaussian weight matrix G and the score matrix
produced by QKT

AG(Q,K, V ) = softmax(
QKT ∗G√

dk
)V (3)

where AG as the Gaussian-masked attention en-
sures that adjacent characters have a stronger rela-
tionship than those non-neighbored ones.

The scaled dot-product attention models the re-
lationship between two characters without regard
to their distances in one sequence. For CWS task,
the weight between adjacent characters should be
more important while it is hard for self-attention
to achieve the effect explicitly because the self-
attention cannot get the order of sentences directly.
The Gaussian-masked attention adjusts the weight
between characters and their adjacent character to a

Linear Linear Linear

Scaled Dot-Product
Attention

Linear Linear Linear

Scaled Dot-Product
Attention

Linear Linear Linear

Gaussian-masked
Directional Attention

Concat

h

V K Q

Linear

Gaussian-masked Directional 
Multi-Head Attention

(a) The architecture of
Gaussian-masked directional
multi-head attention.

MatMul

SoftMax

Gaussian 
Mask

Directional
Mask (opt.)

Mask (opt.)

Scale

MatMul

Q K V

Gaussian-Masked
Directional Attention

(b) The Gaussian-masked di-
rectional attention.

Figure 2: Illustration of Gaussian-masked directional
multi-head attention.

larger value which stands for the effect of adjacent
characters.

For forward and backward encoder, the self-
attention sub-layer needs to use a triangular ma-
trix mask to let the self-attention focus on different
weights:

gfij =

{
gij , posj ≤ posi,
−∞, others.

gbij =

{
gij , posi ≤ posj ,
−∞, others.

(4)

where posi is the position of character ci. The
triangular matrix for forward and backward encode

are:


1 0 · · · 0
1 1 · · · 0
...

...
. . .

...
1 1 · · · 1




1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1


Similar as (Vaswani et al., 2017), we use multi-

head attention to capture information from differ-
ent dimension positions as Figure 2(a) and get
Gaussian-masked directional multi-head attention
GMH as follows,

GMH(Q,K, V ) = Concat(head1, ..., headh)Wm,

headi = AG(QW q
i ,KW

k
i , V W

v
i )

(5)
where W q

i ,W
k
i ,W

v
i ∈ Rdk×dh is the parameter

matrices to generate heads, Wm is a parameter ma-
trices of Rdk×dk to generate the attention, dk and
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dh are dimensions of model and one head, respec-
tively.

3.2 Biaffine Attention Scorer
Our model straightforwardly predicts gap between
two adjacent characters as word boundary or not.
In detail, we set a label value 1 to indicate word
boundary, and 0 means no word boundary. Such
a gap labeling task thus requires information of
the two adjacent characters. In the meantime, the
relationship between adjacent characters can be
represented as the gap label.

Biaffine attention scorer is used to label the gap
(Dozat and Manning, 2017; Li et al., 2018; Cai
et al., 2018; Zhou and Zhao, 2019; He et al., 2019).
The distribution of labels in a labeling task is of-
ten uneven. Biaffine attention uses bias terms to
alleviate the burden of the fixed bias term and get
the prior probability which makes it different from
bilinear attention. The distribution of the gap is
uneven that is similar as other labeling task, which
makes biaffine available for our task.

Biaffine attention scorer labels the target depend-
ing on information of independent unit and the
joint information of two units. In biaffine atten-
tion, the score sij of characters ci and cj (i < j) is
calculated by:

sij = BiaffinalScorer(vfi , v
b
j)

= (vfi )TWvbj + U(vfi ⊕ v
b
j) + b

(6)

where vfi and vbi represent respectively the forward
and backward information of cj , W , U and b are
all learnable parameters. W is a matrix with shape
(di ×N × dj) and U is a (N × (di + dj)) matrix
where di is the dimension of vector vfi and N is
the number of labels.

In our model, the biaffine scorer uses both the
forward and backward character information on
either side of the gap to distinguish the position
of characters. Figure 3 is an example of gap la-
beling. The bidirectional scoring ensures that the
boundaries of words can be determined by adjacent
characters with different directional information.
The score vector of the gap is formed by the prob-
ability of being a boundary of word. Further, the
model generates all boundaries using activation
function in a greedy decoding way.

3.3 Highway Connections via Hidden Layer
To smooth the training and fully exploit representa-
tions from hidden states, we additionally introduce

T

+ +

Forward BackwardBackward Forward

今天         是个好日子今天         是个好日子

Score Vector

Figure 3: An example of biaffine scorer labeling the
gap. The biaffine attention scorer only uses the forward
information of front character and the backward infor-
mation of character to label the gap.

two Highway connections (Srivastava et al., 2015)
via a virtual hidden layer which is called Hidden
Representations for Early Decoding (HiRED) in
the middle of the Transformer encoder. In our
model design, we always put the HiRED layer in
the central position among all layers of the encoder,
thus the HiRED layer divides each directional en-
coder (forward, backward or center) pipelines into
two parts (front and rear) as shown in Figure 1.

For the highway connection specifications, the
first connection (called Highway-I) respectively
feeds the input embedding to the rear pipelines of
the three directional encoders by adding into the
embeddings from HiRED layer. Suppose that three
front directional encoders respectively give encod-
ing output, rf ′, rc′ and rb′. Then the corresponding
three rear directional encoders will receive input
as e+ rf

′, e+ rc′ and e+ rb
′. To feed the second

connection (called Highway-O), we perform the
same summing as the main encoder output,
vb
′ = rb′ + rc′, vf ′ = rf ′ + rc′,

then let vf ′ and vb′ as the HiRED output go through
another same biaffine scorer and a decoder as that
of the main encoder. The two decoder layers to-
gether give a sum loss for the entire model.

Biaffine attentin scorer makes it possible to gen-
erate a segmentation by using output of HiRED
with little cost during training. With this segmen-
tation, we add representation of characters which
belong to the same word together and get a new
vector, which plays a similar role as a word em-
bedding. This vector will be fed to encoder layer
behind HiRED directly. The operations in HiRED
layer can also be viewed as one attention. It makes
the model focus on adjacent characters which may
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be likely in one word.

3.4 Training Objective
The training target of our model is to let the biaffine
attention scorer approach the the gold score vector
according to the gold segmentation. We adopt cross
entropy (CE) loss for training,

qji = −sji,i+1 + log(exp(s0i,i+1) + exp(s1i,i+1)),

CE =
1

l

l∑
i=1

(q1i p+ q0i (1− p))

where qji is the log-probability of the i-th gap la-
beled as j∈{1,0}. Here 1 indicates word boundary
and 0 means not. sji,i+1 is the biaffine score of i-th
gap labeled as j. p is the ground-truth probability
which can only be 0 or 1. l is the number of gaps
in one input sentence.

PKU MSR
Sentences 19,056 86,924
Max length (Character) 1019 581
Max length (Word) 659 338
Word Types 55,303 88,119
Words 1,109,947 2,368,391
Character Types 4,698 5,167
Characters 1,826,448 4,050,469

AS CITYU
Sentences 708,953 53,019
Max length (Character) 188 350
Max length (Word) 211 85
Word Types 141,340 69,085
Words 5,449,698 1,455,629
Character Types 6,117 4,923
Characters 8,368,050 2,403,355

Table 3: Statistics of SIGHAN Bakeoff 2005 datasets.

Parameters
dimension of hidden vector 256
number of layer 6
dimension of FF 1024
dropout 0.1
warmup 8000
number of head 4
batch size 4096

Table 4: Hyperparameters.

4 Experiments

4.1 Experimental Settings
Data Our models are trained and evaluated on
benchmark datasets from SIGHAN Bakeoff 2005
(Emerson, 2005) which has four datasets, PKU,
MSR, AS and CITYU. Table 3 shows the statis-
tics of train data. F-score is to evaluate the perfor-
mance.

Embedding Initialization Our model only
adopts unigram features, so we only train character
embeddings. On closed test, we use embeddings
initialized randomly. On open test, our character
embeddings are pre-trained on Chinese Wikipedia
corpus by word2vec (Mikolov et al., 2013) toolkit.
The corpus for pre-training is converted to simpli-
fied Chinese1 and trivially segmented into charac-
ters.

Hyperparameters Our hyperparameter settings
are in Table 4. All the settings are tuned on de-
velopment sets2. We set the standard deviation of
Gaussian function in Eq. (2) to 2. Each training
batch contains sentences with at most 4096 tokens.

Optimizer To train our model, we use the Adam
(Kingma and Ba, 2015) optimizer with β1 = 0.9,
β2 = 0.98 and ε = 10−9. The learning rate sched-
ule is the same as (Vaswani et al., 2017):
lr = d−0.5 · min(step−0.5, step · warmup−1.5step )

where d is the dimension of embeddings, step is
the step number of training and warmupstep is the
step number of warmup. When the number of step
is smaller than the step of warmup, the learning
rate increases linearly and then decreases.

Hardware and Implements Our models are
trained on a single CPU (Intel i7-5960X) and an
nVidia 1080 Ti GPU, in terms of an implementation
using Pytorch 1.03.

4.2 Results

Tables 5 compares recent models and ours in terms
of closed test setting, showing that our model
achieves new state-of-the-art and outperforms all
the other models in MSR and AS. In the meantime,
our model can achieve state-of-the-art efficiency.

Our models are also compared to the latest neu-
ral models in terms of open test setting in which
any external resources, especially pre-trained em-
beddings or language models are allowedly used.
Table 6 shows that our models get comparable re-
sults in AS and MSR though unremarkable ones in
CITYU and PKU.

However, it is well known that comparing mod-
els accurately is hard for open test setting. Though

1OpenCC is used to transfer data from tradi-
tional Chinese to simplified Chinese, available at
https://github.com/BYVoid/OpenCC.

2Following conventions, the last 10% sentences of training
corpus are used as development set.

3Code is available at: https://github.com/
akibcmi/SAMS

https://github.com/akibcmi/SAMS
https://github.com/akibcmi/SAMS


3869

Models
PKU MSR AS CITYU

F1
Tr.

(hours)
Test

(sec.) F1
Tr.

(hours)
Test

(sec.) F1
Tr.

(hours)
Test

(sec.) F1
Tr.

(hours)
Test

(sec.)
(Chen et al., 2015) 95.7 58 105 96.4 117 120 - - - - - -
(Cai and Zhao, 2016) 95.2 48 95 96.4 96 105 - - - - - -
(Cai et al., 2017) 95.4 3 25 97.0 6 30 95.2 - - 95.4 - -
(Zhou et al., 2017) 95.0 - - 97.2 - - - - - - - -
(Ma et al., 2018) 95.4 - - 97.5 - - 95.5 - - 95.7 - -
(Wang et al., 2019a) 95.7 - - 97.4 - - 95.6 - - 95.9 - -
Our results 95.5 33 4 97.6 15 4 95.7 67 10 95.4 17 1.5

Table 5: Results on SIGHAN Bakeoff datasets in closed test. - indicates there is no reported result in the corre-
sponding paper. (Tr.: Training).

external strengths like pre-trained embeddings or
models can indeed improve the performance, it is
difficult to determine which factor exactly makes
such a contribution, the model itself, the resource
or the better using of the resource. In terms of
closed test setting, that is also the reason why this
work keeps focusing on improvement of the model
design itself.

PKU MSR AS CITYU
(Cai et al., 2017) 95.8 97.1 95.3 95.6
(Chen et al., 2017) 94.3 96.0 94.6 95.6
(Wang and Xu, 2017) 95.7 97.3 - -
(Zhou et al., 2017) 96.0 97.8 - -
(Ma et al., 2018) 96.1 98.1 96.2 97.2
(Wang et al., 2019a) 96.1 97.5 - -
(Huang et al., 2019) 96.6 97.9 96.6 97.6
Our Method 95.5 97.7 95.7 96.4

Table 6: F1 scores in open test.

Compared with other LSTM models, our model
performs better in AS and MSR than in CITYU and
PKU. We attribute the performance difference to
the impact of dataset sizes. Namely, the larger size
is, the better model performs. For small corpus, the
model tends to be overfitting.

Table 5 also shows the decoding time in different
datasets. Our model finishes the segmentation with
the least decoding time in all four datasets, thanks
to the architecture of model which only takes at-
tention mechanism as basic block, only adopts uni-
gram features and a greedy decoding strategy from
the very beginning.

4.3 Ablation Studies
This subsection presents ablation studies on MSR
and PKU datasets to verify the benefits of each
individual component in our model4.

4Following (Cai et al., 2017), we show the results on the
respective test set for either dataset, as SIGHAN Bakeoff did
not provide official development sets.

Gaussian-masked Directional Transformer.
Table 7 gives the result of model with different
Gaussian-masked directional self-attention. The
third column and the fifth column are the difference
of performance between GD-Transformer and
other models. The results show that our full
model GD-Transformer significantly outperforms
the original Transformer by a large performance
margin. Removing either Gaussian mask or
directional mask will put negative impact over the
performance of our model, which shows that both
masks are indispensably necessary for our model
performance.

PKU MSR
GD-Transformer 95.4 97.6
-Gaussian mask 94.6 -0.8 97.1 -0.5
-Directional mask 95.1 -0.3 97.4 -0.2
Transformer 94.1 -1.3 96.5 -1.1

Table 7: F1 scores on models removing different com-
ponents from GD-Transformer.

Highway Connections. Table 8 gives the results
of our model respectively removing the highway
connections and the related HiRED layer part,
which shows that each highway takes its contri-
bution to the overall performance. However, the
comparison shows that introducing all the compo-
nents makes our model training much faster.

Directional Encoder. Table 9 gives the results
of our models respectively removing the forward,
center and backward encoders, which impacts per-
formance of our model and shows that directional
encoder and undirectional encoders are all indis-
pensable for our model. The third column and the
fifth column are the difference of performance be-
tween our full model and our models removing one
encoder.
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Models PKU MSR

F1
Training
(hours)

F1
Training
(hours)

Our full model 95.5 33 97.6 15
-Highway-I 95.2 60 97.5 96
-Highway-O 95.3 45 97.4 102
-both highways 95.1 80 97.5 105

Table 8: F1 scores and training time on models related
to highway connections and HiRED layer.

PKU MSR
Our full model 95.5 97.6
-Forward encoder 95.3 -0.2 97.4 -0.1
-Center encoder 95.3 -0.2 97.5 -0.1
-Backward encoder 95.4 -0.1 97.5 -0.2

Table 9: F1 scores of results on model removing differ-
ent encoder from model.

5 Conclusion

For Chinese word segmentation, upholding the be-
lief that a better representation is all we need and
thus taking a greedy decoder for fast segmentation
as the basis, we only focus on the encoder design
and propose an attention mechanism only based
CWS model. Our model uses the proposed GD-
Transformer encoder to take sequence input and
biaffine attention scorer to directly predict the word
boundaries. To improve the ability of capturing the
localness and directional information, Gaussian-
masked directional multi-head attention in the GD-
Transformer replaces the standard self-attention in
the original Transformer. With powerful enough
encoding ability, our model only needs unigram fea-
tures for scoring instead of various n-gram features
in previous work. Our model is evaluated on stan-
dard benchmark SIGHAN Bakeoff datasets, which
shows not only our model performs segmentation
faster than any previous models but also gives new
higher or comparable segmentation performance
against previous state-of-the-art models.
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