
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 3848–3861,
November 16–20, 2020. c©2020 Association for Computational Linguistics

3848

DagoBERT: Generating Derivational Morphology
with a Pretrained Language Model

Valentin Hofmann*‡, Janet B. Pierrehumbert†*, Hinrich Schütze‡

*Faculty of Linguistics, University of Oxford
†Department of Engineering Science, University of Oxford

‡Center for Information and Language Processing, LMU Munich
valentin.hofmann@ling-phil.ox.ac.uk

Abstract

Can pretrained language models (PLMs) gen-
erate derivationally complex words? We
present the first study investigating this ques-
tion, taking BERT as the example PLM. We ex-
amine BERT’s derivational capabilities in dif-
ferent settings, ranging from using the unmod-
ified pretrained model to full finetuning. Our
best model, DagoBERT (Derivationally and
generatively optimized BERT), clearly outper-
forms the previous state of the art in deriva-
tion generation (DG). Furthermore, our exper-
iments show that the input segmentation cru-
cially impacts BERT’s derivational knowledge,
suggesting that the performance of PLMs
could be further improved if a morphologically
informed vocabulary of units were used.

1 Introduction

What kind of linguistic knowledge is encoded by
pretrained language models (PLMs) such as ELMo
(Peters et al., 2018), GPT-2 (Radford et al., 2019),
and BERT (Devlin et al., 2019)? This question has
attracted a lot of attention in NLP recently, with a
focus on syntax (e.g., Goldberg, 2019) and seman-
tics (e.g., Ethayarajh, 2019). It is much less clear
what PLMs learn about other aspects of language.
Here, we present the first study on the knowledge of
PLMs about derivational morphology, taking BERT
as the example PLM. Given an English cloze sen-
tence such as this jacket is . and
a base such as wear, we ask: can BERT generate
correct derivatives such as unwearable?

The motivation for this study is twofold. On the
one hand, we add to the growing body of work on
the linguistic capabilities of PLMs. Most PLMs
segment words into subword units (Bostrom and
Durrett, 2020), e.g., unwearable is segmented
into un, ##wear, ##able by BERT’s WordPiece
tokenizer (Wu et al., 2016). The fact that many of

B
E

R
T

D
C

L

this jacket is [MASK] wear [MASK] .

un ##able

Figure 1: Basic experimental setup. We input sen-
tences such as this jacket is unwearable .
to BERT, mask out derivational affixes, and recover
them using a derivational classification layer (DCL).

Type Examples

Prefixes
anti, auto, contra, extra, hyper, mega,
mini, multi, non, proto, pseudo

Suffixes
##able, ##an, ##ate, ##ee, ##ess, ##ful,
##ify, ##ize, ##ment, ##ness, ##ster

Table 1: Examples of derivational affixes in the BERT
WordPiece vocabulary. Word-internal WordPiece to-
kens are marked with ## throughout the paper.

these subword units are derivational affixes sug-
gests that PLMs might acquire knowledge about
derivational morphology (Table 1), but this has not
been tested. On the other hand, we are interested in
derivation generation (DG) per se, a task that has
been only addressed using LSTMs (Cotterell et al.,
2017; Vylomova et al., 2017; Deutsch et al., 2018),
not models based on Transformers like BERT.

Contributions. We develop the first frame-
work for generating derivationally complex English
words with a PLM, specifically BERT, and ana-
lyze BERT’s performance in different settings. Our
best model, DagoBERT (Derivationally and gener-
atively optimized BERT), clearly outperforms an
LSTM-based model, the previous state of the art.

3849

We find that DagoBERT’s errors are mainly due
to syntactic and semantic overlap between affixes.
Furthermore, we show that the input segmentation
impacts how much derivational knowledge is avail-
able to BERT, both during training and inference.
This suggests that the performance of PLMs could
be further improved if a morphologically informed
vocabulary of units were used. We also publish the
largest dataset of derivatives in context to date.1

2 Derivational Morphology

Linguistics divides morphology into inflection
and derivation. Given a lexeme such as wear,
while inflection produces word forms such as
wears, derivation produces new lexemes such as
unwearable. There are several differences be-
tween inflection and derivation (Haspelmath and
Sims, 2010), two of which are particularly impor-
tant for the task of DG.2

First, derivation covers a much larger spectrum
of meanings than inflection (Acquaviva, 2016), and
it is not possible to predict in general with which
of them a particular lexeme is compatible. This
is different from inflectional paradigms, where it
is automatically clear whether a certain form will
exist (Bauer, 2019). Second, the relationship be-
tween form and meaning is more varied in deriva-
tion than inflection. On the one hand, derivational
affixes tend to be highly polysemous, i.e., indi-
vidual affixes can represent a number of related
meanings (Lieber, 2019). On the other hand, sev-
eral affixes can represent the same meaning, e.g.,
ity and ness. While such competing affixes are
often not completely synonymous as in the case
of hyperactivity and hyperactiveness,
there are examples like purity and pureness
or exclusivity and exclusiveness where
a semantic distinction is more difficult to gauge
(Bauer et al., 2013; Plag and Balling, 2020). These
differences make learning functions from meaning
to form harder for derivation than inflection.

Derivational affixes differ in how productive they
are, i.e., how readily they can be used to create new
lexemes (Plag, 1999). While the suffix ness, e.g.,
can attach to practically all English adjectives, the
suffix th is much more limited in its scope of ap-
plicability. In this paper, we focus on productive

1We make our code and data publicly available at https:
//github.com/valentinhofmann/dagobert.

2It is important to note that the distinction between inflec-
tion and derivation is fuzzy (ten Hacken, 2014).

affixes such as ness and exclude unproductive af-
fixes such as th. Morphological productivity has
been the subject of much work in psycholinguistics
since it reveals implicit cognitive generalizations
(see Dal and Namer (2016) for a review), making
it an interesting phenomenon to explore in PLMs.
Furthermore, in the context of NLP applications
such as sentiment analysis, productively formed
derivatives are challenging because they tend to
have very low frequencies and often only occur
once (i.e., they are hapaxes) or a few times in large
corpora (Mahler et al., 2017). Our focus on pro-
ductive derivational morphology has crucial conse-
quences for dataset design (Section 3) and model
evaluation (Section 4) in the context of DG.

3 Dataset of Derivatives

We base our study on a new dataset of derivatives
in context similar in form to the one released by
Vylomova et al. (2017), i.e., it is based on sen-
tences with a derivative (e.g., this jacket is
unwearable .) that are altered by masking the
derivative (this jacket is .). Each
item in the dataset consists of (i) the altered sen-
tence, (ii) the derivative (unwearable) and (iii)
the base (wear). The task is to generate the cor-
rect derivative given the altered sentence and the
base. We use sentential contexts rather than tags
to represent derivational meanings because they
better reflect the semantic variability inherent in
derivational morphology (Section 2). While Vylo-
mova et al. (2017) use Wikipedia, we extract the
dataset from Reddit.3 Since productively formed
derivatives are not part of the language norm ini-
tially (Bauer, 2001), social media is a particularly
fertile ground for our study.

For determining derivatives, we use the algo-
rithm introduced by Hofmann et al. (2020a), which
takes as input a set of prefixes, suffixes, and bases
and checks for each word in the data whether
it can be derived from a base using a combina-
tion of prefixes and suffixes. The algorithm is
sensitive to morpho-orthographic rules of English
(Plag, 2003), e.g., when ity is removed from
applicability, the result is applicable,
not applicabil. Here, we use BERT’s prefixes,
suffixes, and bases as input to the algorithm. Draw-
ing upon a comprehensive list of 52 productive pre-

3We draw upon the entire Baumgartner Reddit Corpus,
a collection of all public Reddit posts available at https:
//files.pushshift.io/reddit/comments/.

https://github.com/valentinhofmann/dagobert
https://github.com/valentinhofmann/dagobert
https://files.pushshift.io/reddit/comments/
https://files.pushshift.io/reddit/comments/

3850

P S PS

Bin µf nd ns Examples nd ns Examples nd ns Examples

B1 .041 60,236 60,236 antijonny 39,543 39,543 takeoverness 20,804 20,804 unaggregateable
B2 .094 39,181 90,857 antiastronaut 22,633 52,060 alaskaness 8,661 19,903 unnicknameable
B3 .203 26,967 135,509 antiyale 14,463 71,814 blockbusterness 4,735 23,560 unbroadcastable
B4 .423 18,697 196,295 antihomework 9,753 100,729 abnormalness 2,890 29,989 unbrewable
B5 .868 13,401 287,788 antiboxing 6,830 145,005 legalness 1,848 39,501 ungooglable
B6 1.750 9,471 410,410 antiborder 4,934 211,233 tragicness 1,172 50,393 uncopyrightable
B7 3.515 6,611 573,442 antimafia 3,580 310,109 lightweightness 802 69,004 unwashable

Table 2: Data summary statistics. The table shows statistics of the data used in the study by frequency bin and affix
type. We also provide example derivatives with anti (P), ness (S), and un##able (PS) for the different bins.
µf : mean frequency per billion words; nd: number of distinct derivatives; ns: number of context sentences.

fixes and 49 productive suffixes in English (Crystal,
1997), we find that 48 and 44 of them are contained
in BERT’s vocabulary. We assign all fully alpha-
betic words with more than 3 characters in BERT’s
vocabulary except for stopwords and previously
identified affixes to the set of bases, yielding a total
of 20,259 bases. We then extract every sentence
including a word that is derivable from one of the
bases using at least one of the prefixes or suffixes
from all publicly available Reddit posts.

The sentences are filtered to contain between 10
and 100 words, i.e., they provide more contextual
information than the example sentence above.4 See
Appendix A.1 for details about data preprocessing.
The resulting dataset comprises 413,271 distinct
derivatives in 123,809,485 context sentences, mak-
ing it more than two orders of magnitude larger
than the one released by Vylomova et al. (2017).5

To get a sense of segmentation errors in the dataset,
we randomly pick 100 derivatives for each affix
and manually count missegmentations. We find
that the average precision of segmentations in the
sample is .960±.074, with higher values for pre-
fixes (.990±.027) than suffixes (.930±.093).

For this study, we extract all derivatives with
a frequency f ∈ [1, 128) from the dataset. We
divide the derivatives into 7 frequency bins with
f = 1 (B1), f ∈ [2, 4) (B2), f ∈ [4, 8) (B3),
f ∈ [8, 16) (B4), f ∈ [16, 32) (B5), f ∈ [32, 64)
(B6), and f ∈ [64, 128) (B7). Notice that we focus
on low-frequency derivatives since we are inter-
ested in productive derivational morphology (Sec-
tion 2). In addition, BERT is likely to have seen
high-frequency derivatives multiple times during

4We also extract the preceding and following sentence
for future studies on long-range dependencies in derivation.
However, we do not exploit them in this work.

5Due to the large number of prefixes, suffixes, and bases,
the dataset can be valuable for any study on derivational mor-
phology, irrespective of whether or not it focuses on DG.

pretraining and might be able to predict the affix be-
cause it has memorized the connection between the
base and the affix, not because it has knowledge of
derivational morphology. BERT’s pretraining cor-
pus has 3.3 billion words, i.e., words in the lower
frequency bins are very unlikely to have been seen
by BERT before. This observation also holds for
average speakers of English, who have been shown
to encounter at most a few billion word tokens in
their lifetime (Brysbaert et al., 2016).

Regarding the number of affixes, we confine our-
selves to three cases: derivatives with one prefix
(P), derivatives with one suffix (S), and derivatives
with one prefix and one suffix (PS).6 We treat these
cases separately because they are known to have
different linguistic properties. In particular, since
suffixes in English can change the POS of a lexeme,
the syntactic context is more affected by suffixa-
tion than by prefixation. Table 2 provides summary
statistics for the seven frequency bins as well as
example derivatives for P, S, and PS. For each bin,
we randomly split the data into 60% training, 20%
development, and 20% test. Following Vylomova
et al. (2017), we distinguish the lexicon settings
SPLIT (no overlap between bases in train, dev, and
test) and SHARED (no constraint on overlap).

4 Experiments

4.1 Setup
To examine whether BERT can generate derivation-
ally complex words, we use a cloze test: given
a sentence with a masked word such as this
jacket is . and a base such as wear,
the task is to generate the correct derivative such
as unwearable. The cloze setup has been pre-
viously used in psycholinguistics to probe deriva-
tional morphology (Pierrehumbert, 2006; Apel and

6We denote affix bundles, i.e., combinations of prefix and
suffix, by juxtaposition, e.g., un##able.

3851

Lawrence, 2011) and was introduced to NLP in this
context by Vylomova et al. (2017).

In this work, we frame DG as an affix classi-
fication task, i.e., we predict which affix is most
likely to occur with a given base in a given context
sentence.7 More formally, given a base b and a
context sentence x split into left and right contexts
x(l) = (x1, . . . , xd−1) and x(r) = (xd+1, . . . , xn),
with xd being the masked derivative, we want to
find the affix â such that

â = argmax
a

P
(
ψ(b, a)|x(l),x(r)

)
, (1)

where ψ is a function mapping bases and affixes
onto derivatives, e.g., ψ(wear,un##able) =
unwearable. Notice we do not model the func-
tion ψ itself, i.e., we only predict derivational
categories, not the morpho-orthographic changes
that accompany their realization in writing. One
reason for this is that as opposed to previous
work, our study focuses on low-frequency deriva-
tives, for many of which ψ is not right-unique,
e.g., ungoogleable and ungooglable or
celebrityness and celebritiness occur
as competing forms in the data.

As a result of the semantically diverse nature of
derivation (Section 2), deciding whether a particu-
lar prediction â is correct or not is less straightfor-
ward than it may seem. Taking again the example
sentence this jacket is . with the
masked derivative unwearable, compare the fol-
lowing five predictions:

– ψ(b, â) = wearity: ill-formed;

– ψ(b, â) = wearer: well-formed, syntacti-
cally incorrect (wrong POS);

– ψ(b, â) = intrawearable: well-formed,
syntactically correct, semantically dubious;

– ψ(b, â) = superwearable: well-formed,
syntactically correct, semantically possible, but
did not occur in the example sentence;

– ψ(b, â) = unwearable: well-formed, syn-
tactically correct, semantically possible, and
did occur in the example sentence.

These predictions reflect increasing degrees of
derivational knowledge. A priori, where to draw
the line between correct and incorrect predictions

7In the case of PS, we predict which affix bundle (e.g.,
un##able) is most likely to occur.

Method B1 B2 B3 B4 B5 B6 B7 µ± σ

HYP .197 .228 .252 .278 .300 .315 .337 .272±.046
INIT .184 .201 .211 .227 .241 .253 .264 .226±.027
TOK .141 .157 .170 .193 .218 .245 .270 .199±.044
PROJ .159 .166 .159 .175 .175 .184 .179 .171±.009

Table 3: Performance (MRR) of pretrained BERT for
prefix prediction with different segmentations. Best
score per column in gray, second-best in light-gray.

on this continuum is not clear, especially with re-
spect to the last two cases. Here, we apply the most
conservative criterion: a prediction â is only judged
correct if ψ(b, â) = xd, i.e., if â is the affix in the
masked derivative. Thus, we ignore affixes that
might potentially produce equally possible deriva-
tives such as superwearable.

We use mean reciprocal rank (MRR), macro-
averaged over affixes, as the evaluation measure
(Radev et al., 2002). We calculate the MRR value
of an individual affix a as

MRRa =
1

|Da|
∑
i∈Da

R−1i , (2)

where Da is the set of derivatives containing a, and
Ri is the predicted rank of a for derivative i. We
set R−1i = 0 if Ri > 10. Denoting with A the set
of all affixes, the final MRR value is given by

MRR =
1

|A|
∑
a∈A

MRRa . (3)

4.2 Segmentation Methods
Since BERT distinguishes word-initial (wear)
from word-internal (##wear) tokens, predicting
prefixes requires the word-internal form of the base.
However, only 795 bases in BERT’s vocabulary
have a word-internal form. Take as an example
the word unallowed: both un and allowed
are in the BERT vocabulary, but we need the token
##allowed, which does not exist (BERT tok-
enizes the word into una, ##llo, ##wed). To
overcome this problem, we test the following four
segmentation methods:

HYP. We insert a hyphen between the prefix and
the base in its word-initial form, yielding the tokens
un, -, allowed in our example. Since both prefix
and base are guaranteed to be in the BERT vocab-
ulary (Section 3), and since there are no tokens
starting with a hyphen in the BERT vocabulary,
BERT always tokenizes words of the form prefix-
hyphen-base into prefix, hyphen, and base, making
this a natural segmentation for BERT.

3852

SHARED SPLIT

Model B1 B2 B3 B4 B5 B6 B7 µ± σ B1 B2 B3 B4 B5 B6 B7 µ± σ

DagoBERT .373 .459 .657 .824 .895 .934 .957 .728±.219 .375 .386 .390 .411 .412 .396 .417 .398±.014
BERT+ .296 .380 .497 .623 .762 .838 .902 .614±.215 .303 .313 .325 .340 .341 .353 .354 .333±.018
BERT .197 .228 .252 .278 .300 .315 .337 .272±.046 .199 .227 .242 .279 .305 .307 .351 .273±.049
LSTM .152 .331 .576 .717 .818 .862 .907 .623±.266 .139 .153 .142 .127 .121 .123 .115 .131±.013
RB .064 .067 .064 .067 .065 .063 .066 .065±.001 .068 .064 .062 .064 .062 .064 .064 .064±.002

Table 4: Performance (MRR) of prefix (P) models. Best score per column in gray, second-best in light-gray.

SHARED SPLIT

Model B1 B2 B3 B4 B5 B6 B7 µ± σ B1 B2 B3 B4 B5 B6 B7 µ± σ

DagoBERT .427 .525 .725 .868 .933 .964 .975 .774±.205 .424 .435 .437 .425 .421 .393 .414 .421±.014
BERT+ .384 .445 .550 .684 .807 .878 .921 .667±.197 .378 .387 .389 .380 .364 .364 .342 .372±.015
BERT .229 .246 .262 .301 .324 .349 .381 .299±.052 .221 .246 .268 .299 .316 .325 .347 .289±.042
LSTM .217 .416 .669 .812 .881 .923 .945 .695±.259 .188 .186 .173 .154 .147 .145 .140 .162±.019
RB .071 .073 .069 .068 .068 .068 .068 .069±.002 .070 .069 .069 .071 .070 .069 .068 .069±.001

Table 5: Performance (MRR) of suffix (S) models. Best score per column in gray, second-best in light-gray.

SHARED SPLIT

Model B1 B2 B3 B4 B5 B6 B7 µ± σ B1 B2 B3 B4 B5 B6 B7 µ± σ

DagoBERT .143 .355 .621 .830 .914 .940 .971 .682±.299 .137 .181 .199 .234 .217 .270 .334 .225±.059
BERT+ .103 .205 .394 .611 .754 .851 .918 .548±.296 .091 .128 .145 .182 .173 .210 .218 .164±.042
BERT .082 .112 .114 .127 .145 .155 .190 .132±.032 .076 .114 .130 .177 .172 .226 .297 .170±.069
LSTM .020 .338 .647 .781 .839 .882 .936 .635±.312 .015 .019 .026 .034 .041 .072 .081 .041±.024
RB .002 .003 .003 .005 .006 .008 .012 .006±.003 .002 .004 .003 .006 .006 .007 .009 .005±.002

Table 6: Performance (MRR) of prefix-suffix (PS) models. Best score per column in gray, second-best in light-gray.

INIT. We simply use the word-initial instead
of the word-internal form, segmenting the deriva-
tive into the prefix followed by the base, i.e.,
un, allowed in our example. Notice that this
looks like two individual words to BERT since
allowed is a word-initial unit.

TOK. To overcome the problem of INIT, we seg-
ment the base into word-internal tokens, i.e., our
example is segmented into un, ##all, ##owed.
This means that we use the word-internal counter-
part of the base in cases where it exists.

PROJ. We train a projection matrix that maps
embeddings of word-initial forms of bases to word-
internal embeddings. More specifically, we fit a
matrix T̂ ∈ Rm×m (m being the embedding size)
via least squares,

T̂ = argmin
T

||ET−E##||22, (4)

where E,E## ∈ Rn×m are the word-initial and
word-internal token input embeddings of bases
with both forms. We then map bases with no word-
internal form and a word-initial input token em-
bedding e such as allow onto the projected word-
internal embedding e>T̂.

Model SHARED SPLIT

DagoBERT .943 .615
LSTM .824 .511
LSTM (V) .830 .520

Table 7: Performance on Vylomova et al. (2017)
dataset. We report accuracies for comparability. LSTM
(V): LSTM in Vylomova et al. (2017). Best score per
column in gray, second-best in light-gray.

We evaluate the four segmentation methods
on the SHARED test data for P with pretrained
BERTBASE, using its pretrained language modeling
head for prediction and filtering for prefixes. The
HYP segmentation method performs best (Table 3)
and is adopted for BERT models on P and PS.

4.3 Models

All BERT models use BERTBASE and add a deriva-
tional classification layer (DCL) with softmax acti-
vation for prediction (Figure 1). We examine three
BERT models and two baselines. See Appendix
A.2 for details about implementation, hyperparam-
eter tuning, and runtime.

DagoBERT. We finetune both BERT and DCL
on DG, a model that we call DagoBERT (short for

3853

Type Clusters

Prefixes
{bi, demi, fore, mini, proto, pseudo, semi, sub, tri}, {arch, extra, hyper, mega, poly, super, ultra},
{anti, contra, counter, neo, pro}, {mal, mis, over, under}, {inter, intra},
{auto, de, di, in, re, sur, un}, {ex, vice}, {non, post, pre}

Suffixes
{##al, ##an, ##ial, ##ian, ##ic, ##ite}, {##en, ##ful, ##ive, ##ly, ##y}, {##able, ##ish, ##less},
{##age, ##ance, ##ation, ##dom, ##ery, ##ess, ##hood, ##ism, ##ity, ##ment, ##ness},
{##ant, ##ee, ##eer, ##er, ##ette, ##ist, ##ous, ##ster}, {##ate, ##ify, ##ize}

Table 8: Prefix and suffix clusterings produced by Girvan-Newman after 4 graph splits on the DagoBERT confusion
matrix. For reasons of space, we do not list clusters consisting of only one affix.

Derivationally and generatively optimized BERT).
Notice that since BERT cannot capture statistical
dependencies between masked tokens (Yang et al.,
2019), all BERT-based models predict prefixes and
suffixes independently in the case of PS.

BERT+. We keep the model weights of pre-
trained BERT fixed and only train DCL on DG.
This is similar in nature to a probing task.

BERT. We use pretrained BERT and leverage its
pretrained language modeling head as DCL, filter-
ing for affixes, e.g., we compute the softmax only
over prefixes in the case of P.

LSTM. We adapt the approach described in Vy-
lomova et al. (2017), which combines the left and
right contexts x(l) and x(r) of the masked deriva-
tive by means of two BiLSTMs with a character-
level representation of the base. To allow for a
direct comparison with BERT, we do not use the
character-based decoder proposed by Vylomova
et al. (2017) but instead add a dense layer for the
prediction. For PS, we treat prefix-suffix bundles
as units (e.g., un##able).

In order to provide a strict comparison to Vy-
lomova et al. (2017), we also evaluate our LSTM
and best BERT-based model on the suffix dataset
released by Vylomova et al. (2017) against the
reported performance of their encoder-decoder
model.8 Notice Vylomova et al. (2017) show that
providing the LSTM with the POS of the deriva-
tive increases performance. Here, we focus on the
more general case where the POS is not known and
hence do not consider this setting.

Random Baseline (RB). The prediction is a ran-
dom ranking of all affixes.

8The dataset is available at https://github.com/
ivri/dmorph. While Vylomova et al. (2017) take morpho-
orthographic changes into account, we only predict affixes,
not the accompanying changes in orthography (Section 4.1).

5 Results

5.1 Overall Performance

Results are shown in Tables 4, 5, and 6. For P and
S, DagoBERT clearly performs best. Pretrained
BERT is better than LSTM on SPLIT but worse
on SHARED. BERT+ performs better than pre-
trained BERT, even on SPLIT (except for S on
B7). S has higher scores than P for all models
and frequency bins, which might be due to the fact
that suffixes carry POS information and hence are
easier to predict given the syntactic context. Re-
garding frequency effects, the models benefit from
higher frequencies on SHARED since they can con-
nect bases with certain groups of affixes.9 For PS,
DagoBERT also performs best in general but is
beaten by LSTM on one bin. The smaller perfor-
mance gap as compared to P and S can be explained
by the fact that DagoBERT as opposed to LSTM
cannot learn statistical dependencies between two
masked tokens (Section 4).

The results on the dataset released by Vylomova
et al. (2017) confirm the superior performance of
DagoBERT (Table 7). DagoBERT beats the LSTM
by a large margin, both on SHARED and SPLIT.
We also notice that our LSTM (which predicts
derivational categories) has a very similar perfor-
mance to the LSTM encoder-decoder proposed by
Vylomova et al. (2017).

5.2 Patterns of Confusion

We now analyze in more detail the performance of
the best performing model, DagoBERT, and con-
trast it with the performance of pretrained BERT.
As a result of our definition of correct predictions
(Section 4.1), the set of incorrect predictions is het-
erogeneous and potentially contains affixes result-
ing in equally possible derivatives. We are hence
interested in patterns of confusion in the data.

9The fact that this trend also holds for pretrained BERT
indicates that more frequent derivatives in our dataset also
appeared more often in the data used for pretraining BERT.

https:// github.com/ivri/dmorph
https:// github.com/ivri/dmorph

3854

Figure 2: Prefixes predicted by BERT (left) and DagoBERT (right). Vertical lines indicate that a prefix has been
overgenerated (particularly re and non in the left panel). The white boxes in the right panel highlight the clusters
produced by Girvan-Newman after 4 graph splits.

Figure 3: Suffixes predicted by pretrained BERT (left) and DagoBERT (right). Vertical lines indicate that a suffix
has been overgenerated (particularly y, ly, and er in the left panel). The white boxes in the right panel highlight
the clusters produced by Girvan-Newman after 4 graph splits.

We start by constructing the row-normalized con-
fusion matrix C for the predictions of DagoBERT
on the hapax derivatives (B1, SHARED) for P and
S. Based on C, we create a confusion graph G with
adjacency matrix G, whose elements are

Gij =
⌈
Cij − θ

⌉
, (5)

i.e., there is a directed edge from affix i to affix j if
i was misclassified as j with a probability greater

than θ. We set θ to 0.08.10 To uncover the com-
munity structure of G, we use the Girvan-Newman
algorithm (Girvan and Newman, 2002), which clus-
ters the graph by iteratively removing the edge with
the highest betweenness centrality.

The resulting clusters reflect linguistically inter-
pretable groups of affixes (Table 8). In particular,
the suffixes are clustered in groups with common

10We tried other values of θ, but the results were similar.

3855

Figure 4: Correlation between number of hapaxes and MRR for pretrained BERT (left) and DagoBERT (right) on
B1. The highly productive suffix y at (12662, 0.49) (left) and (12662, 0.62) (right) is not shown.

POS. These results are confirmed by plotting the
confusion matrix with an ordering of the affixes
induced by all clusterings of the Girvan-Newman
algorithm (Figure 2, Figure 3). They indicate that
even when DagoBERT does not predict the affix
occurring in the sentence, it tends to predict an affix
semantically and syntactically congruent with the
ground truth (e.g., ness for ity, ify for ize,
inter for intra). In such cases, it is often a
more productive affix that is predicted in lieu of
a less productive one. Furthermore, DagoBERT
frequently confuses affixes denoting points on the
same scale, often antonyms (e.g., pro and anti,
pre and post, under and over). This can be
related to recent work showing that BERT has dif-
ficulties with negated expressions (Ettinger, 2020;
Kassner and Schütze, 2020). Pretrained BERT
shows similar confusion patterns overall but over-
generates several affixes much more strongly than
DagoBERT, in particular re, non, y, ly, and er,
which are among the most productive affixes in
English (Plag, 1999, 2003).

To probe the impact of productivity more quan-
titatively, we measure the cardinality of the set of
hapaxes formed by means of a particular affix a in
the entire dataset, |Ha|, and calculate a linear re-
gression to predict the MRR values of affixes based
on |Ha|. |Ha| is a common measure of morpholog-
ical productivity (Baayen and Lieber, 1991; Pierre-
humbert and Granell, 2018). This analysis shows
a significant positive correlation for both prefixes

(R2 = .566, F (1, 43) = 56.05, p < .001) and
suffixes (R2 = .410, F (1, 41) = 28.49, p < .001):
the more productive an affix, the higher its MRR
value. This also holds for DagoBERT’s predictions
of prefixes (R2 = .423, F (1, 43) = 31.52, p <
.001) and suffixes (R2 = .169, F (1, 41) = 8.34,
p < .01), but the correlation is weaker, particularly
in the case of suffixes (Figure 4).

5.3 Impact of Input Segmentation

We have shown that BERT can generate derivatives
if it is provided with the morphologically correct
segmentation. At the same time, we observed that
BERT’s WordPiece tokenizations are often mor-
phologically incorrect, an observation that led us
to impose the correct segmentation using hyphen-
ation (HYP). We now examine more directly how
BERT’s derivational knowledge is affected by us-
ing the original WordPiece segmentations versus
the HYP segmentations.

We draw upon the same dataset as for DG
(SPLIT) but perform binary instead of multi-class
classification, i.e., the task is to predict whether,
e.g., unwearable is a possible derivative in the
context this jacket is . or not.
As negative examples, we combine the base of
each derivative (e.g., wear) with a randomly cho-
sen affix different from the original affix (e.g.,
##ation) and keep the sentence context un-
changed, resulting in a balanced dataset. We only
use prefixed derivatives for this experiment.

3856

FROZEN FINETUNED

Segmentation B1 B2 B3 B4 B5 B6 B7 µ± σ B1 B2 B3 B4 B5 B6 B7 µ± σ

Morphological .634 .645 .658 .675 .683 .692 .698 .669±.022 .762 .782 .797 .807 .800 .804 .799 .793±.015
WordPiece .572 .578 .583 .590 .597 .608 .608 .591±.013 .739 .757 .766 .769 .767 .755 .753 .758±.010

Table 9: Performance (accuracy) of BERT on morphological well-formedness prediction with morphologically
correct segmentation versus WordPiece tokenization. Best score per column in gray.

We train binary classifiers using BERTBASE and
one of two input segmentations, the morphologi-
cally correct segmentation or BERT’s WordPiece
tokenization. The BERT output embeddings for
all subword units belonging to the derivative in
question are max-pooled and fed into a dense layer
with a sigmoid activation. We examine two settings:
training only the dense layer while keeping BERT’s
model weights frozen (FROZEN), or finetuning the
entire model (FINETUNED). See Appendix A.3
for details about implementation, hyperparameter
tuning, and runtime.

Morphologically correct segmentation consis-
tently outperforms WordPiece tokenization, both
on FROZEN and FINETUNED (Table 9). We
interpret this in two ways. Firstly, the type of
segmentation used by BERT impacts how much
derivational knowledge can be learned, with posi-
tive effects of morphologically valid segmentations.
Secondly, the fact that there is a performance gap
even for models with frozen weights indicates that
a morphologically invalid segmentation can blur
the derivational knowledge that is in principle avail-
able and causes BERT to force semantically unre-
lated words to have similar representations. Taken
together, these findings provide further evidence
for the crucial importance of morphologically valid
segmentation strategies in language model pretrain-
ing (Bostrom and Durrett, 2020).

6 Related Work

PLMs such as ELMo (Peters et al., 2018), GPT-2
(Radford et al., 2019), and BERT (Devlin et al.,
2019) have been the focus of much recent work
in NLP. Several studies have been devoted to the
linguistic knowledge encoded by the parameters of
PLMs (see Rogers et al. (2020) for a review), par-
ticularly syntax (Goldberg, 2019; Hewitt and Man-
ning, 2019; Jawahar et al., 2019; Lin et al., 2019)
and semantics (Ethayarajh, 2019; Wiedemann et al.,
2019; Ettinger, 2020). There is also a recent study
examining morphosyntactic information in a PLM,
specifically BERT (Edmiston, 2020).

There has been relatively little recent work on
derivational morphology in NLP. Both Cotterell
et al. (2017) and Deutsch et al. (2018) propose neu-
ral architectures that represent derivational mean-
ings as tags. More closely related to our study, Vy-
lomova et al. (2017) develop an encoder-decoder
model that uses the context sentence for predicting
deverbal nouns. Hofmann et al. (2020b) propose a
graph auto-encoder that models the morphological
well-formedness of derivatives.

7 Conclusion

We show that a PLM, specifically BERT, can gener-
ate derivationally complex words. Our best model,
DagoBERT, clearly beats an LSTM-based model,
the previous state of the art in DG. DagoBERT’s er-
rors are mainly due to syntactic and semantic over-
lap between affixes. Furthermore, we demonstrate
that the input segmentation impacts how much
derivational knowledge is available to BERT. This
suggests that the performance of PLMs could be
further improved if a morphologically informed
vocabulary of units were used.

Acknowledgements

Valentin Hofmann was funded by the Arts and Hu-
manities Research Council and the German Aca-
demic Scholarship Foundation. This research was
also supported by the European Research Council
(Grant No. 740516). We thank the reviewers for
their detailed and helpful comments.

References
Paolo Acquaviva. 2016. Morphological semantics. In

Andrew Hippisley and Gregory Stump, editors, The
Cambridge handbook of morphology, pages 117–
148. Cambridge University Press, Cambridge.

Kenn Apel and Jessika Lawrence. 2011. Contribu-
tions of morphological awareness skills to word-
level reading and spelling in first-grade children
with and without speech sound disorder. Jour-
nal of Speech, Language, and Hearing Research,
54(5):1312–1327.

3857

R. Harald Baayen and Rochelle Lieber. 1991. Produc-
tivity and English derivation: A corpus-based study.
Linguistics, 29(5).

Laurie Bauer. 2001. Morphological productivity. Cam-
bridge University Press, Cambridge, UK.

Laurie Bauer. 2019. Rethinking morphology. Edin-
burgh University Press, Edinburgh, UK.

Laurie Bauer, Rochelle Lieber, and Ingo Plag. 2013.
The Oxford reference guide to English morphology.
Oxford University Press, Oxford, UK.

Kaj Bostrom and Greg Durrett. 2020. Byte pair encod-
ing is suboptimal for language model pretraining. In
arXiv 2004.03720.

Marc Brysbaert, Michaël Stevens, Paweł Mandera, and
Emmanuel Keuleers. 2016. How many words do we
know? practical estimates of vocabulary size depen-
dent on word definition, the degree of language input
and the participant’s age. Frontiers in Psychology,
7:1116.

Ryan Cotterell, Ekaterina Vylomova, Huda Khayral-
lah, Christo Kirov, and David Yarowsky. 2017.
Paradigm completion for derivational morphology.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) 2017.

David Crystal. 1997. The Cambridge encyclopedia of
the English language. Cambridge University Press,
Cambridge, UK.

Georgette Dal and Fiammetta Namer. 2016. Produc-
tivity. In Andrew Hippisley and Gregory Stump,
editors, The Cambridge handbook of morphology,
pages 70–89. Cambridge University Press, Cam-
bridge.

Daniel Deutsch, John Hewitt, and Dan Roth. 2018. A
distributional and orthographic aggregation model
for English derivational morphology. In Annual
Meeting of the Association for Computational Lin-
guistics (ACL) 56.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language un-
derstanding. In Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HTL) 17.

Jesse Dodge, Suchin Gururangan, Dallas Card, Roy
Schwartz, and Noah A. Smith. 2019. Show your
work: Improved reporting of experimental results.
In Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) 2019.

Daniel Edmiston. 2020. A systematic analysis of mor-
phological content in BERT models for multiple lan-
guages. In arXiv 2004.03032.

Kawin Ethayarajh. 2019. How contextual are contex-
tualized word representations? comparing the geom-
etry of BERT, ELMo, and GPT-2 embeddings. In
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) 2019.

Allyson Ettinger. 2020. What BERT is not: Lessons
from a new suite of psycholinguistic diagnostics for
language models. Transactions of the Association
for Computational Linguistics, 8:34–48.

Michelle Girvan and Mark Newman. 2002. Commu-
nity structure in social and biological networks. Pro-
ceedings of the National Academy of Sciences of the
United States of America, 99(12):7821–7826.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. In arXiv 1901.05287.

Pius ten Hacken. 2014. Delineating derivation and in-
flection. In Rochelle Lieber and Pavol Štekauer, edi-
tors, The Oxford handbook of derivational morphol-
ogy, pages 10–25. Oxford University Press, Oxford.

Martin Haspelmath and Andrea D. Sims. 2010. Under-
standing morphology. Routledge, New York, NY.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HTL) 17.

Valentin Hofmann, Janet B. Pierrehumbert, and Hin-
rich Schütze. 2020a. Predicting the growth of mor-
phological families from social and linguistic factors.
In Annual Meeting of the Association for Computa-
tional Linguistics (ACL) 58.

Valentin Hofmann, Hinrich Schütze, and Janet B. Pier-
rehumbert. 2020b. A graph auto-encoder model
of derivational morphology. In Annual Meeting of
the Association for Computational Linguistics (ACL)
58.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure
of language? In Annual Meeting of the Association
for Computational Linguistics (ACL) 57.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Annual Meeting of
the Association for Computational Linguistics (ACL)
58.

Diederik P. Kingma and Jimmy L. Ba. 2015. Adam: A
method for stochastic optimization. In International
Conference on Learning Representations (ICLR) 3.

Rochelle Lieber. 2019. Theoretical issues in word for-
mation. In Jenny Audring and Francesca Masini, ed-
itors, The Oxford handbook of morphological theory,
pages 34–55. Oxford University Press, Oxford.

3858

Yongjie Lin, Yi C. Tan, and Robert Frank. 2019. Open
sesame: Getting inside BERT’s linguistic knowl-
edge. In Analyzing and Interpreting Neural Net-
works for NLP (BlackboxNLP) 2.

Taylor Mahler, Willy Cheung, Micha Elsner, David
King, Marie-Catherine de Marneffe, Cory Shain,
Symon Stevens-Guille, and Michael White. 2017.
Breaking NLP: Using morphosyntax, semantics,
pragmatics and world knowledge to fool sentiment
analysis systems. In Workshop on Building Linguis-
tically Generalizable NLP Systems 1.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word
representation. In Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP)
2014.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL HLT) 16.

Janet B. Pierrehumbert. 2006. The statistical basis of
an unnatural alternation. In Louis Goldstein, Dou-
glas H. Whalen, and Catherine T. Best, editors, Lab-
oratory Phonology 8, pages 81–106. De Gruyter,
Berlin.

Janet B. Pierrehumbert and Ramon Granell. 2018. On
hapax legomena and morphological productivity. In
Workshop on Computational Research in Phonetics,
Phonology, and Morphology (SIGMORPHON) 15.

Ingo Plag. 1999. Morphological productivity: Struc-
tural constraints in English derivation. De Gruyter,
Berlin.

Ingo Plag. 2003. Word-formation in English. Cam-
bridge University Press, Cambridge, UK.

Ingo Plag and Laura W. Balling. 2020. Derivational
morphology: An integrative perspective on some
fundamental questions. In Vito Pirrelli, Ingo Plag,
and Wolfgang U. Dressler, editors, Word knowledge
and word usage: A cross-disciplinary guide to the
mental lexicon, pages 295–335. De Gruyter, Berlin.

Dragomir Radev, Hong Qi, Harris Wu, and Weiguo
Fan. 2002. Evaluating web-based question answer-
ing systems. In International Conference on Lan-
guage Resources and Evaluation (LREC) 3.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know
about how BERT works. In arXiv 2002.12327.

Chenhao Tan and Lillian Lee. 2015. All who wan-
der: On the prevalence and characteristics of multi-
community engagement. In International Confer-
ence on World Wide Web (WWW) 24.

Ekaterina Vylomova, Ryan Cotterell, Timothy Bald-
win, and Trevor Cohn. 2017. Context-aware predic-
tion of derivational word-forms. In Conference of
the European Chapter of the Association for Com-
putational Linguistics (EACL) 15.

Gregor Wiedemann, Steffen Remus, Avi Chawla, and
Chris Biemann. 2019. Does BERT make any sense?
interpretable word sense disambiguation with con-
textualized embeddings. In arXiv 1909.10430.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc
Le V, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin John-
son, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith
Stevens, George Kurian, Nishant Patil, Wei Wang,
Cliff Young, Jason Smith, Jason Riesa, Alex Rud-
nick, Oriol Vinyals, Greg Corrado, Macduff Hughes,
and Jeffrey Dean. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. In arXiv 1609.08144.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems (NeurIPS) 33.

A Appendices

A.1 Data Preprocessing
We filter the posts for known bots and spammers
(Tan and Lee, 2015). We exclude posts written in
a language other than English and remove strings
containing numbers, references to users, and hyper-
links. Sentences are filtered to contain between 10
and 100 words. We control that derivatives do not
appear more than once in a sentence.

A.2 Hyperparameters
We tune hyperparameters on the development data
separately for each frequency bin (selection cri-
terion: MRR). Models are trained with categori-
cal cross-entropy as the loss function and Adam
(Kingma and Ba, 2015) as the optimizer. Training
and testing are performed on a GeForce GTX 1080
Ti GPU (11GB).

DagoBERT. We use a batch size of 16
and perform grid search for the learning rate
l ∈ {1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5}
and the number of epochs ne ∈ {1, . . . , 8} (num-
ber of hyperparameter search trials: 32). All other

3859

hyperparameters are as for BERTBASE. The num-
ber of trainable parameters is 110,104,890.

BERT+. We use a batch size of 16
and perform grid search for the learning rate
l ∈ {1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3}
and the number of epochs ne ∈ {1, . . . , 8} (num-
ber of hyperparameter search trials: 32). All other
hyperparameters are as for BERTBASE. The num-
ber of trainable parameters is 622,650.

LSTM. We initialize word embeddings with
300-dimensional GloVe (Pennington et al., 2014)
vectors and character embeddings with 100-
dimensional random vectors. The BiLSTMs
consist of three layers and have a hidden
size of 100. We use a batch size of 64
and perform grid search for the learning rate
l ∈ {1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3}
and the number of epochs ne ∈ {1, . . . , 40} (num-
ber of hyperparameter search trials: 160). The
number of trainable parameters varies with the type
of the model due to different sizes of the output
layer and is 2,354,345 for P, 2,354,043 for S, and
2,542,038 for PS models.11

Table 10 lists statistics of the validation perfor-
mance over hyperparameter search trials and pro-
vides information about the best validation perfor-
mance as well as corresponding hyperparameter
configurations.12 We also report runtimes for the
hyperparameter search.

For the models trained on the Vylomova et al.
(2017) dataset, hyperparameter search is identi-
cal as for the main models, except that we use
accuracy as the selection criterion. Runtimes for
the hyperparameter search in minutes are 754 for
SHARED and 756 for SPLIT in the case of DagoB-
ERT, and 530 for SHARED and 526 for SPLIT in
the case of LSTM. Best validation accuracy is .943
(l = 3× 10−6, ne = 7) for SHARED and .659
(l = 1× 10−5, ne = 4) for SPLIT in the case of
DagoBERT, and .824 (l = 1× 10−4, ne = 38) for
SHARED and .525 (l = 1× 10−4, ne = 33) for
SPLIT in the case of LSTM.

A.3 Hyperparameters

We use the HYP segmentation method for models
with morphologically correct segmentation. We

11Since models are trained separately on the frequency bins,
slight variations are possible if an affix does not appear in a
particular bin. The reported numbers are for B1.

12Since expected validation performance (Dodge et al.,
2019) may not be correct for grid search, we report mean
and standard deviation of the performance instead.

tune hyperparameters on the development data sep-
arately for each frequency bin (selection criterion:
accuracy). Models are trained with binary cross-
entropy as the loss function and Adam as the op-
timizer. Training and testing are performed on a
GeForce GTX 1080 Ti GPU (11GB).

For FROZEN, we use a batch size of 16
and perform grid search for the learning rate
l ∈ {1× 10−4, 3× 10−4, 1× 10−3, 3× 10−3}
and the number of epochs ne ∈ {1, . . . , 8}
(number of hyperparameter search trials: 32).
The number of trainable parameters is 769.
For FINETUNED, we use a batch size of 16
and perform grid search for the learning rate
l ∈ {1× 10−6, 3× 10−6, 1× 10−5, 3× 10−5}
and the number of epochs ne ∈ {1, . . . , 8} (num-
ber of hyperparameter search trials: 32). The num-
ber of trainable parameters is 109,483,009. All
other hyperparameters are as for BERTBASE.

Table 11 lists statistics of the validation perfor-
mance over hyperparameter search trials and pro-
vides information about the best validation perfor-
mance as well as corresponding hyperparameter
configurations. We also report runtimes for the
hyperparameter search.

3860

SHARED SPLIT

Model B1 B2 B3 B4 B5 B6 B7 B1 B2 B3 B4 B5 B6 B7

DagoBERT

P

µ .349 .400 .506 .645 .777 .871 .930 .345 .364 .375 .383 .359 .359 .357
σ .020 .037 .096 .160 .154 .112 .064 .018 .018 .018 .019 .018 .017 .022

max .372 .454 .657 .835 .896 .934 .957 .368 .385 .399 .412 .397 .405 .392
l 1e-5 3e-5 3e-5 3e-5 1e-5 3e-6 3e-6 3e-6 1e-5 3e-6 1e-6 3e-6 1e-6 1e-6

ne 3 8 8 8 5 8 6 5 3 3 5 1 1 1

S

µ .386 .453 .553 .682 .805 .903 .953 .396 .403 .395 .395 .366 .390 .370
σ .031 .058 .120 .167 .164 .118 .065 .033 .024 .020 .020 .019 .029 .027

max .419 .535 .735 .872 .933 .965 .976 .429 .430 .420 .425 .403 .441 .432
l 3e-5 3e-5 3e-5 3e-5 1e-5 1e-5 3e-6 3e-5 1e-5 3e-6 1e-6 1e-6 1e-6 1e-6

ne 2 7 8 6 8 7 6 2 3 5 7 3 2 1

PS

µ .124 .214 .362 .554 .725 .840 .926 .119 .158 .175 .194 .237 .192 .176
σ .018 .075 .173 .251 .238 .187 .119 .013 .013 .011 .016 .020 .021 .018

max .146 .337 .620 .830 .915 .945 .970 .135 .177 .192 .219 .269 .235 .209
l 1e-5 3e-5 3e-5 3e-5 1e-5 3e-5 1e-5 1e-5 3e-6 3e-6 1e-6 1e-6 1e-6 1e-6

ne 6 8 8 5 8 3 7 6 8 3 4 4 1 1

τ 192 230 314 440 631 897 1,098 195 228 313 438 631 897 791

BERT+

P

µ .282 .336 .424 .527 .655 .764 .860 .280 .298 .318 .324 .323 .324 .322
σ .009 .020 .046 .078 .090 .080 .051 .011 .007 .009 .013 .009 .012 .009

max .297 .374 .497 .633 .759 .841 .901 .293 .312 .334 .345 .341 .357 .346
l 1e-4 1e-3 3e-3 1e-3 3e-4 3e-4 3e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

ne 7 8 8 8 8 8 8 5 8 7 2 4 1 1

S

µ .358 .424 .491 .587 .708 .817 .886 .369 .364 .357 .350 .337 .335 .332
σ .010 .018 .043 .073 .086 .072 .049 .010 .010 .010 .013 .017 .017 .009

max .372 .452 .557 .691 .806 .884 .925 .383 .377 .375 .372 .366 .377 .357
l 1e-4 1e-3 1e-3 1e-3 1e-3 1e-3 3e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

ne 4 7 8 8 7 7 8 8 4 5 1 1 1 1

PS

µ .084 .152 .257 .419 .598 .741 .849 .083 .104 .127 .137 .158 .139 .136
σ .008 .024 .062 .116 .119 .099 .062 .009 .014 .015 .014 .017 .011 .008

max .099 .206 .371 .610 .756 .847 .913 .099 .131 .154 .170 .206 .173 .164
l 1e-4 3e-3 3e-3 3e-3 1e-3 1e-3 1e-3 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4

ne 7 8 8 8 8 8 8 5 3 3 1 1 1 1

τ 81 102 140 197 285 406 568 80 101 140 196 283 400 563

LSTM

P

µ .103 .166 .314 .510 .661 .769 .841 .089 .113 .107 .106 .103 .103 .116
σ .031 .072 .163 .212 .203 .155 .107 .019 .024 .020 .017 .010 .010 .013

max .159 .331 .583 .732 .818 .864 .909 .134 .152 .141 .138 .121 .120 .139
l 1e-3 1e-3 1e-3 1e-3 3e-4 1e-4 3e-4 3e-4 3e-4 3e-4 3e-4 1e-4 1e-4 3e-4

ne 33 40 38 35 35 40 26 38 36 37 38 40 37 29

S

µ .124 .209 .385 .573 .721 .824 .881 .108 .133 .136 .132 .132 .127 .128
σ .037 .098 .202 .229 .206 .162 .111 .029 .034 .027 .015 .013 .012 .012

max .214 .422 .674 .812 .882 .925 .945 .192 .187 .179 .157 .159 .157 .153
l 3e-4 1e-3 1e-3 1e-3 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 1e-4 1e-4

ne 40 40 37 31 37 38 39 37 38 37 39 38 39 29

PS

µ .011 .066 .255 .481 .655 .776 .848 .009 .015 .025 .035 .046 .032 .071
σ .005 .090 .256 .301 .276 .220 .177 .003 .004 .006 .006 .008 .008 .015

max .022 .346 .649 .786 .844 .886 .931 .016 .024 .038 .047 .065 .055 .104
l 3e-3 3e-3 3e-3 3e-4 3e-4 3e-4 3e-4 3e-4 3e-3 3e-4 3e-4 3e-3 3e-3 3e-4

ne 38 40 39 40 33 40 39 40 39 23 32 28 15 31

τ 115 136 196 253 269 357 484 100 120 142 193 287 352 489

Table 10: Validation performance statistics and hyperparameter search details. The table shows the mean (µ),
standard deviation (σ), and maximum (max) of the validation performance (MRR) on all hyperparameter search
trials for prefix (P), suffix (S), and prefix-suffix (PS) models. It also gives the learning rate (l) and number of
epochs (ne) with the best validation performance as well as the runtime (τ) in minutes averaged over P, S, and PS
for one full hyperparameter search (32 trials for DagoBERT and BERT+, 160 trials for LSTM).

3861

FROZEN FINETUNED

Segmentation B1 B2 B3 B4 B5 B6 B7 B1 B2 B3 B4 B5 B6 B7

Morphological

µ .617 .639 .650 .660 .671 .684 .689 .732 .760 .764 .750 .720 .692 .657
σ .010 .009 .009 .008 .014 .009 .009 .016 .017 .029 .052 .067 .064 .066

max .628 .649 .660 .669 .682 .692 .698 .750 .779 .793 .802 .803 .803 .808
l 3e-4 3e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 3e-6 3e-6 1e-6 1e-6 1e-6 1e-6

ne 8 5 7 7 5 3 5 4 8 5 8 3 2 1

τ 137 240 360 516 765 1,079 1,511 378 578 866 1,243 1,596 1,596 1,793

WordPiece

µ .554 .561 .569 .579 .584 .592 .596 .706 .730 .734 .712 .669 .637 .604
σ .011 .010 .011 .012 .011 .010 .011 .030 .021 .025 .052 .066 .061 .046

max .568 .574 .582 .592 .597 .605 .608 .731 .752 .762 .765 .763 .759 .759
l 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-5 3e-6 3e-6 1e-6 1e-6 1e-6 1e-6

ne 6 8 6 2 8 2 7 3 7 6 8 3 1 1

τ 139 242 362 517 765 1,076 1,507 379 575 869 1,240 1,597 1,598 1,775

Table 11: Validation performance statistics and hyperparameter search details. The table shows the mean (µ),
standard deviation (σ), and maximum (max) of the validation performance (accuracy) on all hyperparameter search
trials for classifiers using morphological and WordPiece segmentations. It also gives the learning rate (l) and
number of epochs (ne) with the best validation performance as well as the runtime (τ) in minutes for one full
hyperparameter search (32 trials for both morphological and WordPiece segmentations).

