
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 3780–3789,
November 16–20, 2020. c©2020 Association for Computational Linguistics

3780

Semantically-Aligned Universal Tree-Structured Solver for Math Word
Problems

Jinghui Qin1, Lihui Lin2, Xiaodan Liang1,2,∗, Rumin Zhang2, Liang Lin1,2

1 Sun Yat-sen University
2 Dark Matter AI Inc.

qinjingh@mail2.sysu.edu.cn, linlh23@mail2.sysu.edu.cn,
xdliang328@gmail.com, rm zhang@foxmail.com,

linliang@ieee.org

Abstract

A practical automatic textual math word prob-
lems (MWPs) solver should be able to solve
various textual MWPs while most existing
works only focused on one-unknown linear
MWPs. Herein, we propose a simple but
efficient method called Universal Expression
Tree (UET) to make the first attempt to rep-
resent the equations of various MWPs uni-
formly. Then a semantically-aligned univer-
sal tree-structured solver (SAU-Solver) based
on an encoder-decoder framework is proposed
to resolve multiple types of MWPs in a uni-
fied model, benefiting from our UET represen-
tation. Our SAU-Solver generates a universal
expression tree explicitly by deciding which
symbol to generate according to the generated
symbols’ semantic meanings like human solv-
ing MWPs. Besides, our SAU-Solver also
includes a novel subtree-level semantically-
aligned regularization to further enforce the se-
mantic constraints and rationality of the gener-
ated expression tree by aligning with the con-
textual information. Finally, to validate the
universality of our solver and extend the re-
search boundary of MWPs, we introduce a
new challenging Hybrid Math Word Problems
dataset (HMWP), consisting of three types
of MWPs. Experimental results on several
MWPs datasets show that our model can solve
universal types of MWPs and outperforms sev-
eral state-of-the-art models1.

1 Introduction

Math word problems (MWPs) solving aims to au-
tomatically answer a math word problem by un-
derstanding the textual description of the problem
and reasoning out the underlying answer. A typ-
ical MWP is a short story that describes a partial
state of the world and poses a question about an

∗Corresponding Author
1The code and the new HMWP dataset are available at

https://github.com/QinJinghui/SAU-Solver.

=

3 5

*

yx

* +

x

=

y

;

24

=

3

6

x

*

=

3

6

x

*

=

3 5

*

yx

*

+

x

=

y

24

Expression Trees Universal Expression Trees

Equation
Set
Problem

Arithmetic
Word
Problem

Figure 1: Universal Expression Trees (UET). In our
UET representation, multiple expression trees underly-
ing a MWP will be integrated as an universal expres-
sion tree (UET) via symbol extension. UET can enable
a solver to handle multiple types of MWPs in an unified
manner like a single expression tree of an equation.

unknown quantity or multiple unknown quantities.
Thus, a machine should have the ability of natural
language understanding and reasoning. To solve an
MWP, the relevant quantities need to be identified
from the text, and the correct operators and their
computation order among these quantities need to
be determined.

Many traditional methods (Yuhui et al., 2010;
Kushman et al., 2014; Shi et al., 2015) have been
proposed to address this problem, but they relied
on tedious hand-crafted features and template anno-
tation, which required extensive human efforts and
knowledge. Recently, deep learning has opened
a new direction towards automatic MWPs solv-
ing (Wang et al., 2017; Huang et al., 2018; Wang
et al., 2018b, 2019; Xie and Sun, 2019; Chiang and
Chen, 2019). Most of deep learning-based methods
try to train an end-to-end neural network to auto-
matically learn the mapping function between prob-
lems and their corresponding equations. However,
there are some limitations hindering them from

https://github.com/QinJinghui/SAU-Solver

3781

being applied in real-world applications. First, al-
though seq2seq model (Wang et al., 2017) can be
applied to solve various MWPs, it suffers from fake
numbers generation and mispositioned numbers
generation due to all data share the same target vo-
cabulary without problem-specific constraints. Sec-
ond, some advanced methods (Wang et al., 2018b,
2019; Xie and Sun, 2019) only target at arithmetic
word problems without any unknown or with one
unknown that do not need to model the unknowns
underlying in MWPs, which prevent them from
generalizing to various MWPs, such as equation
set problems. Thus, their methods can only han-
dle arithmetic problems with no more than one un-
known. Besides, they also lack an efficient equation
representation mechanism to handle those MWPs
with multiple unknowns and multiple equations,
such as equation set problems. Finally, though
some methods (Wang et al., 2017; Huang et al.,
2018; Chiang and Chen, 2019) can handle multiple
types of MWPs, they neither generate next symbol
by taking full advantage of the generated symbols
like a human nor consider the semantic transforma-
tion between equations in a problem, resulting in
poor performance on the multiple-unknown MWPs,
such as the MWPs involving equation set.

To address the above issues, we propose a simple
yet efficient method called Universal Expression
Tree (UET) to make the first attempt to represent
the equations of various MWPs uniformly like the
expression tree of one-unknown linear word prob-
lems with considering unknowns. Specifically, as
shown in Fig. 1, UET integrates all expression trees
underlying in an MWP into an ensemble expression
tree via math operator symbol extension so that the
grounded equations of various MWPs can be han-
dled in a unified manner as handling one-unknown
linear MWPs. Thus, it can significantly reduce the
difficulty of modeling equations of various MWPs.

Then, we propose a semantically-aligned univer-
sal tree-structured solver (SAU-Solver), which is
based on our UET representation and an Encoder-
Decoder framework, to solve multiple types of
MWPs in a unified manner with a single model. In
our SAU-Solver, the encoder is designed to under-
stand the semantics of MWPs and extract number
semantic representation while the tree-structured
decoder is designed to generate the next symbol
based on the problem-specific target vocabulary
in a semantically-aligned manner by taking full
advantage of the semantic meanings of the gener-

ated expression tree like a human uses problem’s
contextual information and all tokens written to
reason next token for solving MWPs. The problem-
specific target vocabulary can help our solver to
mitigate the problem of fake numbers generation
as much as possible.

Besides, to further enforce the semantic con-
straints and rationality of the generated expression
tree, we also propose a subtree-level semantically-
aligned regularization to further improve subtree-
level semantic representation by aligning with the
contextual information of a problem, which can
improve answer accuracy effectively.

Finally, to validate the universality of our solver
and push the research boundary of MWPs to math
real-word applications better, we introduce a new
challenging Hybrid Math Word Problems dataset
(HMWP), consisting of one-unknown linear word
problems, one-unknown non-linear word problems,
and equation set problems with two unknowns. Ex-
perimental results on HWMP, ALG514, Math23K,
and Dolphin18K-Manual show the universality and
superiority of our approach compared with several
state-of-the-art methods.

2 Related Works

Numerous methods have been proposed to attack
the MWPs task, ranging from rule-based meth-
ods (Bakman, 2007; Yuhui et al., 2010), statistical
machine learning methods (Kushman et al., 2014;
Zhou et al., 2015; Mitra and Baral, 2016; Huang
et al., 2016; Roy and Roth, 2018),semantic pars-
ing methods (Shi et al., 2015; Koncelkedziorski
et al., 2015; Huang et al., 2017), and deep learn-
ing methods (Ling et al., 2017; Wang et al., 2017,
2018b; Huang et al., 2018; Wang et al., 2018a; Xie
and Sun, 2019; Wang et al., 2019). Due to space
limitations, we only review some recent advances
on deep leaning-based methods. (Wang et al.,
2017) made the first attempt to generate expression
templates using Seq2Seq model. Seq2seq method
has achieved promising results, but it suffers from
generating spurious numbers, predicting numbers
at wrong positions, or equation duplication prob-
lem (Huang et al., 2018; Wang et al., 2018a). To
address them, (Huang et al., 2018) proposed to add
a copy-and-alignment mechanism to the standard
Seq2Seq model. (Wang et al., 2018a) proposed
equation normalization to normalize the duplicated
equations by considering the uniqueness of an ex-
pression tree.

3782

Different from seq2seq-based works, (Xie and
Sun, 2019) proposed a tree-structured decoder to
generate an expression tree inspired by the goal-
driven problem-solving mechanism. (Wang et al.,
2019) proposed a two-stage template-based solu-
tion based on a recursive neural network for math
expression construction. However, they do not
model the unknowns underlying in MWPs, result-
ing in only handling one-unknown linear word
problems. Besides, they also lack an efficient mech-
anism to handle those MWPs with multiple un-
knowns and multiple equations, such as equation
set problems. Therefore, their solution can not
solve other types of MWPs that are more challeng-
ing due to larger search space, such as equation set
problems, non-linear equation problems, etc. (Chi-
ang and Chen, 2019) is a general equation generator
that generates expression via the stack, but they did
not consider the semantic transformation between
equations in a problem, resulting in poor perfor-
mance on the multiple-unknown MWPs, such as
equation set problems.

3 The design of SAU-Solver

3.1 Universal Expression Tree (UET)

The primary type of textual MWPs can be divided
into two groups: arithmetic word problems and
equation set problems. For a universal MWPs
solver, it is highly demanded to represent various
equations of various MWPs in a unified manner so
that the solver can generate equations efficiently.
Although most of the existing works can handle
one-unknown linear word problems well, it is more
challenging and harder for current methods to han-
dle the equation set MWPs with multiple unknowns
well since they not only do not model the unknowns
in the MWPs but also lack of an efficient equations
representation mechanism to make their decoder
generate required equations efficiently. To han-
dle the above issue, an intuitive way is treating
the equation set as a forest of expression trees and
all trees are processed iteratively in a certain or-
der. Although this is an effective way to handle
equations set problems, it increases the difficulty
of equation generation since the model needs to
reason out the number of equations before starting
equation generation and the prediction error will
influence equation generation greatly. Besides, it
is also challenging to take full advantage of the
context information from the problem and the gen-
erated trees. Another way is that we can deploy

Seq2Seq-based architecture to handle various equa-
tions in infix order like in previous works (Wang
et al., 2017; Huang et al., 2018), but there are some
limitations, such as generating invalid expression,
generating spurious numbers, and generating num-
bers at wrong positions.

To overcome the above issues and maintain sim-
plicity, we propose a new equation representation
called Universal Expression Tree (UET) to make
the first attempt to represent the equations of var-
ious MWPs uniformly. Specially, we extend the
math operator symbol table by introducing a new
operator ; as the lowest priority operator to inte-
grate one or more expression trees into a universal
expression tree, as shown in Fig. 1. With UET, a
solver can handle the underlying equations of vari-
ous textual MWPs easier in a unified manner like
the way on arithmetic word problems. Although
our UET is simple, it provides an efficient, concise,
and uniform way to utilize the context information
from the problem and treat the semantic transfor-
mation between equations as simple as treating the
semantic transformation between subtrees in an
equation.

3.2 SAU-Solver

Based on our proposed UET representation, we de-
sign a universal tree-structured solver to generate
a universal expression tree explicitly according to
the problem context and explicitly model the re-
lationships among unknown variables, quantities,
math operations, and constants in a tree-structured
way, as shown in Fig. 2. Our solver consists of
a Bi-GRU-based problem encoder and an explicit
tree-structured equation decoder. When a problem
is entered, our model first encodes each word of
the problem to generate the problem’s contextual
representation g0 by our problem encoder. Then,
the g0 will be used as the initial hidden state by our
tree-structured equation decoder to guide the equa-
tion generation in prefix order with two intertwined
processes: top-down tree-structured decoding and
bottom-up subtree semantic transformation. With
the help of top-down tree-structured decoding and
bottom-up subtree semantic transformation, SAU-
Solver can generate the next symbol by taking full
advantage of generated symbols in a semantically-
aligned manner like human solving MWPs. Finally,
we apply infix traversal and inverse number map-
ping to generate the corresponding human-readable

3783

GRU GRU

GRU GRU GRU

GRU

…

…

…

…

h0 h1 hn

Dan and ?

Hidden State Propagation

Subtree State Propagation

g0

Encoder Tree-structured Decoder

Embedding

Problem: Dan and Jessica have 16 pens in total. Jessica
has 6 pens. How many pens does Dan has?

Model Input: Dan and Jessica have NUM pens in total. Jessica
has NUM pens. How many pens does Dan has?

Number mapping:
{n1=16,n2=6}

Model Output(Pre-order expression tree): = + x n2 n1

Equation : x + 6 = 16; Solution: [10]

infix traversal &
inverse number mapping

+

=
g1

g2 g3

g4

n1

n2 x

t1
t1

t2

t3
t3

Semantically-
Aligned

Regularization

Figure 2: An overview of our SAU-Solver. When a problem preprocessed by number mapping and replacement
is entered, our problem encoder encodes the problem text as context representation. Then our equation decoder
generates an expression tree explicitly in pre-order traversal for the problem according to the context representation.
Finally, infix traversal and inverse number mapping are applied to generate the corresponding equation.

equation that can be computed by SymPy2, which
is a python library for symbolic mathematics.

3.2.1 Problem Encoder
Bidirectional Gated Recurrent Unit (BiGRU) (Cho
et al., 2014) is an efficient method to encode se-
quential information. Formally, given an input
math word problem sentence P = {xt}nt=1, we first
embed each word into a vector xt. Then these
embeddings are fed into a two-layer BiGRU from
beginning to end and from end to beginning to
model the problem sequence:

−→
hp
t = GRU(

−−→
hp
t−1,xt)

←−
hp
t = GRU(

←−−
hp
t+1,xt)

hp
t =
−→
hp
t +
←−
hp
t

(1)

where GRU(·, ·) represents the function of a two-

layer GRU. hp
t is the sum of the hidden states

−→
hp
t

and
←−
hp
t , which are from both forward and backward

GRUs. These representation vectors are then fed
into our tree-structured equation decoder for ensem-
ble expression tree generation. Besides, we also
construct the hidden state g0 as the initial hidden
state of our equation decoder:

gp
0 =
−→
hp
n +
←−
hp
0 (2)

2https://www.sympy.org/

where
−→
hp
n and

←−
hp
0 are the hidden states of forward

sequence and backward sequence respectively.

3.2.2 Equation Decoder

For decoding, inspired by previous works (Xie and
Sun, 2019; Chiang and Chen, 2019), we build a
semantically-aligned tree decoder to decide which
symbol to generate by taking full advantage of
the semantic meanings of the generated symbols
with two intertwined processes: top-down tree-
structured decoding and bottom-up subtree seman-
tic transformation. Our decoder takes tree-based in-
formation gparent (left node) or (gparent, tl) (right
node) as the input and maintains two auxiliary
stacks G and T to enforce semantically-aligned
decoding procedure. The stack G maintains the
hidden states generated from the parent node while
the stack T helps the model decide which symbol to
generate by maintaining subtree semantic informa-
tion of generated symbols. Benefiting from UET,
our decoder can automatically end the decoding
procedure without any special token. If the pre-
dicted token yt is an operator, then we generate
two children hidden states gl and gr according to
the current node embedding n of yt, and push them
into the stack G to maintain the state transition
among nodes and be used to predict token and its
node embedding. Besides, we also push the token
embedding e(yt|P) of yt into the stack T so that

https://www.sympy.org/

3784

we can maintain subtree semantic information of
generated symbols after right child node genera-
tion. If the predicted token yt is not an operator,
we check the size of the stack T to judge whether
the current node is a right node. If the current
node is a right node, we transform the embedding
of parent node op, left sibling node l and current
node e(yt|P) to a subtree semantic representation
t, which represents the semantic meanings of gen-
erated symbols for current subtree and is used to
help the right node generation of the upper sub-
tree. In this way, our equation decoder can decode
out an equation as a human writes out an equation
according to the problem description.
Token Embedding. For a problem P , its target
vocabulary V tar consists of 4 parts: math operators
Vop, unknowns Vu, constants Vcon that are those
common-sense numerical values occurred in the
target expression but not in the problem text (e.g. a
chick has 2 legs.), and the numbers np occurred in
P . For each token y in V tar, its token embedding
e(y|P) is defined as:

e(y|P) =


Mop(y) if y ∈ Vop
Mu(y) if y ∈ Vu
Mcon(y) if y ∈ Vcon
hp
loc(y, P) if y ∈ nP

(3)

where Mop, Mu, and Mcon are three trainable
word embedding matrices independent of the spe-
cific problem. However, for a numeric value in nP ,
we take the corresponding hidden state hp

loc from
encoder as its token embedding, where loc(y, P)
is the index position of numeric value y in P .
Gating Mechanism and Attention Mechanism.
To better flow important information and ignore
useless information, we apply a gating mechanism
to generate node state n which will be used for
predicting the output and generating child hidden
states gl and gr for descendant nodes if the output
of the current node is a math operator:

q = σ (WqI)

Q = tanh (WQI)

O = q �Q
(4)

where O can be a left node state nl, a right node
state, a left child hidden state gl, or a right child hid-
den state gr. For nl, I is gl generated by the parent
node. For nr, I is [gr, tl] which is the concatena-
tion of the hidden state gr generated by the parent
node and the subtree semantic embedding tl of left
sibling. For gl and gr, I is [n, c, e(yt|P)] which is

the concatenation of the current node state n, the
contextual vector c aggregating relevant informa-
tion of the problem as a weighted representation of
the input tokens by attention mechanism, and the
token embedding e(yt|P) of the predicted token
yt.

For better predicting a token yt by utilizing con-
textual information, we deploy an attention mech-
anism to aggregate relevant information from the
input vectors. Formally, given current node state n
and the encoder outputs {hp

t }
n
t=1, we calculate the

contextual vector c as follows:

c =
∑
s

exp (Va tanh (Wa [n,h
p
s]))∑

i exp (Va tanh (Wa [n,h
p
i]))

hp
s (5)

Based on the contextual vector c and current node
state n, we can predict the token yt as follows:

y = argmax
exp(s(y|n, c, P))∑
i exp (s (yi|n, c, P))

(6)

where

s(y|n, c, P) = Vn tanh (Ws[n, c, e(y|P)]) (7)

Subtree Semantic Transformation. Although
our decoder decodes a universal expression tree
in the prefix, to help our model to generate the next
symbol in a semantically-aligned manner by taking
full advantage of the semantic meanings of the gen-
erated expression tree, we design a recursive neural
network to transform the semantic representations
of the current node and its two child subtrees tl and
tr into a high-level embedding t in a bottom-up
manner. Formally, let t be a subtree, and y denotes
the predicted token of the root node of the subtree.
If y is a math operator, which means that the cur-
rent subtree t must have two child subtrees tl and
tr, the high-level embedding t should fuse the se-
mantic information from the operator token y, the
left child subtree tl and the right child subtree tr
as follows:

gt = σ (Wgt [tl, tr, e(ŷ|P)])
Ct = tanh (Wct |tl, tr, e(ŷ|P)])
t = gt � Ct

(8)

Otherwise, t is the embedding e(y|P) of the pre-
dicted token y because y is a numeric value, an
unknown variable, or a constant quantity and the
recursion stops.

3785

3.2.3 Semantically-Aligned Regularization
When a subtree t is produced by our model, this
means that we have a computable unit. The seman-
tics of this computable unit should be consistent
with the problem text P . To achieve this goal, we
propose a subtree-level semantically-aligned regu-
larization to help train a better model with higher
performance. For each subtree embedding t and
encoder outputs

{
hP
1 ,h

P
1 , · · · ,hP

n

}
, we first apply

an attention function to compute a semantically-
aligned vector a as Equation(5), then we use a
two-layer feed-forward neural network with tanh
activation to transform t and a into same semantic
space respectively. The procedure can be formu-
lated as:

esa = We2 tanh (We1a)

dsa = Wd2 tanh (Wd1t)
(9)

where We1, We2, Wd1, and Wd2 are trainable
parameter matrices. With the vectors esa and dsa

Let m be the number of subtrees in a universal
expression tree, we can regularize our model by
minimizing the following loss:

Lsa(T |P) =
1

m

m∑
i=1

‖dsa − esa‖2 (10)

3.2.4 Training Objective
Given the training dataset D={(P i, T 1), (P 2, T 2),
· · · ,(PN , TN) }, where T i is the universal expres-
sion tree of problem P i, we minimize the following
loss function:

L(T |P) =
∑

(P,T)∈D

[− log p(T |P)+λ∗Lsa(T |P)]

(11)
where

p(T |P) =
m∏
t=1

prob(yt|gt, ct, P) (12)

where m denotes the size of T, and gt and ct are
the hidden state vector and its contextual vector at
the t-th node. We set λ as 0.01 empirically.

3.3 Discussion
The methods most relevant to our method are
GTS (Xie and Sun, 2019) and StackDecoder (Chi-
ang and Chen, 2019). However, compared with
them, our method is different from them as fol-
lows. First, our method applies a universal ex-
pression tree to represent the diverse equations un-
derlying different MWPs uniformly, which match

real-word MWPs better than GTS and StackDe-
coder which either can only handle single-var linear
MWPs without considering unknowns or can han-
dle equations set problem iteratively. Second, we
introduce subtree-level semantically-aligned reg-
ularization for better enforcing the semantic con-
straints and rationality of generated expression tree
during training, leading to higher answer accuracy,
as illustrated in Table 2.

4 Hybrid Math Word Problem Dataset

Most public datasets for automatic MWPs solv-
ing either are quite small such as Alg514 (Kush-
man et al., 2014), DRAW-1K (Upadhyay and
Chang, 2017), MaWPS (Koncel-Kedziorski et al.,
2016) or exist some incorrect labels such as Dol-
phin18K (Huang et al., 2016). An exception is
the Math23K dataset which contains 23161 prob-
lems labeled well with structured equations and
answers. However, it only contains one-unknown
linear MWPs, which is not sufficient to validate
the ability of a math solver about solving multi-
ple types of MWPs. Therefore, we introduce a
new high-quality MWPs dataset, called HMWP, in
which each sample is extracted from a Chinese K12
math word problem bank, to validate the univer-
sality of math word problem solvers and push the
research boundary of MWPs to match real-world
scenes better. Our dataset contains three types of
MWPs: arithmetic word problems, equations set
problems, and non-linear equation problems. There
are 5491 MWPs, including 2955 one-unknown-
variable linear MWPs, 1636 two-unknown-variable
linear MWPs, and 900 one-unknown-variable non-
linear MWPs. It should be noticed that our dataset
is sufficient for validating the universality of math
word problem solvers since these problems can
cover most cases about MWPs. We labeled our
data with structured equations and answers as
Math23K (Wang et al., 2017). The data statistics of
our dataset and several publicly available datasets
are shown in Table 1. From the statistics, we can
see that the #AVG EL (average equation length),
#Avg PN (average number of quantities occurred
in problems and their corresponding equations),
and #Avg Ops (average numbers of operators in
equations) are the largest among the serval publicly
available datasets. (Xie and Sun, 2019) showed the
higher these values, the more difficult it is. There-
fore, our dataset is more challenging for MWPs
solvers.

3786

Dataset # Problems # Templates # Sentences # Words # Avg EL # Avg SNI # Avg Constants # Avg Ops Problem types
Alg514 514 28 1.62k 19.3k 9.67 3.54 0.44 5.69 algebra, linear

Dolphin1878 1,878 1,183 3.30k 41.4k 8.18 2.58 0.63 4.97 linear + nonlinear
DRAW-1K 1,000 230 6.23k 81.5k 9.985 3.386 0.747 5.852 algebra, linear

MaWPS 2373 - 2373 73.3k 4.55 2.31 0.26 1.78 algebra, linear
Math23K 23,161 2,187 70.1k 822k 5.55 3.0 0.28 2.28 algebra, linear

Dolphin18k 18,460 5,871 49.9k 604k 9.19 3.15 1.09 4.96 linear + nonlinear
HMWP 5470 2779 9.56k 342k 10.73 3.42 1.35 5.96 linear + nonlinear

Table 1: Statistics of our dataset and several publicly available datasets. Avg EL, Avg SNI, Avg Constants, and Avg
Ops represent average equation length, average number of quantities occurred in problems and their corresponding
equations, average numbers of constants only occurred in equations, and average numbers of operators in equations,
respectively. The higher these values, the more difficult it is. This has been shown in (Xie and Sun, 2019).

5 Experiments

5.1 Experimental Setup and Training Details
Datasets, Baselines, and Evaluation metric.
We conduct experiments on four datasets, such
as HMWP, Alg514 (Kushman et al., 2014),
Math23K (Wang et al., 2017) and Dolphin18K-
Manual (Huang et al., 2016). The data statistics
of four datasets are shown in Table 1. The main
state-of-the-art learning-based methods to be com-
pared are as follows: Seq2Seq-attn w/ SNI (Wang
et al., 2017) is a universal solver based on the
seq2seq model with significant number identifi-
cation(SNI). GTS (Xie and Sun, 2019) is a goal-
driven tree-structured MWP solver only for one-
unknown-variable non-linear MWPs. StackDe-
coder (Chiang and Chen, 2019) is a semantically-
aligned MWPs solver. SAU-Solver w/o SSAR
and SAU-Solver are two universal tree-structured
solvers proposed in this paper without and with
subtree semantically-aligned regularization. Fol-
lowing our baselines, we use answer accuracy as
the evaluation metric: if the calculated value of
the predicted expression tree equals to the true an-
swer, it is thought of correct since the predicted
expression is equivalent to the target expression.

Model HMWP ALG514 Math23K Dolphin18K
Manual

Seq2Seq-attn w/ SNI 23.2% 16.1% 58.1% 5.9%
GTS - - 73.9% -

StackDecoder 27.4% 28.86% 66.0% 9.8%
SAU-Solver w/o SSAR (ours) 44.40% 55.44% 74.53% 11.02%

SAU-Solver (ours) 44.83% 57.39% 74.84% 11.41%

Table 2: Model comparison on answer accuracy via 5-
fold cross-validation. “-” means either the code is not
released or the model is not suitable on those datasets.

Implementation Details. We use PyTorch3 to im-
plement our model on Linux with NVIDIA RTX
2080Ti. All the words with less than five occur-
rences are converted into a special token UNK. We

3http://pytorch.org

set the dimensionality of word embedding and the
size of all hidden states for other layers as 128 and
512, respectively. But for HMWP and Dolphin18K-
Manual, we set the size of all hidden states for other
layers as 384 since the memory consumption ex-
ceeds the capacity of NVIDIA RTX 2080Ti. Our
model is trained by ADAM optimizor (Kingma
and Ba, 2015) with β1 = 0.9, β2 =0.999, and ε =
10−8. The mini-batch size is set to 32. The initial
learning rate is set to 10−3 and then decreases to
half every 20 epochs. To prevent overfitting, we
set the dropout probability as 0.5 and weight decay
as 1e−5. Finally, we set beam size as 5 in beam
search to generate expression trees.

linear
(One-VAR)

linear
(Two-VAR)

non-linear
(One-VAR) All

Num 1944 1614 1912 5470
Avg EL 10.50 12.10 9.83 10.73
Avg SNI 3.59 3.59 3.12 3.42

Avg Constants 1.21 1.41 1.45 1.35
Avg Ops 5.70 7.10 5.26 5.96

Correct number
(Retrieval-Jaccard) 222 348 618 1188

Accuracy
(Retrieval-Jaccard) 11.42% 21.56% 32.32% 21.72%

Correct number
(Seq2Seq-attn w/SNI) 244 312 711 1267

Accuracy
(Seq2Seq-attn w/SNI) 12.55% 19.33% 37.19% 23.2%

Correct number
(SAU-Solver (ours)) 593 673 1186 2452

Accuracy
(SAU-Solver (ours)) 30.50% 41.70% 62.03% 44.83%

Table 3: The data statistics and performance on differ-
ent subset of HMWP.

5.2 Results and Analyses

Answer Accuracy. We conduct 5-fold cross-
validation to evaluate the performances of baselines
and our models on all four datasets. The results
are shown in Table 2. Several observations can be
made from the results in Table 2 as follows:

First, our SAU-Solver has achieved significantly
better than the baselines on four datasets. It proves
that our model is feasible for solving multiple types

3787

Case 1: 鸡兔同笼，上数有 NUM(n0 [20])个头，下数有 NUM(n1 [50])条腿，可知鸡 数量为多少？ (An unknown number of rabbits and chickens
were locked in a cage, counting from the top, there were NUM(n0 [20]) heads, counting from the bottom, there were NUM(n1 [50]) feet. How many chickens were
locked in this cage?)
Seq2Seq: (x-n1)/n0=(x-n1)/n2; (error) SAU-Solver w/o SSAR: n0+x+4.0*x=n1; (correct) SAU-Solver: 2.0*x+4.0*(n0-x)=n1; (correct)
Case 2: NUM(n0 [1])艘轮船航行于 A、 B NUM(n1 [2])个码头之间，顺水需 NUM(n2 [5])小时，逆水需 NUM(n3 [7])小时，已知水流速度为 每
小时 NUM (n4 [5])千米，则 A、 B之间距离为 多少千米？ (NUM(n0 [1]) boat sailing between NUM(n1 [2]) docks, it takes NUM(n2 [5]) hours to sail

from A to B downstream, while NUM(n3 [7]) hours sailing upstream. Knowing the velocity of the water flow is 5 km/h, what is the distance between A and B?)
Seq2Seq: x/(n2+n1)+n1=x-/n2; (error) SAU-Solver w/o SSAR: x/n2-n4=x/n3+n4; (correct) SAU-Solver: x/n2-n4=x/n3+n4; (correct)
Case 3: 整理 NUM(n0 [1])批图书，如果由 NUM(n1 [1])个人单独做 ,要花 NUM(n2 [60])小时．现在由一部分人用 NUM(N3 [1])小时整理 ,随后
增加 NUM(n4[15])人和他们一起又做了 NUM(n5 [2])小时 ,恰好完成整理工作．假设每个人的工作效率相同，那么先安排整理的人员有
多少人？ (Given NUM(n0 [1]) stack of books, NUM(n1 [1]) student can sort them in NUM(n2 [60]) hours. In the first NUM(N3 [1]) hours, there were several
students sorting books, later, NUM(n4[15]) more students joined them, and they finished the job in another NUM(n5 [2]) hours together. If each student is as
efficient as the others, how many students were working at the beginning?
Seq2Seq: n1*(x/n2)+n5*(x+n4)/n2=1.0; (error) SAU-Solver w/o SSAR: x/n2+n5*(x+n4)/n2=1.0; (correct) SAU-Solver: x/n2+n5*(x+n4)/n2=1.0; (correct)
Case 4: 某农场老板准备建造 NUM(n0 [1])个矩形羊圈，他打算让矩形羊圈的 NUM(n1 [1])面完全靠墙，墙可利用的长度为 NUM(n2 [25])
m，另外 NUM(n3 [1])面用长度为 NUM(n4 [50]) m的篱笆围成 (篱笆正好要全部用完，且不考虑接头的部分)，若要使矩形羊圈的面积
为 NUM(n5 [300]) m ˆ NUM(n6 [2])，求垂直于墙的边长． (A farm owner plans to build a rectangle sheepfold, with NUM(n1 [1]) side against the wall.

The wall is 25 meters long, and he used NUM(n3 [1]) NUM(n4 [50])-meter-long fence to build the rest of the sheepfold (the fence should be exactly used up,
neglecting the joining part). If the area of the sheepfold is NUM(n5 [300]) m ˆ NUM(n6 [2]), find the length of the side vertical to the wall.
Seq2Seq: x*(n3-2.0*x)=n4; (error) SAU-Solver w/o SSAR: (n2-2.0*x)*(n4-2.0*x)= n5; (error) SAU-Solver: x*(n4-2.0*x)= n5; (correct)

Table 4: Typical cases. Note that the results are represented as infix traversal of expression trees which is more
readable than prefix traversal.

of MWPs. It also proves that our model is more
general and more effective than other state-of-the-
art models on the real-word scenario that need to
solve multiple types of MWPs with a unified solver.

Second, with our subtree-level semantically-
aligned regularization on training procedure,
our SAU-Solver has gained additional absolute
0.43% accuracy on HMWP, absolute 1.95% ac-
curacy on ALG514, absolute 0.31% accuracy
on Math23k, and absolute 0.39% accuracy on
Dolphin18k-Manual. This shows that subtree-level
semantically-aligned regularization is helpful for
improving subtree semantic embedding, resulting
in improving expression tree generation, especially
for the generation of the right child node. Although
StackDecoder can be a universal math word prob-
lem solver via simple operator extension, the per-
formances on HMWP, ALG514, and Dolphin18k-
Manual are very poor, since it generates expres-
sion trees independently and only considers the
semantic-aligned transformation in an expression
tree. Different from it, our SAU-Solver generates
multiple expression trees as a universal expression
tree and conducts subtree-level semantic-aligned
transformation for subsequent tree node generation
in our universal expression tree. In this way, we
can deliver the semantic information of the previ-
ous expression tree to help the generation of the
current expression tree. Therefore we can achieve
better performance than StackDecoder.

Overall, our model is more general and effec-
tive than other state-of-the-art models on multiple
MWPs and outperforms the compared state-of-the-
art models by a large margin on answer accuracy.

Performance on different types of MWPs. We

drill down to analyse the performance of Retrieval-
Jaccard, Seq2seq-attn w/SNI, and SAU-Solver
on different types of MWPs in HMWP. The data
statistics and performance results are shown in Ta-
ble 3. We can observe that our model outperforms
the other two models by a large margin on all sub-
sets. Intuitively, the longer the expression length
is, the more complex the mathematical relation-
ship of the problem is, and the more difficult it is.
And the average expression length of our dataset is
much longer than Math23K according to the data
statistics of Table 3 and Table 1. Therefore, we can
observe that the accuracy of our model on linear
(One-VAR) is lower than Math23K in Table 2.

Expression
Tree Sizes

Math23K HMWP
Correct Error Acc(%) Correct Error Acc(%)

3- 729 168 81.27% 0 0 0%
5 1872 435 81.14% 3 1 75.00%
7 620 291 68.06% 32 25 56.14%
9 147 143 50.69% 159 69 69.74%

11 66 74 47.14% 102 111 47.89%
13+ 20 66 23.26% 197 395 33.28%

Table 5: Accuracy of different expression tree size.

5.3 Error Analysis
In Table 5, we show the results of how the accuracy
changes as the expression tree size becomes larger.
We can observe that as the expression tree size be-
comes larger, our model’s performance becomes
lower. This shows that although our model can han-
dle various equations in a unified manner, it still
has limitations at predicting long equations since
longer equations often match with more complex
MWPs which are more difficult to solve. Thus, our
model still has room for improvement in reasoning,
inference, and semantic understanding. Besides,

3788

compared with performances on Math23K which
has only a few examples with complex templates,
our model achieves significant improvement on the
subset of HMWP with expression tree size 13+.
This shows that constructing datasets with abun-
dant complex examples can improve the model’s
ability to handle complex problems.

5.4 Case Study

Further, we conduct a case analysis and provide
four cases in Table 4, which shows the effective-
ness of our approach. Our analyses are summa-
rized as follows. From Case 1, Seq2Seq generates
a spurious number n2 not in problem text while
both SAU-Solver w/o SSAR and SAU-Solver pre-
dict correctly owning to the problem-specific target
vocabulary. Besides, although both SAU-Solver
w/o SSAR and SAU-Solver can generate correct
an equation, the equation generated by our SAU-
Solver is more semantically-aligned with a human
than the equation generated by SAU-Solver. From
Case 2, we can see that Seq2Seq generates an in-
valid expression containing consecutive operators
while our models can guarantee the validity of ex-
pressions since they generate expression trees di-
rectly. From Case 3, we find it interesting that
tree-based models can avoid generating redundant
operations, such as “n1*”. From Case 4, we can
see that SAU-Solver can prevent generating the
similar subtree as its left sibling when the parent
node is “*”.

6 Conclusion

We propose an SAU-Solver, which is able to solve
multiple types of MWPs, to generate the univer-
sal express tree explicitly in a semantically-aligned
manner. Besides, we also propose a subtree-level
semantically-aligned regularization to improve sub-
tree semantic representation. Finally, we intro-
duce a new MWPs datasets, called HMWP, to vali-
date our solver’s universality and push the research
boundary of MWPs to math real-world applications
better. Experimental results show the superiority
of our approach.

Acknowledgements

We thank all anonymous reviewers for their con-
structive comments. This work was supported
in part by National Key RD Program of China
under Grant No. 2018AAA0100300, National
Natural Science Foundation of China (NSFC)

under Grant No.U19A2073 and No.61976233,
Guangdong Province Basic and Applied Ba-
sic Research (Regional Joint Fund-Key) Grant
No.2019B1515120039, Nature Science Founda-
tion of Shenzhen Under Grant No. 2019191361,
Zhijiang Lab’s Open Fund (No. 2020AA3AB14),
Sichuan Science and Technology Program (No.
2019YJ0190).

References
Yefim Bakman. 2007. Robust understanding of word

problems with extraneous information. Computing
Research Repository, arXiv:math/0701393.

Ting-Rui Chiang and Yun-Nung Chen. 2019.
Semantically-aligned equation generation for
solving and reasoning math word problems. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2656–
2668. Association for Computational Linguistics.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734. Association for Computational Linguistics.

Danqing Huang, Jing Liu, Chin-Yew Lin, and Jian Yin.
2018. Neural math word problem solver with rein-
forcement learning. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 213–223. Association for Computational Lin-
guistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, and Jian
Yin. 2017. Learning fine-grained expressions to
solve math word problems. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, pages 805–814. Association
for Computational Linguistics.

Danqing Huang, Shuming Shi, Chin-Yew Lin, Jian Yin,
and Wei-Ying Ma. 2016. How well do comput-
ers solve math word problems? large-scale dataset
construction and evaluation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
887–896. Association for Computational Linguis-
tics.

Diederik P Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In international
conference on learning representations.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:

3789

A math word problem repository. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1152–1157.

Rik Koncelkedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of the
52th Annual Meeting of the Association for Compu-
tational Linguistics, volume 1, pages 271–281.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167. Associa-
tion for Computational Linguistics.

Arindam Mitra and Chitta Baral. 2016. Learning to
use formulas to solve simple arithmetic problems.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 2144–2153. Association for
Computational Linguistics.

Subhro Roy and Dan Roth. 2018. Mapping to declara-
tive knowledge for word problem solving. Transac-
tions of the Association for Computational Linguis-
tics, 6:159–172.

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xiaojiang
Liu, and Yong Rui. 2015. Automatically solving
number word problems by semantic parsing and rea-
soning. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing,
pages 1132–1142. Association for Computational
Linguistics.

Shyam Upadhyay and Mingwei Chang. 2017. Anno-
tating derivations: A new evaluation strategy and
dataset for algebra word problems. In 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 494–504.

Lei Wang, Yan Wang, Deng Cai, Dongxiang Zhang,
and Xiaojiang Liu. 2018a. Translating a math word
problem to a expression tree. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1064–1069. Associa-
tion for Computational Linguistics.

Lei Wang, Dongxiang Zhang, Lianli Gao, Jingkuan
Song, Long Guo, and Heng Tao Shen. 2018b. Math-
dqn: Solving arithmetic word problems via deep re-
inforcement learning. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, pages 5545–5552.

Lei Wang, Dongxiang Zhang, Zhang Jipeng, Xing Xu,
Lianli Gao, Bing Tian Dai, and Heng Tao Shen.
2019. Template-based math word problem solvers
with recursive neural networks. In Thirty-Third
AAAI Conference on Artificial Intelligence, pages
7144–7151.

Yan Wang, Xiaojiang Liu, and Shuming Shi. 2017.
Deep neural solver for math word problems. In Pro-
ceedings of the 2017 Conference on Empirical Meth-
ods in Natural Language Processing, pages 845–
854. Association for Computational Linguistics.

Zhipeng Xie and Shichao Sun. 2019. A goal-driven
tree-structured neural model for math word prob-
lems. In Proceedings of the Twenty-Eighth In-
ternational Joint Conference on Artificial Intelli-
gence, IJCAI-19, pages 5299–5305. International
Joint Conferences on Artificial Intelligence Organi-
zation.

Ma Yuhui, Zhou Ying, Cui Guangzuo, Ren Yun, and
Huang Ronghuai. 2010. Frame-based calculus of
solving arithmetic multi-step addition and subtrac-
tion word problems. In International Workshop on
Education Technology and Computer Science, vol-
ume 2, pages 476–479.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen. 2015.
Learn to solve algebra word problems using
quadratic programming. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 817–822. Association for
Computational Linguistics.

