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Abstract

Abstractive document summarization is usu-
ally modeled as a sequence-to-sequence
(SEQ2SEQ) learning problem. Unfortunately,
training large SEQ2SEQ based summarization
models on limited supervised summarization
data is challenging. This paper presents three
sequence-to-sequence pre-training (in short-
hand, STEP) objectives which allow us to
pre-train a SEQ2SEQ based abstractive sum-
marization model on unlabeled text. The
main idea is that, given an input text artifi-
cially constructed from a document, a model
is pre-trained to reinstate the original docu-
ment. These objectives include sentence re-
ordering, next sentence generation and masked
document generation, which have close rela-
tions with the abstractive document summa-
rization task. Experiments on two benchmark
summarization datasets (i.e., CNN/DailyMail
and New York Times) show that all three ob-
jectives can improve performance upon base-
lines. Compared to models pre-trained on
large-scale data (≥160GB), our method, with
only 19GB text for pre-training, achieves
comparable results, which demonstrates its
effectiveness. Code and models are pub-
lic available at https://github.com/
zoezou2015/abs_pretraining.

1 Introduction

Automatic document summarization is the task of
condensing a document into its shorter form with
important content preserved, which requires wide-
coverage understandings of the document, rather
than specific words or phrases. This task can be
typically classified into two categories: extractive
and abstractive document summarization. Extrac-
tive summarization (Cheng and Lapata, 2016; Nal-
lapati et al., 2017; Narayan et al., 2018a) aims to

∗ Contribution during internship at Microsoft Research.
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extract important sentences from the input docu-
ment and concatenates such extracted sentences as
the corresponding output summary. Thus, the rel-
ative orders of the selected sentences in the sum-
mary is the same as their relative orders in the in-
put document. Differently, abstractive summariza-
tion (Nallapati et al., 2016; See et al., 2017; Paulus
et al., 2018) rewrites the source text and gener-
ates the corresponding summary which may con-
tain novel words and phrases not featured in the in-
put. The output summary is closely related to the
input document. Also, summary sentences, para-
phrased from the input by the abstractive summa-
rizers, might have a different relative order com-
pared to the source text. In other words, contents
of the original document may be reordered in its
summary. Such a phenomena is defined as con-
tent reordering (see Section 3.2 for detailed defi-
nition). Statistically, we observed that around 40%
instances of the training split of our summarization
dataset have this content reordering phenomena.
Therefore, it is necessary to design a model that
is capable of reordering content. However, as far
as we know, relatively rare prior work has studied
this for abstractive summarization.

Abstractive summarization is usually framed as
a sequence-to-sequence (SEQ2SEQ) learning prob-
lem (Nallapati et al., 2016; See et al., 2017). In
this paper, we adopt the SEQ2SEQ Transformer
(Vaswani et al., 2017), which has been demon-
strated to be the state-of-the-art for SEQ2SEQ

modeling (Vaswani et al., 2017; Ott et al., 2019).
Recent studies (Song et al., 2019; Dong et al.,
2019; Lewis et al., 2019; Zhang et al., 2019a; Raf-
fel et al., 2019) have proven effectiveness of pre-
trained SEQ2SEQ Transformer models on the nat-
ural language generation tasks, such as abstractive
summarization.

Based on the above observations, with regard
to abstractive summarization, this work proposes

https://github.com/zoezou2015/abs_pretraining
https://github.com/zoezou2015/abs_pretraining
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three sequence-to-sequence pre-training (in short-
hand, STEP) objectives which can be used to pre-
train a SEQ2SEQ model on unlabeled text, namely
Sentence Reordering (SR), Next Sentence Gen-
eration (NSG), and Masked Document Genera-
tion (MDG). All three objectives are designed to
reinstate the original source text. SR learns to
recover a document with randomly shuffled sen-
tences. Given the first segment of a document,
NSG generates the next segment of the original
document. MDG learns to recover a masked doc-
ument to its original form.

After pre-training a model with our proposed
objective(s) on unlabeled documents, we fine-
tune it on supervised summarization datasets (i.e.,
CNN/DailyMail and New York Times). Experi-
ments show that, even pre-training on documents
from the training split of a summarization dataset,
our method can improve performance upon a
heavily tuned large SEQ2SEQ Transformer model
which already includes a strong pre-trained en-
coder by a large margin. By involving more data
(19GB) for pre-training, the performance is further
improved. Compared to models pre-trained with
much more data (≥160GB), we can still achieve
comparable or even higher ROUGE scores.

2 Related Work

Extractive Summarization This task aims to find
the informative sentences in a document as its
summary. This task is usually viewed as a sen-
tence ranking problem (Kupiec et al., 1995; Con-
roy and O’leary, 2001) using scores from a bi-
nary (sequence) classification model, which pre-
dicts whether a sentence is in the summary or
not. Extractive neural models (Cheng and Lap-
ata, 2016; Nallapati et al., 2017; Narayan et al.,
2018b; Zhang et al., 2018) employ hierarchical
LSTMs/CNNs as the feature learning part of the
binary (sequence) classifier, which largely out-
perform discrete feature based models (Radev
et al., 2004; Filatova and Hatzivassiloglou, 2004;
Nenkova et al., 2006). Very recently, the feature
learning part was replaced again with pre-trained
Transformer encoders (Zhang et al., 2019b; Liu
and Lapata, 2019) that lead to another huge per-
formance gain. However, extractive models have
their own limitations. For example, the extracted
sentences might be too long and redundant. Be-
sides, manually written summaries in their nature
are abstractive. Therefore, we focus on abstractive

summarization in this paper.

Abstractive Summarization This task aims to
generate a summary by rewriting a document,
which is a SEQ2SEQ learning problem. SEQ2SEQ

attentive LSTMs (Hochreiter and Schmidhuber,
1997; Bahdanau et al., 2015) are employed in
Nallapati et al. (2016) that have been extended
with copy mechanism (Gu et al., 2016), coverage
model (See et al., 2017) and reinforcement learn-
ing (Paulus et al., 2018). Liu and Lapata (2019)
used a SEQ2SEQ Transformer model with only its
encoder initialized with a pre-trained Transformer
encoder (i.e., BERT; Devlin et al. 2019). This
work proposes to pre-train the decoder together
with the encoder and then initialize both the en-
coder and decoder of a summarization model with
the pre-trained Transformer model.

There is also a line of work that bridges extrac-
tive and abstractive models with attention mecha-
nisms (Gehrmann et al., 2018; Hsu et al., 2018)
and reinforcement learning (Chen and Bansal,
2018), while our model is simpler.

Pre-training Pre-training methods draw a lot of
attentions recently. Peters et al. (2018) and Rad-
ford et al. (2019) pre-trained LSTM and Trans-
former using language modeling objectives. To
leverage the context in both directions, BERT (De-
vlin et al., 2019) is trained with the masked lan-
guage modeling and next sentence prediction ob-
jectives. SpanBERT (Joshi et al., 2020) applied
only the masked language modeling objective that
masks contiguous random spans, rather than ran-
dom tokens. XLNet (Yang et al., 2019) proposed a
permutation language modeling objective that re-
moves the independence assumption of masked to-
kens in BERT. RoBERTa (Liu et al., 2019) extends
BERT with more training data and better training
strategies. The above models focus on pre-training
an encoder or a decoder, while we propose meth-
ods to pre-train a SEQ2SEQ model (i.e., the en-
coder together with the decoder) for abstractive
summarization.

Dong et al. (2019) (UniLM) proposed a unified
language model that can be used for both natu-
ral language understanding and generation tasks,
which is pre-trained using masked, unidirectional
and SEQ2SEQ language modeling objectives. The
encoder and decoder parameters are shared. By
contrast, we pre-train a SEQ2SEQ Transformer
with separate parameters for the encoder and de-
coder. Song et al. (2019) (MASS) proposed a
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method to pre-train a SEQ2SEQ Transformer by
masking a span of text and then predicting the
masked tokens. Their pre-training task is similar
to our MDG task, but we apply a different mask-
ing strategy and predict the original text. Song
et al. (2019) tested their model on sentence-level
tasks (e.g., machine translation and sentence com-
pression), while we aim to solve document-level
tasks (e.g., abstractive document summarization).
Lewis et al. (2019) (BART) adopted the combina-
tion of text infilling and sentence permutation as
a single objective for SEQ2SEQ Transformer pre-
training. Differently, we propose three objectives
and use them individually. Specifically, MDG re-
placed each selected token with a masked token in
the input sequence. Raffel et al. (2019) (T5) stud-
ies different pre-training objectives, model archi-
tectures, and unlabeled datasets. ProphetNet (Yan
et al., 2020) predicts the next n tokens simultane-
ously. Zhang et al. (2019a) (PEGASUS) proposed
to remove/mask sentences from an input document
and learn to generate such removed/masked sen-
tences for pre-training, while NSG predicts the
following sentences of the input sequence and
MDG masks randomly selected tokens.

3 Proposed Method

3.1 Sequence-to-Sequence Learning
In this work, the task of abstractive document
summarization is modeled as a SEQ2SEQ learning
problem. We adopt the SEQ2SEQ Transformer ar-
chitecture (Vaswani et al., 2017). Given a docu-
ment X = (x1, x2, . . . , x|X|) paired with its sum-
mary Y = (y1, y2, . . . , y|Y |), we aim to learn the
model parameters θ and estimate the conditional
probability:

P (Y |X; θ) =

|Y |∏
t=1

p(yt|y<t;X; θ) (1)

where y<t stands for all tokens before position t
(i.e., y<t = (y1, y2, . . . , yt−1)). Given the whole
training set (X ,Y), this model can be trained
by maximizing the log-likelihood of the training
document-summary pairs:

L(θ;X ,Y) =
∑

(X,Y )∈(X ,Y)

logP (Y |X; θ) (2)

We first pre-train the SEQ2SEQ Transformer
model on the unlabeled text using our proposed
pre-training objectives (see Section 3.2) and then
fine-tune it on the document-summary dataset.

3.2 Pre-training Objectives
Automatic abstractive summarization requires
comprehensive understanding of the input docu-
ment and rewrites the source text into its shorter
form, where the summary is closely related to the
input, retaining important contents. Also, rewrit-
ing the document may result in content reordering.

Now, we define content reordering as follows.
For each document-summary pair, we first map
each sentence in the summary to its correspond-
ing sentence in the document by maximizing the
ROUGE score (see Appendix A more details). If
the relative orders of sentences in the summary are
different from the relative orders of their mapped
sentences in the original document, we count this
as one content reordering. According to the statis-
tics on the training split of our summarization
dataset, contents of the original documents are
reordered in their summaries for 40% of cases, ap-
proximately.

The above observations motivate us to propose
sequence-to-sequence pre-training objectives that
are capable of pre-training a SEQ2SEQ model serv-
ing the abstractive summarization task.

Sentence Reordering In sentence reordering
(SR), we first divide an unlabeled document into
multiple sentences based on full stops. Let us
change the notation of a document slightly in this
paragraph. Let X = (S1||S2|| . . . ||Sm) denote a
document, where Si is a sentence,m is the number
of sentences, and || refers to sentence concatena-
tion. The sentence index order in X can be rep-
resented as O = (1, 2, . . . ,m). We then shuffle
the document by sentences. In other words, the
items in the order O are rearranged and we obtain
a shuffled order OS = (a1, a2, . . . , am), where
1 ≤ ai ≤ m, 1 ≤ aj ≤ m, and ai 6= aj for
any i, j ∈ [1,m] and i 6= j. Concatenating sen-
tences following OS , we obtain a shuffled docu-
ment X̂S = (Sa1 ||Sa2 || . . . ||Sam). A SEQ2SEQ

model takes as input the shuffled document X̂S

and is pre-trained to reinstate the original one X ,
as demonstrated in Figure 1. The training objec-
tive is calculated as:

L(θ;X ) =
∑
X∈X

logP (X|X̂S ; θ)

There are several reasons why we design this
objective. First, a summary of a document usu-
ally consists of multiple sentences. We expect
that the model is pre-trained to learn to generate
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Figure 1: Assume a document (x1, x2, · · · , x8) contains three sentences (i.e., SENT. 1, SENT. 2 and SENT. 3). A
SEQ2SEQ Transformer model can be pre-trained with our proposed objective. It takes the transformed document
(i.e., a shuffled document, the first segment of a document, or a masked document) as input and learns to recover
the original document (or part of the original document) by generation. SR: Sentence Reordering; NSG: Next
Sentence Generation; MDG: Masked Document Generation.

long and coherent summaries (across sentences).
The output of the objective (i.e., the original docu-
ment) also contains multiple sentences. Second, as
we discussed earlier, sentence reordering (or con-
tent reordering) is necessary for summarization.
Third, abstractive summary requires reproducing
factual details (e.g., named entities, figures) from
the source document. We also expect the model to
learn to copy tokens.

Note that document rotation1 is a special case
of sentence reordering with a significant amount
of partially ordered sentences, which we believe is
a simpler objective. In this work, we only consider
the general case of sentence reordering.

Next Sentence Generation Next Sentence Gen-
eration (NSG) uses one span of text in a document
to predict its next span of text, which leverages the
natural order of text, as shown in Figure 1. Specif-
ically, we split a document into two segments (i.e.,
X̂G1 and X̂G2). Note that each segment might
contain multiple sentences. Intuitively, in a doc-
ument, sentences are highly correlated with their

1A document is randomly divided into two fragments
X = (F1||F2) using full stops. The rotated document is
X̂R = (F2||F1). Document rotation recovers X using X̂R.

preceding sentences due to the context dependent
nature of documents or language. Our intention
is to learn to generate multiple sentences and also
learn to focus on input text, which fits the doc-
ument summarization task, since either a docu-
ment or its summary usually includes multiple
sentences and they are closely related. The train-
ing objective is calculated as:

L(θ;X ) =
∑

X=(X̂G1
||X̂G2

),X∈X

logP (X̂G2 |X̂G1 ; θ)

We do not make constraints that the split point
must be the position right after a full-stop sym-
bol, which ensures full sentences for each seg-
ment. Instead, the split point can be at any position
within the document, which may lead to incom-
plete sentences in segments. We intend to force the
model to understand input text without complete
information. Similarly, as a common wisdom in
abstractive summarization, documents, as input,
are truncated to a fixed number of tokens, which
may also contain incomplete sentences. This set-
ting allows to reduce mismatches between the pre-
training and fine-tuning input.
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Masked Document Generation The third ob-
jective is Masked Document Generation (MDG)
that learns to reinstate a document with a masked
span of tokens (see Figure 1). A document is de-
noted as X = (x1, x2, · · · , x|X|). We randomly
sample the length of the span l from a discrete uni-
form distribution U(a, b) (a and b are distribution
parameters) and the span starting position k from
another discrete uniform distribution U(1, |X| −
l + 1). Thus,M = (xk, xk+1, · · · , xk+l−1) is the
text span to be masked. Let X̂M denote the docu-
ment after the application of our masking strategy.
The training objective is calculated as:

L(θ;X ) =
∑
X∈X

logP (X|X̂M ; θ)

One straightforward masking strategy is to re-
place each token residing in M with a special
[MASK] token. However, we refrain from doing
so because of the following two reasons. Usually,
[MASK] tokens will not appear in downstream
tasks. Second, similar to SR, avoiding replacing
every token with [MASK] also helps our model
learn the ability of copying tokens from the input
while preserving the ability of generating novel to-
kens. Thus, in the sub-sequenceM, each token is
processed with one of the three strategies: 1) re-
placed with the [MASK] token; 2) replaced with
a random token; 3) remains unchanged. Inspired
by BERT (Devlin et al., 2019), for 80% of selected
tokens, we follow strategy 1). In 10% of cases, we
employ strategy 2) and we use strategy 3) for the
remaining 10% of cases.

During pre-training, we consider two settings.
Setting one: pre-training a model with one sin-
gle objective, i.e., SR, NSG or MDG, resulting in
three different pre-trained models. Setting two:
employing all three objectives. For each training
batch, we randomly choose one objective and each
objective is used for 1/3 of the training time, ob-
taining one model (i.e., ALL, see Section 5).

For better reference, we name our model as
STEP (i.e., sequence-to-sequence pre-training)
that can be used to denote a SEQ2SEQ model pre-
trained using our proposed objective(s).

3.3 Fine-tuning

After a SEQ2SEQ model is pre-trained, we fine-
tune the model on abstractive document summa-
rization datasets. In other words, we continue to
train the model on the document-summary pairs.

4 Experimental Setup

4.1 Datasets

CNNDM The CNNDM dataset contains news
articles and the associated highlights (i.e., sum-
maries) collected from the CNN and Daily Mail
Online websites2. Articles were collected starting
in April 2007 for CNN and June 2010 for Daily
Mail, both until the end of April 2015. The valida-
tion data is from March 2015, and the test data
from April 2015 (Hermann et al., 2015). Fol-
lowing previous work (See et al., 2017; Liu and
Lapata, 2019), we use the non-anonymized ver-
sion of CNNDM. Specifically, we preprocessed
the dataset with the publicly available scripts3 pro-
vided by See et al. (2017) and obtained 287,226
document-summary pairs for training, 13,368 for
validation and 11,490 for test.

NYT The NYT dataset (Sandhaus, 2008) is a
collection of articles along with multi-sentence
summaries written by library scientists. Following
the preprocessing procedures described in (Durrett
et al., 2016; Liu and Lapata, 2019), the test set is
constructed by including all articles published on
January 1, 2007 or later, which contains 9,076 arti-
cles. The remaining 100,834 articles are split into
a training set of 96,834 examples and a validation
set of 4,000 examples. Following (Durrett et al.,
2016), we also removed articles whose summaries
contain less than 50 words from the test set, and
the resulting test set contains 3,452 examples.

GIGA-CM To pre-train our model with the ob-
jectives introduced in Section 3.2, following the
procedures in Zhang et al. (2019b), we created the
GIGA-CM dataset, which contains only unlabeled
documents. The training set of GIGA-CM is com-
posed of 6,521,658 documents sampled from the
English Gigaword dataset4 and the training docu-
ments in CNNDM, resulting in 19GB text for pre-
training. We used the 13,368 documents in the
validation split of CNNDM as the validation set.
Note that the Gigaword dataset overlaps with the
NYT dataset and we therefore excluded the test set
of NYT from the training set of GIGA-CM.

Table 1 lists the number of document-summary
pairs (for CNNDM and NYT) and unlabeled doc-
uments (for GIGA-CM). For CNNDM, NYT and

2https://edition.cnn.com and https://dailymail.co.uk
3https://github.com/abisee/cnn-dailymail
4https://catalog.ldc.upenn.edu/LDC2012T21
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Dataset Training Validation Test

CNNDM 287,226 13,368 11,490
NYT 96,834 4,000 9,076
GIGA-CM 6,521,658 13,368 -

Table 1: The number of document-summary pairs (for
CNNDM and NYT) and unlabeled documents (for
GIGA-CM).

GIGA-CM datasets, we segmented and tokenized
documents and/or summaries (GIGA-CM only
contains documents) using the Stanford CoreNLP
toolkit (Manning et al., 2014). We further applied
the UTF8 based BPE (Sennrich et al.; Radford
et al., 2019) to reduce the vocabulary size. As
a common wisdom in abstractive summarization,
documents and summaries in CNNDM and NYT
are usually truncated to 512 and 256 tokens, re-
spectively.

We leverage unlabeled documents differently
for different pre-training objectives. We first split
each document into 512-token pieces if it contains
more than 512 tokens (pieces or documents with
less than 512 tokens are removed). In SR and
MDG, we use the piece after transformation to
predict its original form. We set the minimum and
maximum masked length a = 100 and b = 256 in
MDG individually. In NSG, each piece is used to
predict its next 256 tokens.

4.2 Implementation Details

As mentioned in Section 3, we adopt the SEQ2SEQ

Transformer model (Vaswani et al., 2017) as our
backbone architecture. The purpose of releasing
large pre-trained models is to reuse so that the
community can avoid high computational costs.
Hence, similar to previous work (Liu and Lap-
ata, 2019), our encoder is initialized with a pre-
trained model, i.e., RoBERTaLARGE model5 (Liu
et al., 2019), and therefore they share the same ar-
chitecture. Specifically, the encoder is a 24-layer
Transformer. Each layer has 16 attention heads
and its hidden size and feed-forward filter size are
1,024 and 4,096, respectively. The decoder is shal-
lower with 6 layers and is randomly initialized.
The number of total trainable model parameters is
585M. The hidden size and number of attention
head of the decoder are identical to those of the
encoder, but the feed-forward filter size is 2,048.
We use a smaller filter size in the decoder to re-

5We tried RoBERTaBASE and obtained inferior results.

duce the computational and memory cost. The
dropout rates of all layers in the encoder are set
to 0.1 and all dropout rates in the decoder are set
to 0.3. Our models are optimized using Adam
(Kingma and Ba, 2015) with β1 = 0.9, β2 = 0.98.
The other optimization hyper-parameters for pre-
training and fine-tuning are different. In the pre-
training stage, the encoder is initialized with a
pre-trained model while the decoder is randomly
initialized. Therefore, similar to Liu and Lapata
(2019), we used two separate optimizers for the
encoder and decoder. The peak learning rates of
the encoder and decoder are set to 2e − 5 and
1e − 4 with 10,000 warmup steps, respectively.
We also adopted the same learning rate schedule
strategies as in Vaswani et al. (2017). We used
smaller batch sizes for datasets with less examples
(i.e., 1,024 for GIGA-CM, 256 for CNNDM and
128 for NYT) to ensure each epoch has sufficient
number of model updates. We trained our models
until their convergence of validation perplexities
(around 30 epochs on GIGA-CM, 60 epochs on
CNNDM and 40 epochs on NYT). One epoch on
GIGA-CM takes around 24 hours with 8 Nvidia
Tesla V100 GPUs. The time costs for different
pre-training objectives are close.

We highlight the parameters used in the fine-
tuning stage that are different from the pre-training
stage. Others remain the same. The learning rates
for both the encoder and decoder are set to 2e-5
with 4,000 warmup steps, since both the encoder
and decoder are already pre-trained. We trained
our models for 30 epochs on CNNDM and 50
epochs on NYT, respectively. We selected the
best model with regard to ROUGE score on the
validation set. During decoding, similar to Liu
and Lapata (2019); Dong et al. (2019), we applied
beam search with beam size of 5. We also con-
ducted experiments on the validation set of CN-
NDM with different beam sizes (i.e., 1 to 10). Ac-
cording to ROUGE-L, beam=5 is indeed optimal.
Detailed results with different beam sizes are in-
cluded in the Appendix B. Following Paulus et al.
(2018), we also blocked repeated trigrams dur-
ing beam search and tuned the minimum summary
length on the validation set in the range of [30, 80].
The search range of minimum summary length
was empirically set according to the summaries of
training split of CNNDM, where the average and
medium minimum lengths are both around 55. We
used step size of 5 to get quick feedback. Similar
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to the pre-training process, the datasets with less
instances were fine-tuned with smaller batch sizes
(i.e., 64 for NYT and 768 for CNNDM).

5 Results

5.1 Automatic Evaluation

We used ROUGE (Lin, 2004) to measure the
quality of different summarization model out-
puts. We reported full-length F1 based ROUGE-
1, ROUGE-2 and ROUGE-L scores on CN-
NDM, while we used the limited-length re-
call based ROUGE-1, ROUGE-2 and ROUGE-
L on NYT, following Durrett et al. (2016).
The ROUGE scores are computed using the
ROUGE-1.5.5.pl script6.

Models in Comparison Lead3 is a baseline
which simply takes the first three sentences of a
document as its summary. BERTExt (Liu and
Lapata, 2019) is an extractive model fine-tuned
on BERT (Devlin et al., 2019) that outperforms
other extractive systems. PTGen (See et al.,
2017), DRM (Paulus et al., 2018), and DCA
(Celikyilmaz et al., 2018) are SEQ2SEQ learn-
ing based models extended with copy and cover-
age mechanism, reinforcement learning, as well
as deep communicating agents individually. Bot-
tomUp (Gehrmann et al., 2018) assisted sum-
mary generation with a word prediction model.
BERTAbs (Liu and Lapata, 2019) and UniLM
(Dong et al., 2019) are both pre-training based
models and are trained based on BERT (Devlin
et al., 2019). We also implemented four ab-
stractive models as our baselines. Transformer-
S2S is a 12-layer SEQ2SEQ Transformer with ran-
dom initialization. When we replaced the en-
coder of Transformer-S2S with ROBERTABASE or
ROBERTALARGE (Liu et al., 2019), we obtain two
baselines, ROBERTABASE-S2S and ROBERTA-
S2S, respectively. Following Liu et al. (2019),
we further train the ROBERTALARGE on the docu-
ments of training split of CNNDM for 60 epochs,
same as the number of epochs for our models
(indicated as “In-domain”). We replaced the en-
coder of Transformer-S2S with this further trained
model, resulting in ROBERTACONT-S2S.

Results on CNNDM The results on the CN-
NDM are listed in Table 2. The first and sec-
ond blocks show results of previous extractive and

6https://github.com/bheinzerling/pyrouge.git

Model R-1 R-2 R-L

Extractive

Lead3 40.34 17.70 36.57
BERTExt (Liu and Lapata, 2019) 43.85 20.34 39.90

Abstractive

PTGen (See et al., 2017) 39.53 17.28 36.38
DRM (Paulus et al., 2018) 39.87 15.82 36.90
BottomUp (Gehrmann et al., 2018) 41.22 18.68 38.34
DCA (Celikyilmaz et al., 2018) 41.69 19.47 37.92
BERTAbs (Liu and Lapata, 2019) 42.13 19.60 39.18
UniLM (Dong et al., 2019) 43.47 20.30 40.63
TRANSFORMER-S2S 40.43 17.66 37.44
ROBERTABASE-S2S 42.30 19.29 39.54
ROBERTA-S2S 43.06 19.70 40.16
ROBERTACONT-S2S 42.29 19.27 39.56

Ours

STEP (In-domain)

SR 43.77∗ 20.78∗ 40.92∗

NSG 43.48∗ 20.70∗ 40.72∗

MDG 43.72∗ 20.77∗ 40.88∗

ALL 43.75∗ 20.81∗ 40.99∗

STEP (GIGA-CM)

SR 44.03∗ 21.13∗ 41.20∗

NSG 44.03∗ 21.02∗ 41.18∗

MDG 44.07∗ 20.97∗ 41.22∗

ALL 44.06∗ 21.07∗ 41.24∗

Table 2: Results on the test split of CNNDM using full-
length F1 based ROUGE-1 (R-1), ROUGE-2 (R-2) and
ROUGE-L (R-L). ∗ indicates significant improvements
(p < 0.05 measured with the ROUGE script) compared
to models in the first two blocks.

abstractive models, respectively. Results of ours
are all listed in the third block. ROBERTABASE-
S2S outperforms Transformer-S2S by nearly 2
ROUGE points. ROBERTA-S2S further improves
the performance. This shows the effectiveness of
the pre-trained encoders.

Then, we study the effects of different pre-
training objectives (see Section 3.2). We first pre-
train a SEQ2SEQ Transformer model (the sizes of
our model and ROBERTA-S2S are identical) on
unlabeled documents of CNNDM training split
to get quick feedback7, denoted as “STEP (In-
domain)”. From the top part of the third block
in Table 2, we can see that Sentence Reorder-
ing (SR), Next Sentence Generation (NSG) and
Masked Document Generation (MDG) can all
improve ROBERTABASE-S2S and RoBERTa-S2S
significantly measured by the ROUGE script8. In-
terestingly, even though we merely use the in-
domain training split (around 1GB), our method
still significantly outperforms UniLM (Dong et al.,
2019) that is pre-trained on 16GB data. Compared
to STEP (In-domain) (e.g., pre-training with SR)

7One epoch takes 3 hours on CNNDM and 0.5 on NYT.
8According to the ROUGE script, ±0.22 ROUGE almost

always means a significant difference with p < 0.05.
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Model R-1 R-2 R-L

Extractive

Lead3 39.58∗ 20.11∗ 35.78∗

BERTExt (Liu and Lapata, 2019) 46.66∗ 26.35∗ 42.62∗

Abstractive

PTGen (See et al., 2017) 43.71∗ 26.40∗ -
DRM (Paulus et al., 2018) 42.94∗ 26.02∗ -
BERTAbs (Liu and Lapata, 2019) 49.02∗ 31.02∗ 45.55∗
TRANSFORMER-S2S 35.75∗ 17.23∗ 31.41∗

ROBERTA-S2S 45.92 ∗ 29.48∗ 42.73∗

Ours

STEP (In-domain)

SR 48.57∗ 30.81∗ 45.00∗

NSG 48.28∗ 30.33∗ 44.79∗

MDG 48.44∗ 30.74∗ 45.01∗

ALL 48.70∗ 30.93∗ 45.12∗

STEP (GIGA-CM)

SR 50.03∗ 32.12∗ 46.25∗
NSG 49.67∗ 31.82∗ 45.97∗

MDG 49.40∗ 31.45∗ 45.60∗

ALL 49.57∗ 31.81∗ 45.87∗

Table 3: Results on the test set of NYT dataset using
limited-length recall based ROUGE. ∗ indicates sig-
nificant improvements (p < 0.05 measured with the
ROUGE script) to models in the first two blocks.

with ROBERTACONT-S2S, although the encoders
of such two models are pre-trained on the same
corpus for the same epochs, our model achieves
better performance. This shows that the perfor-
mance gains mainly result from our proposed ob-
jectives for pre-training the decoder together with
the encoder. Training RoBERTa longer may im-
prove understanding tasks (Liu et al., 2019), but no
evidence shows longer training time for RoBERTa
may improve generation performance.

When we pre-train the SEQ2SEQ model on
even larger dataset (i.e., GIGA-CM in the size of
19GB), indicated as STEP (GIGA-CM), the re-
sults are further improved and our method outper-
forms all models under comparison, as listed in the
bottom part of Table 2.

Results on NYT Table 3 presents results on
NYT dataset. Following the same evaluation pro-
tocol as Durrett et al. (2016), we adopted the
limited-length recall based ROUGE, where we
truncated the predicted summaries to the length of
the gold ones. Again, the first and second blocks
show results of previous extractive and abstractive
models, respectively. Results of our models are
listed in the third block. Similar to the trends in
CNNDM, our method leads to significant perfor-
mance gains (with p < 0.05).

Comparisons among Objectives Among all
three pre-training objectives, SR works slightly

Model Corpus Size R-1 R-2 R-L

T5 750GB 43.52∗ 21.55∗ 40.69∗

PEGASUS (C4) 750GB 43.90∗ 21.20∗ 40.76∗

PEGASUS (HugeNews) 3,800GB 44.17∗ 21.47∗ 41.11∗

BART 160GB 44.16∗ 21.28∗ 40.90∗

ProphetNet (160GB) 160GB 44.20∗ 21.17∗ 41.30∗

ProphetNet (16GB) 16GB 43.68∗ 20.64∗ 40.72∗

UniLM 16GB 43.47∗ 20.30∗ 40.63∗

STEP 19GB 44.03∗ 21.13∗ 41.20∗

Table 4: Results on the CNNDM test split of models
pre-trained on different corpora. ∗ indicates significant
differences from our model.

better than the other two objectives (i.e., NSG
and MDG). We also tried to randomly use all the
three objectives during training with 1/3 probabil-
ity each (indicated as ALL). Interestingly, we ob-
served that, in general, ALL outperforms all three
objectives when employing unlabeled documents
of training splits of CNNDM or NYT, which
might be due to limited number of unlabeled doc-
uments of the training splits. After adding more
data (i.e., GIAG-CM) for pre-training, SR con-
sistently achieves the highest ROUGE-2 on both
CNNDM and NYT. We conclude that SR is the
most effective pre-training objective for abstrac-
tive summarization since sentence reordering ob-
jective fits content reordering and it requires com-
prehensively understanding a document in a wide
coverage, going beyond individual words and sen-
tences, which is highly close to the essence of ab-
stractive document summarization.

We put the performance of our models on the
validation splits of CNNDM and NYT in the Ap-
pendix B.

Comparison to Models Pre-trained with Large-
scale Corpora It is worth noting that several
models have been released recently, which are pre-
trained using various corpora much larger than
ours, as listed in Table 4 (top part). T5 (Raffel
et al., 2019) introduced C4 (750GB) as its pre-
training corpus. PEGASUSLARGE has two ver-
sions that are pre-trained on C4 and HugeNews
(3,800GB), respectively. Both BART (Lewis et al.,
2019) and ProphetNet (160GB) (Yan et al., 2020)
are pre-trained on a 160GB corpus introduced by
Liu et al. (2019). We compare our best preform-
ing model STEP (i.e., pre-training on the GIGA-
CM dataset using SR objective) with such mod-
els and focus on the performance on the CN-
NDM which is the well-known benchmark for ab-
stractive summarization. We highlight the high-
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est ROUGE scores in Table 4 using bold font and
use the symbol ∗ to indicate the models that per-
form significantly different from STEP. Both T5
and PEGASUS (HugeNews) achieve significantly
higher ROUGE-2 scores than our model. How-
ever, we obtain higher ROUGE-1 and ROUGE-L
scores. On the other hand, we also consider mod-
els pre-trained on the relatively small-scale cor-
pus. Following BERT (Devlin et al., 2019), both
ProphetNet (16GB) (Yan et al., 2020) and UniLM
(Dong et al., 2019) use the same 16GB text for pre-
training. As listed in Table 4 (bottom part), our
model significantly outperforms such two models.

5.2 Human Evaluation
Since summaries generated by abstractive models
may produce disfluent or ungrammatical outputs,
we also evaluated abstractive systems by eliciting
human judgements. We compared our best pre-
forming model (i.e., pre-training on the GIGA-
CM dataset using SR objective) with human refer-
ences (denoted as Gold), as well as several strong
baselines whose system outputs are available to
us, including RoBERTa-S2S, and two pre-training
based models, i.e., BERTAbs (Liu and Lapata,
2019) and UniLM (Dong et al., 2019)9. 50 doc-
uments are randomly sampled from the test split
of CNNDM. 10 participants are presented with a
document and a list of outputs generated by differ-
ent abstractive summarization systems. Then they
are asked to rank the outputs of these systems from
best to worst according to informativeness (does
the summary capture the informative part of the
document?), fluency (is the summary grammati-
cal?), and succinctness (does the summary express
the document clearly in a few words?) We report
the proportions of system rankings and mean rank
(lower is better) in Table 5. The output of STEP
is selected as the best for the 23% of cases and we
obtained lower mean rank than all systems except
for Gold, which shows the participants’ preference
for our model. We further converted ranking num-
bers into ratings (i.e., rank i is converted into 6−i)
and applied the student t-test on the ratings. Ours
is significantly better than all other systems (ex-
cept for Gold) in comparison with p < 0.05. How-
ever, it still lags behind human. One possible rea-
son is that our system (as well as other systems)
only takes the first 512 tokens of a long document

9Outputs of BERTAbs and UniLM are publicly avail-
able at https://github.com/nlpyang/PreSumm
and https://github.com/microsoft/unilm

Systems 1st 2nd 3rd 4th 5th MR

BERTAbs 0.11 0.15 0.17 0.26 0.31 3.50
UniLM 0.12 0.16 0.20 0.24 0.29 3.43
ROBERTA-S2S 0.17 0.21 0.20 0.20 0.21 3.07
STEP 0.23 0.23 0.23 0.18 0.14 2.77
Gold 0.37 0.25 0.20 0.12 0.05 2.12

Table 5: Human evaluation results: proportions of sys-
tem rankings. MR: mean rank (the lower the better).

as input and thus may lose information residing in
the following tokens.

Qualitative analysis with generated examples
are illustrated in the Appendix C.

6 Conclusion

We proposed three sequence-to-sequence pre-
training objectives, including sentence reordering,
next sentence generation, and masked document
generation. All those objectives have relations
with abstractive summarization task and are de-
signed based on reinstating the source text. A
SEQ2SEQ model for abstractive document sum-
marization can be pre-trained using such objec-
tives and then fine-tuned on the summarization
dataset. Compared to models pre-training on the
even larger corpora (≥160GB), our method, with
only 19GB for pre-training, can still achieve com-
parable and even better performance. In the fu-
ture, we would like to investigate other objectives
to pre-train SEQ2SEQ models for abstractive sum-
marization.
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A Additional Setup Details

Statistics for Content Reordering Recall that
it is not an unusual case that a human rewrites a
document to summarize its most important infor-
mation yet does not track the ordering in which
how such information is described in the docu-
ment. This phenomena is defined as content re-
ordering as follows. For each document-summary
pair, we first map each sentence in the summary
to one sentence in the document by maximizing
the ROUGE-2 score. If the relative orders of sen-
tences in the summary are different from the rela-
tive orders of their mapped sentences in the orig-
inal document, we count this as one content re-
ordering.

We did statistics of such cases over the training
and validation splits of CNNDM dataset. To be
specific, we borrow the sentence annotations from
extractive summarization (Zhang et al., 2018;
Zhou et al., 2018; Zhang et al., 2019b) that con-
sider extractive summarization as a sentence clas-
sification task. The sentences in a document that
maximize ROUGE-2 score (Lin, 2004) against the
human references are labeled as True while other
sentences are assigned False. Like previous
extractive summarization systems (Zhang et al.,
2018, 2019b), we also concatenate sentences with
label True in a document as its associated sum-
mary. For each sentence in a summary, we search
for its string closet sentence in its associated doc-
ument according to the count of overlapped bi-
grams. We found that, for some instances, the
relative orders of sentences in the summary is not
consistent with the relative orders of their closet
sentences appearing in the document. In practice,
we found that 38.1% instances in the training split
and 40.5% instances in the validation set have this
phenomenon.

B Additional Results

Results on Validation Set The performance of
our proposed models on the validation splits of
CNNDM and NYT are listed in Table 8 and 9, re-
spectively.

Results on Validation Set of CNNDM with dif-
ferent beam sizes Table 6 lists the ROUGE-L
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Beam Size 1 2 3 4 5 6 7 8 9 10

ROUGE-L 41.16 41.78 41.85 41.87 41.88 41.83 41.84 41.83 41.82 41.83

Table 6: ROUGE-L results on the validation set of CNNDM with different beam sizes.

Model MNLI SST QQP QNLI STS RTE MRPC CoLA

RoBERTa 90.2 96.4 92.2 94.7 92.4 86.6 90.9 68.0
STEP Encoder 89.6 95.0 86.8 91.6 91.5 81.9 92.4 65.5

Table 7: Results on GLUE

Model R-1 R-2 R-L

STEP (In-domain)

SR 44.37 21.30 41.60
NSG 44.12 21.29 41.39
MDG 44.36 21.37 41.59
ALL 44.28 21.33 41.54

STEP (GIGA-CM)

SR 44.63 21.59 41.88
NSG 44.61 21.58 41.89
MDG 44.59 21.48 41.81
ALL 44.46 21.47 41.77

Table 8: Results on the validation split of CNNDM us-
ing full-length F1 based ROUGE-1 (R-1), ROUGE-2
(R-2) and ROUGE-L (R-L).

Model R-1 R-2 R-L

STEP (In-domain)

SR 46.58 28.12 42.62
NSG 46.61 27.95 42.71
MDG 46.64 28.19 42.78
ALL 47.04 28.39 43.11

STEP (GIGA-CM)

SR 47.81 29.12 43.71
NSG 47.60 29.02 43.51
MDG 47.61 29.08 43.56
ALL 47.68 29.13 43.50

Table 9: Results on the validation set of NYT dataset
using limited-length recall based ROUGE.

results on the validation set of CNNDM with dif-
ferent beam sizes for the beam search during de-
coding. Beam size of 5 gives the highest ROUGE-
L score. Thus, we use beam= 5 in this work.

Results on XSum Different from CNNDM
and NYT, XSum consists of 226,711 online
news articles extracted from British Broadcast-
ing Corporation (BBC), each annotated with
a short, one-sentence news summary, answer-
ing the question “What is the article about?”.
The same split (204,045/11,332/11,334 for train-
ing/validation/testing) and preprocessing proce-
dures described in the work of Narayan et al.
(2018a) are adopted to make direct comparisons.

Model R-1 R-2 R-L

Extractive

Lead3 16.30∗ 1.60∗ 11.95∗

Abstractive

PTGen (See et al., 2017) 28.10∗ 8.02∗ 21.72∗

TCONVS2S (Narayan et al., 2018a) 31.89∗ 11.54∗ 25.75∗

BERTAbs (Liu and Lapata, 2019) 38.81∗ 16.50∗ 31.27∗

TRANSFORMER-S2S 29.41∗ 9.77∗ 23.01∗

ROBERTA-S2S 43.54∗ 20.49∗ 35.75∗

Ours

STEP 43.02∗ 20.11∗ 35.34∗

Table 10: Results on the test split of XSum using full-
length F1 based ROUGE-1 (R-1), ROUGE-2 (R-2) and
ROUGE-L (R-L).

Table 10 lists results on the XSum. Here, we
report our model pre-trained using SR objective
on the in-domain pre-training corpus, indicated as
“STEP”. As we can see that, after pre-training,
STEP does not give performance gain. One possi-
ble reason is that the summary of XSum contains
only one sentence. The SR objective might not be
helpful for this dataset.

Results on GLUE We also apply the encoder of
our best performing model to the GLUE tasks (?),
as listed in Table 7. Compared to RoBERTa (Liu
et al., 2019), the encoder of our best performing
model does not consistently achieve higher results,
which demonstrates that the improvements of our
models on the abstractive summarization task do
not come from a better encoder.

C Examples of System Outputs

Table 11 and 12 demonstrate three output exam-
ples of various systems, including BERTAbs (Liu
and Lapata, 2019), UniLM (Dong et al., 2019),
gold standard summaries (human references, de-
noted as Gold), the ROBERTA-S2S baseline, and
our best performing model. Table 11 shows an ex-
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ample that the outputs of systems BERTAbs and
UniLM copied a sentence from the input article,
while our model generates summaries by rewrit-
ing sentences. Table 12 lists an instance, where
the summary generated by the system UniLM con-
tains an incomplete sentence.
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Article (CNN) In response to reports of big banks threatening to withhold campaign funds from Senate Democrats, Sen.
Elizabeth Warren last week offered a defiant response: ”Bring it on.” Warren said she isn’t going to slack off on her
calls for breaking up banks and other measures to rein in Wall Street. As Hillary Clinton prepares to officially launch
her presidential campaign this month, she will need to make a choice about how much to highlight issues relating to
economic inequality. Former Maryland Gov. Martin O’Malley, who is also running for the Democratic nomination,
is trying to steal Clinton’s thunder by talking about the problems of disproportionate wealth. In other words, there
are many signs that Democrats are planning to take on the big issue of economic inequality. But in other recent news
, the likelihood that New York’s Chuck Schumer will replace Harry Reid as leader of the Senate Democrats means
the dreams of a more economically leftward party are crashing into political reality. While Schumer has been a very
effective Democrat and skilled legislative leader, he is also a Wall Street Democrat who has spent much of his time
courting and protecting powerful financial interests who run one of the dominant industries in his state. He is not
alone. Even at his most progressive moments, President Barack Obama relied on Wall Street donations for both of
his campaigns. Despite all the talk from conservatives about left-wing ”socialism” in the White House, the financial
community has been willing to open its coffers to Democrats without much concern, even in the 2012 election.
Democratic populism can’t really work within the current campaign finance system. The enormous pressures for
parties to raise funds in campaigns has for many decades created pressure on Democrats, despite their political base,
to court big donors. During the 1980s, California Democrat Tony Coelho, serving as the chairman of the Democratic
Congressional Campaign Committee and then as majority whip, made a strong appeal to savings and loans executives
before the crash of the industry to catch up to Republicans who had been outflanking them in raising money. The
Democrats were, and have continued to, losing their traditional base of campaign support – organized labor – which
had been a central source of campaign muscle since the 1930s, providing money and campaign assistance during
campaigns. Without organized labor to serve as their foundation and with the pressure for raising private funds
increasing, many Democrats concluded they needed business by their side. Democrats running for president have
made the same kind of choices. In 2008, Obama disappointed many supporters upon becoming the first president to
abandon the post-Watergate public finance system for campaigns altogether, preferring to raise money himself for the
general campaign. While small donors were enormously important to his victories, so too were business and Wall
Street executives. At the height of the financial crash, when public sentiment had clearly turned against Wall Street,
the administration agreed to a financial regulation bill (Dodd-Frank) that was structured in such a way as to give
powerful interests more than enough opportunity to limit the bite over the coming years. Wall Street, with an army
of counsel, succeeded in eroding the impact of the legislation. Not only does the acceptance of our campaign finance
system limit the policy choices Democrats can make, but it also greatly damages the party’s brand name. As The
Washington Post reported, the scandal that might bring down New Jersey Democratic Sen. Robert Menendez is the
first involving large scale super PAC donations. At the heart of the story is almost $600,000 that physician Salomon
Melgen gave to Senate Majority PAC, possibly in exchange for favors. This is not simply some sort of accommodation
of Democrats to the corporate system. They don’t have much of a choice. Without these funds, they won’t be able
to compete. In this election cycle, independent campaign donors are causing a huge stir. In conservative circles, the
Koch brothers and their allies are throwing around enormous amounts of money to candidates who will support their
deregulatory agenda. Individual donors such as Las Vegas gambling magnate Sheldon Adelson are causing ripples
every time candidates speak, pressuring them to adjust their agenda. Democrats have found their own magnates for
political support, such as Tom Steyer and George Soros. This is why campaign finance reform is so important, Without
Congress changing the fundamental dynamics, there won’t be much room for populism to thrive. Even if Democrats
select someone like a Elizabeth Warren as their candidate or Hillary Clinton decides to move sharply to the left on
economic policy, there won’t be much room for reform when the time of governance actually starts. The Democratic
Party needs Wall Street more than it needs to take a stand against Wall Street. Those are the facts on the ground. If
Democrats really want to take on Wall Street and tackle economic inequality, they first have to bring about reform of
the campaign finance system. If campaigns were publicly funded or there were more stringent limits on independent
expenditures, Wall Street would have much more trouble achieving disproportionate influence. Reform could level
the playing field. More often than not, campaign finance reform is an issue that gets sidetracked with little more than
some pro forma words of support. A more populist economic agenda that revolved around progressive taxation and
substantial public assistance to strengthen the middle class can only work in a different kind of political system. If
things stay the same, Democrats can only continue to win elections by turning to their corporate and financial base of
support.

BERTAbs julian zelizer: sen.elizabeth warren said she isn’t going to slack off on her call for breaking up banks. he says the
likelihood that new york’s chuck schumer will replace harry reid as leader of the senate democrats. zelizer: democratic
populism can’t really work within the current campaign finance system

UniLM Julian Zelizer: Democratic populism can’t really work within the current campaign finance system. He says the
pressure for parties to raise funds in campaigns has created pressure on Democrats to court big donors. He says even
at his most progressive moments , President Barack Obama relied on Wall Street donations for both campaigns. He
says Obama ’s decision to abandon the post-Watergate public finance system

ROBERTA-S2S Julian Zelizer: Sen. Elizabeth Warren isn’t going to slack off on Wall Street. Zelizer : Democrats are planning to take
on the big issue of economic inequality. He says Democrats have lost their traditional base of campaign support –
organized labor – and money – in their campaigns.

STEP Julian Zelizer: Democrats are planning to take on the big issue of economic inequality. Zelizer: Democratic populism
can’t work within the current campaign finance system. He says Democrats have lost traditional base of campaign
support.

Gold Julian Zelizer: Elizabeth Warren was defiant about Wall Street, but Hillary Clinton likely won’t be. Zelizer: The
Democrats need Wall Street’s campaign donations to be competitive in 2016.

Table 11: An example article sampled from the test splitting of CNNDM, paired with a list of summaries generated
by different systems. We highlight (with bold) the sentences in the summaries that are copied from the article.
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Article (CNN) Hillary Clinton is finally announcing her candidacy for the 2016 presidential election. Although she has
watched her standing in the polls sag in recent months, there is likely to be a boost in the days that follow the
announcement. For Democrats, there is ample reason to be excited about Clinton’s run for the presidency. She is
certainly one of the strongest candidates in many decades. She brings to the table extensive political and policy
experience, a combination of skills that is often lacking. She has been through some of the roughest partisan wars
and emerged stronger than ever before. She has a keen sense about the nature of the modern news media, how to
use it to her advantage and how to survive scandal frenzies. She is a hardened, tough partisan who will not shy away
from Republican attack. Americans have many positive memories of Clinton name, given the booming economy of
the late 1990s during Bill Clinton’s presidency. If Hillary Clinton puts together an effective campaign, she could
be unbeatable in the Democratic primaries as well as in the general election. However, during the buildup to her
final decision, some of her weaknesses have also been exposed. Clinton doesn’t want to end up like Vice President
Al Gore in 2000. Although he did relatively well in the final election (with many Americans believing that he did
actually defeat George W. Bush) he didn’t generate much energy once the campaign started. Although he too was
touted as a ”perfect” candidate who was the ideal person for the job, something seemed stiff and inauthentic when he
actually hit the trail. He seemed to freeze when the television cameras were rolling. Gore had trouble connecting with
voters, and he seemed to remake his image constantly. His biggest asset ended up being that he was viewed as the
inevitable nominee, rather than what he actually stood for. Clinton must avoid following Gore’s path. She suffered
this fate in the 2008 primaries and can’t afford to do so again. She needs to do more than rest on the perception that
her candidacy is inevitable and on her record of experience. That is not enough. More important is for her to put
forth an exciting vision about what she would stand for in the White House. Voters thirst for signs of greatness when
they pick their presidents, even if they are savvy enough to understand that the reality of a polarized Washington will
probably limit her ability to achieve bold change. A recent story in The Washington Post suggests that her advisers
are aware of this potential liability. After the announcement, they are going to avoid big rallies and events and instead
concentrate on smaller events where she will meet with voters directly in states such as Iowa and New Hampshire.
Clinton also will have to contend with doubts about her authenticity. In his first day on the campaign trail, Sen. Rand
Paul immediately tapped into these concerns by raising questions about whether she could be trusted. That question
has dogged the Clintons ever since they came onto the national political scene in the late 1980s. Their greatest virtue,
their immense skills as politicians , has often come back to haunt them. Bill Clinton was attacked as ”slick Willie” by
members of both parties for the perception that he would say anything to win and Hillary Clinton has faced similar
criticism. When she tried to distance herself from her vote for the use of force in Iraq , many Democrats didn’t buy her
critique of President George W. Bush’s foreign policies and went for Barack Obama instead. When she conducted her
”listening tour” of New York before running for the Senate, many voters saw it as a manufactured effort to hide the
fact she was running for office as an outsider. When she explained that there was nothing to the recent stories about
her use of a private email server rather than her State Department email, some felt that even if the story was relatively
minor it indicated that she wasn’t always telling us what she was really about. Even if she isn’t hiding anything, she
often gives that appearance. During the next few months, Clinton will also have to connect with her party’s base.
The ongoing speculation about Sen. Elizabeth Warren of Massachusetts has suggested that the most active part of the
Democratic Party is not that enthused with Clinton’s candidacy. While they will probably vote for her, they are not
very motivated and don’t trust that she will stand for Democratic values. She will need to address these concerns, not
through her style but through her agenda. Voters will want to hear her talking about issues such as tougher financial
regulation and policies to diminish economic inequality as well as her positions on race and policing. She will also
need to make clear that she has heard voters on being too hawkish about going to war and give clear indications about
how she would handle a nuclear agreement with Iran. Clinton will also have to contend with the gender bias that
still exists in the electorate at large. Without any doubt she will be subject to questions and comments – about her
appearance, for instance – that won’t be aimed at male candidates. Part of her candidacy is itself an effort to break
down these remaining vestiges of political sexism. But the struggle will be tough. Finally, and this relates to the last
challenge, Clinton will have to contend with her husband. To be sure he can be an immense force on the campaign
trail, one of the most compelling Democrats of our generation. But he can also be liability. As she learned in 2008 ,
Bill Clinton is not always easy to control. When he speaks his mind, as he did in dismissive comments about Obama’s
candidacy, it can often work against her. The fund-raising records of the Clinton Foundation will also raise questions
about conflict of interest, and ongoing stories about his personal life, as was the case when Monica Lewinsky returned
to the media a few months ago, could re-emerge on the campaign trail. Whether that is fair or not is beside the point:
Everything is fair game on the modern campaign trail. Hillary Clinton has the potential to be a hugely successful
presidential candidate. But she and her campaign team will need to address the multiple questions and weaknesses
that have become clear in recent months.

BERTAbs julian zelizer: hillary clinton is finally announcing her candidacy for the 2016 presidential election. zelizer: she has
been through some of the roughest partisan wars and emerged stronger than ever before. he says she is a hardened,
tough partisan who will not shy away from republican attack

UniLM Julian Zelizer: Hillary Clinton is finally announcing her candidacy for the 2016 presidential election. He says she has
extensive political and policy experience, a combination of skills often lacking. He says Clinton doesn’t want to end
up like Vice President Al Gore in 2000; he didn’t generate much energy once the campaign started. Clinton must
avoid following Gore’s path, he

ROBERTA-S2S Julian Zelizer: For Democrats , there is plenty of reason to be excited about Hillary Clinton’s run. Zelizer: If Clinton
puts together an effective campaign, she could easily win the general election. He says Clinton needs to put forth on
what she would stand for in the White House.

STEP Julian Zelizer: For Democrats, there is ample reason to be excited about Hillary Clinton’s run for president. Zelizer:
Clinton needs to put forth an exciting vision about what she would stand for.

Gold Julian Zelizer: Hillary Clinton has immense political and governmental experience. He says she needs to make
stronger connection to her party ’s base. Clinton also needs to convince voters of her authenticity, Zelizer says.

Table 12: An example article sampled from the test splitting of CNNDM, paired with a list of summaries generated
by different systems. The incomplete sentence is highlighted with bold.


