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Abstract

As an important research issue in the natural

language processing community, multi-label

emotion detection has been drawing more and

more attention in the last few years. How-

ever, almost all existing studies focus on one

modality (e.g., textual modality). In this pa-

per, we focus on multi-label emotion detec-

tion in a multi-modal scenario. In this sce-

nario, we need to consider both the depen-

dence among different labels (label depen-

dence) and the dependence between each pre-

dicting label and different modalities (modal-

ity dependence). Particularly, we propose a

multi-modal sequence-to-set approach to ef-

fectively model both kinds of dependence

in multi-modal multi-label emotion detection.

The detailed evaluation demonstrates the effec-

tiveness of our approach.

1 Introduction

Emotion detection is to predict emotion categories,

such as angry, happy, and surprise, expressed by an

utterance of a speaker and has largely encompassed

a variety of applications, such as online chatting

(Galik and Rank, 2012; Zhang et al., c), news anal-

ysis (Li et al., 2015; Zhu et al., 2019) and dialogue

systems (Ghosal et al., 2019; Zhang et al., d). Over

the last few years, there has been a substantial body

of research on emotion detection (Abdul-Mageed

and Ungar, 2017; Zhou et al., 2019; Zhang et al., a),

where a considerable amount of work has focused

on multi-label emotion detection (Li et al., 2015;

Yu et al., 2018; Ying et al., 2019).

Basically, emotion detection is a multi-label clas-

sification problem since one utterance naturally

tends to involve more than one emotion category.

However, classifying instances with multiple pos-

sible categories is sometimes much more difficult

than classifying instances with a single label. One
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Figure 1: An example of multi-modal instance with

multi-label emotion categories in a video segment.

main challenge is how to model the label depen-
dence in the classification approach. For example,

in the utterance as shown in Figure 1, both the

Sad and Disgust emotions are more likely to ex-

ist, rather than the conflicting emotions of Sad and

Happy. Recent studies, such as (Yang et al., 2019)

and (Xiao et al., 2019), have begun to address this

challenge.

However, almost all existing studies in multi-

label emotion detection focus on one modality (e.g.,

textual modality). Only very recently, the research

community has become increasingly aware of the

need on multi-modal emotion detection (Zadeh

et al., 2018b) due to its wide potential applications,

e.g., with the massively growing importance of an-

alyzing conversations in speech (Gu et al., 2019)

and video (Majumder et al., 2019). In this study,

we aim to tackle multi-modal multi-label emotion

detection. Compared with single modality, multi-

modal multi-label emotion detection needs to well

model the contribution of different modalities for

each label since each modality has a different im-

pact on expressing emotion. For example, from

the textual modality as shown in Figure 1, while

we may only infer the Sad emotion, we are more
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likely to infer the Disgust emotion instead from the

visual modality. Meanwhile, the acoustic modality

may not help label prediction in this case. There-

fore, besides the label dependence, it is important

and challenging to effectively model another de-

pendence, namely the modality dependence.

In this paper, we address the above challenges

in multi-modal multi-label emotion detection by

proposing a multi-modal seq2set (MMS2S) ap-

proach to model both the modality and label de-

pendence simultaneously. Specifically, while the

conditional generation framework naturally models

the label dependence by predicting the next emo-

tion label upon other potential labels, we propose

Multi-head soft modality attention at each predict-

ing step inside the emotion decoder to capture the

modality dependence. First, we adopt three single-

modal encoders based on Transformer to capture

the single-modal characteristics of the textual, vi-

sual and acoustic modalities, respectively. Then,

we make the given emotion representation attend to

three intra-modal sequences from encoders inside

the emotion decoder and leverage multi-head soft

modality attention to control the different contri-

butions of different modalities for each potential

emotion prediction. Finally, we train our proposed

model by maximizing the probabilities of top K
sequences and predict all potential emotion labels

by finding the most likely emotion label set.

Systematical evaluation on a public multi-modal

multi-label emotion dataset, i.e., CMU-MOSEI,

shows that our approach significantly outperforms

several state-of-the-art baselines.

2 Related Work

As an interdisciplinary research field, emotion de-

tection has been drawing more and more atten-

tion in both natural language processing and multi-

modal communication (Zadeh et al., 2018c). In

the NLP community, almost all existing studies

of multi-label emotion detection rely on special

knowledge of emotion, such as context informa-

tion (Li et al., 2015), cross-domain transferring

(Yu et al., 2018) and external resource (Ying et al.,

2019). In fact, when there is no special knowledge

(Kim et al., 2018), it can be normally handled by

multi-label text classification approaches. In the

multi-modal community, related studies normally

focus on single-label emotion task and the stud-

ies for multi-label emotion task are much less and

limited to be transformed to multiple binary clas-

sification (Zadeh et al., 2018b; Wang et al., 2019;

Akhtar et al., 2019; Chauhan et al., 2019). In the

following, we give an overview of multi-label emo-

tion/text classification and multi-modal emotion

detection.

Multi-label Emotion/Text Classification. Re-

cent studies normally cast multi-label emotion de-

tection task as a classification problem and leverage

the special knowledge as auxiliary information (Yu

et al., 2018; Ying et al., 2019). These approaches

may not be easily extended to those tasks without

external knowledge. At this time, the multi-label

text classification approaches can be quickly ap-

plied to emotion detection. There have been a large

number of representative studies for that. Kant

et al. (2018) leverage the pre-trained BERT to per-

form multi-label emotion task and Kim et al. (2018)

propose an attention-based classifier that predicts

multiple emotions of a given sentence. More re-

cently, Yang et al. (2018) propose a sequence gen-

eration model and Yang et al. (2019) leverage a

reinforced approach to find a better sequence than

a baseline sequence, but it still relies on the pre-

trained seq2seq model with a pre-defined order of

ground-truth.

Different from above studies, we focus on multi-

label emotion detection in a multi-modal scenario

by considering the modality dependence besides

the label dependence. To the best of our knowl-

edge, this is the first attempt to perform multi-label

emotion detection in a multi-modal scenario.

Multi-modal Emotion Detection. Recent stud-

ies on multi-modal emotion detection largely de-

pend on multi-modal fusion framework to perform

binary classification within each emotion category.

Recently, Wang et al. (2019) introduce a recurrent

attended variation embedding network for multi-

modal language analysis with non-verbal shifted

word representation. Tsai et al. (2019) employ

the Transformer-based architecture to capture the

long-range interactions inside and across different

modalities. However, they still cast the multi-label

emotion detection as multiple binary classification

problems.

Different from above studies, we focus on multi-

modal emotion detection in a multi-label scenario

by considering the label dependence besides the

modality dependence. To the best of our knowl-

edge, this is the first attempt to perform multi-

modal emotion detection in a multi-label scenario.
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3 Data Pre-processing

We extract low-level handcrafted features from

three modalities. First of all, we align the three

modalities by extracting the exact utterance times-

tamp of each word using P2FA (Yuan and Liber-

man, 2008). Since words are considered as the

basic semantic units of language, we use the inter-

val duration of each word as a time-step. Then, we

calculate the expected video and audio features by

taking the expectation of their feature values over

the word time interval (Zadeh et al., 2018a; Zhang

et al., b). On this basis, we process the information

of the three modalities as follows.

Textual Modality. The GloVe word embed-

dings (Pennington et al., 2014) are used to rep-

resent the words from manual transcripts. Then,

we get the text sequence XT = [xT1 , x
T
2 , · · · , xTm]

with dimension m× dT .

Visual modality. The library Facet 1 is used

to extract a set of visual features including facial

action units, facial landmarks, head pose, gaze

tracking and HOG features (Zadeh et al., 2018c)

to form a sequence of facial gesture throughout

time. Then, we get the visual sequence XV =
[xV1 , x

V
2 , · · · , xVm] with dimension m× dV .

Acoustic Modality. The COVAREP software

(Degottex et al., 2014) is used to extract acoustic

features including 12 Mel-frequency cepstral coef-

ficients (MFCCs), pitch, voiced/unvoiced segment-

ing features (Drugman and Alwan, 2011), glottal

source parameters (Drugman et al., 2012), peak

slope parameters and maxima dispersion quotients

(Kane and Gobl, 2013). Then, we get the acoustic

sequence XA = [xA1 , x
A
2 , · · · , xAm] with dimension

m× dA.

4 Multi-modal Seq2Set for Multi-modal
Multi-label Emotion Detection

4.1 Problem Description

In this section, we define some notations and de-

scribe the multi-modal multi-label emotion detec-

tion (MMED) task. Given the label space with

L labels L = {l1, l2, · · · , lL}, the textual, visual

and acoustic sequences, i.e., XT , XV and XA con-

taining m time steps respectively, the task is to

assign a subset y containing L′ labels in the la-

bel space L, i.e., {y1, y2, · · · , yL′}. Unlike tradi-

tional single-label classification where only one

label is assigned to each sample, each sample in

1https://imotions.com/emotient/
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Figure 2: The architecture of a standard Transformer

(Vaswani et al., 2017) for sequence to sequence learn-

ing.

the MMED task can have multiple labels. In pre-

vious studies (Yang et al., 2018, 2019), from the

perspective of sequence generation, the MMED

task can be modeled as finding an optimal label

sequence y∗ that maximizes the conditional proba-

bility p(y∗|XT , XV , XA). Although sequence de-

coding by conditioned on previous steps can effec-

tively capture the dependence among an output se-

quence, all possible emotion labels of an utterance

are a set rather than a fixed sequence. Therefore,

we adopt a conditional set generation mechanism,

which maximizes the log-likelihood as follows:

Num∑
i=1

log
∑

s∈π(yi)

p(s|(XT )i, (XV )i, (XA)i) (1)

where Num denotes the total number of multi-

modal samples in the dataset. π(yi) stands for all

permutations of the label set yi of the i-th sample.

4.2 Background
Since our approach is based on Transformer archi-

tecture, we give a brief description of a standard

Transformer (Vaswani et al., 2017) for seq2seq

learning as shown in Figure 2.

The encoder is composed of a stack of N identi-

cal layers, each of which has two sub-layers. The

first sub-layer is a multi-head self-attention net-

work, and the second one is a position-wise fully

connected feed-forward network. A residual con-

nection (He et al., 2016) is employed around each
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Figure 3: The overview of multi-modal seq2set.

sub-layer, followed by layer normalization (Ba

et al., 2016). Formally, the output of the first sub-

layer Cn
e and the second sub-layer Hn

e at n-th layer

are sequentially calculated as:

Cn
e = LN(SATT(Hn−1

e ) + Hn−1
e ) (2)

Hn
e = LN(FFN(Cn

e ) + Cn
e ) (3)

where LN(·), SATT(·), and FFN(·) are layer nor-

malization, multi-head self-attention mechanism,

and feed-forward network with ReLU activation,

respectively. The subscript e denotes the encoding

part.

The decoder is also composed of a stack of N
identical layers. In addition to two sub-layers in

each decoder layer, the decoder inserts a third sub-

layer Dn
d to perform attention over the output of

the encoder HN
e :

Cn
d = LN(SATT(Hn−1

d ) + Hn−1
d ) (4)

Dn
d = LN(ATT(Cn

d ,H
N
e ) + Cn

d ) (5)

Hn
d = LN(FFN(Cn

d ) + Cn
d ) (6)

where ATT(Cn
d ,H

N
e ) denotes attending the top

output of encoder HN
e with Cn

d as query. The sub-

script d denotes the decoding part. The top layer

output of the decoder HN
d is used to generate the

final output sequence.

4.3 Multi-modal Seq2Set Approach
Figure 2 shows the overall architecture of our pro-

posed Multi-Modal Seq2Set (MMS2S) approach.

Note that the novel decoding module can well

handle the modality and label dependence by soft

modality attention and conditional label generation.

Multi-modal Sequences Encoding. We first

build three independent Transformer-based en-

coders to capture the temporal information and

self-modal dynamics in each modality. Formally,

(HN
e )M = TransMe (XM ) (7)

where M ∈ {T, V,A} denotes the symbol of

modality. (HN
e )M ∈ R

m×dm denotes the final out-

put of the encoder for modality M and TransMe
denotes a Transformer-based encoder function for

modality M .

From the multi-modal sequences encoding mod-

ule, we can obtain the feature sequence of each

modality: (HN
e )T , (HN

e )V and (HN
e )A.

Multi-Head Modality Attention. All modality-

specific sequences are simultaneously fed into the

decoding module. For each decoding step, the

decoder attends to the encoding representation of

each modality independently. Formally,

Cn
d = LN(SATT(Hn−1

d ) + Hn−1
d )(8)

(Cn
d→e)

M = ATT(Cn
d , (H

N
e )M ) (9)

Then, we can obtain three contextual sequences

from decoder attending to encoders: (Cn
d→e)

T ,

(Cn
d→e)

V and (Cn
d→e)

A. We leverage multi-head

modality attention over three sequences to con-

trol different contribution of different modali-

ties at each step for feature matrix (Cn
d→e)t =
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Algorithm 1 Training Procedure for MMS2S

Input: Multi-modal Multi-label Dataset (Xi,

yi), Xi = ((XT )i, (XV )i, (XT )i), i =
1, 2, · · · , Num;

Output: Trained parameters of MMS2S model ;

1: for each batch do
2: for each (Xi,yi) in a batch do
3: Get top K sequences by beam search

and their probabilities:

4: {si1, · · · , siK ; p(si1|Xi), · · · , p(siK |Xi)};

5: end for
6: Update model parameters by maximizing:

7:
∑

(Xi,yi)∈batch log
∑

s∈{si1,··· ,siK} p(s|Xi)
8: end for

[(Cn
d→e)

T
t , (C

n
d→e)

V
t , (C

n
d→e)

A
t ] ∈ R

3×dm . For-

mally,

Ct = SATT((Cn
d→e)t) (10)

(Cn
d )

′
t = Ws(C

T
t ⊕ CV

t ⊕ CA
t ) (11)

where Ct = [CT
t ,C

V
t ,C

A
t ] ∈ R

3×dm denotes

the temporary multi-modal hybrid representation

at t-th step. (Cn
d )

′
t ∈ R

d
m denotes the feature

vector by soft modality weighting the t-th step.

Ws ∈ R
dm×3dm is a trainable matrix to scale the

dimension of multi-modal hybrid representation.

⊕ denotes the concatenating operation.

Subsequently, as the normal propagation, the

adaptive contextual sequence is fed into the feed-

forward layer,

Dn
d = LN((Cn

d )
′ +Cn

d ) (12)

Hn
d = LN(FFN(Cn

d ) + Cn
d ) (13)

Emotion Prediction. Finally, the top output of

decoder Z = HN
d ∈ R

m′×dm is used to predict

all potential emotions via linear and softmax layer.

Formally,

pt = softmax(ZtWp + It) (14)

where Wp ∈ R
dm×L, is a trainable weight matrix.

It ∈ R
L is the mask vector that is used to prevent

the decoder from predicting repeated labels:

(It)k =

{ −∞ if label lk has been predicted
0 otherwise

(15)

Training by Top K Sequences. We approxi-

mate the objective of Eq. 1 by only considering the

top K highest probability sequences produced by

Algorithm 2 Testing Procedure for MMS2S

Input: Multi-modal Instance X , X =
(XT , XV , XT );

Output: Predicted Emotion Label Set ŷ;

1: Obtain K highest probability sequences by

beam search: {s1, · · · , sK};

2: Map each sequence sk to the corresponding set

yk and remove duplicate sets (if any);

3: for each yk do
4: Get top K sequences associated with yk

and their probabilities by beam search:

5: {s′1, · · · , s′K ; p(s′1|X), · · · , p(s′K |X)};

6: Set probability is approx. by summing up:

7: p(yk|X) ≈ ∑
s∈{s′1,··· ,s′K} p(s|X);

8: end for
9: ŷ = argmaxyk

p(yk|X)

our model. We leverage a variant of beam search

(Qin et al., 2019) for sets with width K. In particu-

lar, the search candidates in each step are restricted

to only labels in the golden set. This approximates

inference procedure is carried out repeatedly before

each batch training step to find highest probability

sequences for all training instances occurring in

that batch. Algorithm 1 shows the detailed proce-

dure.

Testing by Most Probable Set. Different from

the previous approach of directly using most prob-

able sequence as a set based on a pre-defined base-

line (Yang et al., 2019) , we instead aim to find

the most likely set, which involves summing up

probabilities for all its permutations. Algorithm 2

shows the detailed procedure. Note that both the

training and testing procedures allow our model to

be far more freedom on label order.

5 Experimentation

In this section, we systematically evaluate our ap-

proach to multi-modal multi-label emotion detec-

tion.

5.1 Experimental Settings

Dataset. We use the largest available multi-modal

emotion benchmark dataset, i.e., CMU-MOSEI

(Zadeh et al., 2018b) in our evaluation. The dataset

is segmented into utterances with three modali-

ties, i.e., the textual, visual and acoustic modalities,

while the emotion categories contain happiness,

sadness, anger, fear, disgust and surprise. The

average words of utterance-level video clips are
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Multi-label Number Emotion Number
None 3372 Happiness 12240
One 11050 Surprise 1892
Two 5526 Sadness 5918

Three 2084 Anger 4933
Four 553 Disgust 3680
Five 84 Fear 2286
Six 8 - -

Table 1: The statistics on the CMU-MOSEI dataset.

19.1 and the average number of emotion labels per

sample is 1.6. The training, validation and test data

are all the same with the split videos and utterances

available in the public SDK2. Table 1 shows the

brief statistics of the samples with multiple labels.

Implementation Details. We implement our

approach via Pytorch toolkit (torch-0.4.1) with a

piece of GTX 1080 Ti. Following (Zadeh et al.,

2018b), the textual input dimension dT is set to

300, the visual input dimension dV is set to 35 and

the acoustic input dimension dA is set to 74. The

hidden size dm in the encoders and decoder is 512.

The number of heads in SATT and ATT is 8.

During training, we train each model for a fixed

number of epochs 50 and monitor its performance

on the validation set. Once the training is finished,

we select the model with the best F1 score on

the validation set as our final model and evaluate

its performance on the test set. We adopt cross-

entropy as the loss function and use the Adam

(Kingma and Ba, 2014) optimization method to

minimize the loss over the training data. For the

hyper-parameters of the Adam optimizer, we set

the learning rate as 0.001 with two momentum pa-

rameters of β1 and β2, 0.9 and 0.999 respectively.

The beam size K is set to be 5 at both training and

inference stages. To motivate future research, the

code will be released via github 3.

Evaluation Metrics and Significance Test. In

our study, we employ three evaluation metrics to

measure the performances of different approaches

to multi-modal multi-label emotion detection, i.e.,

multi-label Accuracy (Acc), Hamming Loss (HL)

and micro F1 measure (F1). These metrics have

been popularly used in some multi-label classifica-

tion problems (Li et al., 2015; Yang et al., 2019;

Aly et al., 2019; Wu et al., 2019).

Note that smaller Hamming Loss corresponds to

better classification quality, while larger Accuracy

2https://github.com/A2Zadeh/CMU-MultimodalSDK
3https://github.com/MANLP-suda/MMS2S

and F1 measure corresponds to better classification

quality. Besides, through scipy4, the paired t-test is

performed to test the significance of the difference

between two approaches, with a default significant

level of 0.05.

5.2 Baselines

For a thorough comparison, we implement various

baseline approaches in three groups:

Multi-label Classification Approaches. In this

group, the baselines use different approaches to

deal with the multi-label issue without consider-

ing the modality dependence issue. Specifically,

in these approaches, the multi-modal inputs are

early fused (simply concatenated) as a new input.

(1) BR5 (Shen et al., 2004), which transforms the

multi-label task into multiple single-label binary

classification problems by ignoring the correlations

between labels. (2) CC5 (Read et al., 2011), which

transforms the multi-label task into a chain of bi-

nary classification problems and takes high-order

label correlations into consideration. (3) RAkEL5

(Tsoumakas et al., 2011), which improves the La-

bel Powerset (Tsoumakas and Katakis, 2007) with

breaking the initial set of labels into a number of

small random subsets and training a corresponding

classifier. (4) AC6 (Kim et al., 2018), which con-

sists of a self-attention module and multiple CNNs

enabling it to imitate human’s two-step procedure

of analyzing emotions from sentences: compre-

hend and classify. (5) LSAN7 (Xiao et al., 2019),

which takes advantage of label semantic informa-

tion to determine the semantic connection between

labels and document for constructing label-specific

document representation. This approach is con-

sidered as the state-of-the-art in multi-label text

classification. (6) DRS2S8 (Yang et al., 2019),

which leverages deep reinforcement learning to

find a most probable sequence as the target label

set based on a pre-trained sequence-to-sequence

model of RNN. This approach is also considered as

the state-of-the-art in multi-label text classification.

Multi-modal Classification Approaches. In

this group, the baselines use different approaches

to deal with the multi-modal issue without consid-

ering the label dependence issue. Specifically, in

these approaches, a linear layer of L dimensions

4https://www.scipy.org/
5http://scikit.ml/
6https://github.com/yanghoonkim/attnconvnet
7https://github.com/EMNLP2019LSAN/LSAN/
8https://github.com/lancopku/Seq2Set
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Approaches Acc HL F1

BR (Shen et al., 2004) 0.222 0.371 0.386
CC (Read et al., 2011) 0.225 0.377 0.386
RAkLA (Tsoumakas et al., 2011) 0.242 0.376 0.397
AC (Kim et al., 2018) 0.388 0.240 0.492
LSAN (Xiao et al., 2019) 0.393 0.209 0.501
DRS2S (Yang et al., 2019) 0.436 0.215 0.523
GMFN (Zadeh et al., 2018b) 0.396 0.195 0.517
RAVEN (Wang et al., 2019) 0.416 0.195 0.517
MulT (Tsai et al., 2019) 0.445 0.190 0.531
MMS2S (Ours) 0.475 0.182 0.560
MMS2S w/o M 0.421 0.225 0.525
MMS2S w/o L 0.417 0.212 0.523

Table 2: Performance of different approaches to multi-

modal multi-label emotion detection.

with sigmoid activation is used to predict the emo-

tions. (7) GMFN2 (Zadeh et al., 2018b), which

explicitly models the multi-modal interactions by

capturing uni-modal, bi-modal and tri-modal inter-

actions. (8) RAVEN9 (Wang et al., 2019), which

models the fine-grained structure of nonverbal sub-

word sequences and dynamically shifts word repre-

sentations based on nonverbal cues. This approach

is considered as the state-of-the-art in multi-modal

language analysis. (9) MulT10 (Tsai et al., 2019),

which addresses long-range dependencies between

elements across modalities in an end-to-end man-

ner. This approach is considered as the state-of-the-

art in multi-modal emotion detection.

Ablated Approaches. (10) MMS2S w/o M, a

variation of our approach, which replaces the multi-

head modality attention with simply concatenation.

(11) MMS2S w/o L, a variation of our approach,

which replaces the decoder with sigmoid activa-

tion for L dimension.

5.3 Experimental Results

Comparison with the multi-modal and multi-
label classification approaches. Table 2 shows

the results of different approaches to multi-modal

multi-label emotion detection. From this table,

we can see that (1) the classical multi-label ap-

proaches BR, CC and RAkLA perform much

worse than the deep learning baselines AC, LSAN
and DRS2S. For instance, DRS2S outperforms

RAkLA by 19.4%, 16.1% and 12.6% with respect

to Acc, HL and F1, respectively. This indicates

that the approaches with deep representation do

have more advantages than the classical approaches

towards multi-label problem. (2) The baselines

9https://github.com/victorywys/RAVEN
10https://github.com/yaohungt/Multimodal-Transformer

Num. Approaches Acc HL F1

1
DRS2S 0.415⇓ 0.242⇓ 0.514⇓

MMS2S (Ours) 0.475- 0.183↓ 0.560-

2
DRS2S 0.419⇓ 0.227⇓ 0.506⇓

MMS2S (Ours) 0.473↓ 0.185↓ 0.559↓

Table 3: The impact of random label order as ground-

truth. ⇓: Significant decrease, ↓: Insignificant decrease,

−: No decrease.

of multi-modal classification outperform the base-

lines of text-based multi-label classification in most

cases. Especially, MulT performs much better than

LSAN and DRS2S in terms of all metrics. This is

mainly due to the fact that multi-modal data need to

well model the intra-modal and inter-modal dynam-

ics and the early fusion approaches inevitably result

in performance loss. (3) Among all the approaches,

our proposed MMS2S performs best in terms of

all metrics. The t-test demonstrates that our ap-

proach significantly outperforms LSAN, DRS2S, ,

and MulT, respectively (p-value < 0.05).

Ablation Study. To further demonstrate the

importance of modeling modality and label de-

pendence, we do not model either the modal-

ity (MMS2S w/o M) or the label dependence

(MMS2S w/o L). From Table 2, we observe that

not modeling either the modality or the label de-

pendency significantly decreases the performance.

This illustrates the effectiveness of our approach in

modeling the two types of dependence.

5.4 Analysis

Impact of random label order. We investigate the

impact of random label order as ground-truth for

our proposed MMS2S and a previous text-based

seq2set approach DRS2S (Yang et al., 2019) as

shown in Table 3. We can observe that DRS2S
largely depends on the pre-defined knowledge of

label order (such as descending order of label fre-

quency). While, our approach performs well with

random label order as ground-truth, suggesting that

our approach indeed generates an adaptive emotion

label set rather than a sequence for each sample.

Single-modal approach vs. multi-modal ap-
proach. To illustrate the necessity of multi-modal

approach for multi-label emotion detection, we also

evaluate single-modal approach via sequence-to-set

training and testing, namely SMS2S, which aims

at modeling a single modality while ignoring the

other two. Table 4 compares the performance of

SMS2S and MMS2S approaches. From this ta-



3591

Approach Modality Accuracy Hamming Loss F1 measure Precision Recall

SMS2S
Text 0.438 0.216 0.492 0.561 0.438

Vision 0.396 0.221 0.440 0.505 0.390
Audio 0.395 0.219 0.451 0.552 0.381

MMS2S Text&Vision&Audio 0.475 0.182 0.560 0.576 0.545

Table 4: Performance of single-modal and multi-modal seq2set approaches.

 
I've always found when big talent 
superstar collaborate that their is so much 
expectation of what the song is going to 
sound like it's never going to meet 
expectations and this is one of those 
examples.

Textual Modality

Visual Modality

Acoustic Modality

Happiness, Surprise, Disgust
Happiness, Anger, Disgust

Happiness, Disgust, SurpriseTrue Labels

Happiness, SurprisePredicted Labels

Disgust faceNeutral face

A little  disgust

Predicted Labels
Predicted Labels

Neutral face

Surprise voice

A little happy Maybe rent it, that's probably gonna be 
cheaper and if you rent it, I wouldn't really 
expect too much cause really you can see 
a lot funnier stuff in the show, and the 
shows are free.

Angry voice

Indifferent face Sad face Neutral face

A little sad

Sadness, Anger
Sadness, Fear
Surprise

by MMS2S (Ours)
by MulT
by DRS2S

Sadness, Anger
(a) (b)

Figure 4: Two cases of the predicted labels by DRS2S, MulT and MMS2S.

ble, we observe that SMS2S with textual modality

outperforms the counterparts with the other two

modalities, suggesting that the textual modality

contains more useful information than the others.

Moreover, our MMS2S achieves the highest per-

formance, suggesting that both the visual and the

acoustic modalities could be useful complement to

the textual modality. This is consistent with our

motivation that different modality plays different

roles in emotion expressing.

Case Study. To further demonstrate the effec-

tiveness of our multi-modal seq2set approach, Fig-

ure 4 presents two examples with predicted emo-

tions by MMS2S, and two representative baselines

DRS2S and MulT. We take the case (a) as an ex-

ample: although DRS2S can accurately detect two

emotions of the ground-truth, it leaves the Disgust
emotion. This is mainly because early fusion with-

out modality dependence results in different modal-

ities information confusion so that it may be diffi-

cult for DRS2S to infer all the correct emotions. In

contrast, MulT can detect the Disgust emotion and

obtain three emotions. But it gives a wrong pre-

diction of Anger. Obviously, Happiness and Anger
are conflicting emotions. This indicates that MulT

completely ignores the label dependence. However,

from both cases, we observe that our MMS2S can

obtain all correct emotions by properly modeling

modality dependence and label dependence.

6 Conclusion

In this paper, we propose a multi-modal sequence-

to-set approach to simultaneously handle the

modality and label dependence in multi-modal

multi-label emotion detection. Our approach can

not only model the dependence between each label

and different modalities, but also model the de-

pendence among multiple labels of a sample. The

detailed evaluation demonstrates that our proposed

model significantly outperforms several state-of-

the-art baselines.

In our future work, we will extend our approach

to more multi-modal multi-label scenarios, such as

intention detection in video conversations and as-

pect analysis in multi-modal reviews. Furthermore,

we would like to investigate other approaches (e.g.,

graph-based neural network) to better model the

modality and label dependence in multi-modal

multi-label emotion detection.
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