
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 396–411,
November 16–20, 2020. c©2020 Association for Computational Linguistics

396

Semantic Evaluation for Text-to-SQL with Distilled Test Suites

Ruiqi Zhong∗ Tao Yu† Dan Klein∗
∗ Computer Science Division, University of California, Berkeley

† Department of Computer Science, Yale University
ruiqi-zhong@berkeley.edu tao.yu@yale.edu klein@berkeley.edu

Abstract
We propose test suite accuracy to approxi-
mate semantic accuracy for Text-to-SQL mod-
els. Our method distills a small test suite
of databases that achieves high code coverage
for the gold query from a large number of
randomly generated databases. At evaluation
time, it computes the denotation accuracy of
the predicted queries on the distilled test suite,
hence calculating a tight upper-bound for se-
mantic accuracy efficiently. We use our pro-
posed method to evaluate 21 models submitted
to the Spider leader board and manually verify
that our method is always correct on 100 ex-
amples. In contrast, the current Spider metric
leads to a 2.5% false negative rate on average
and 8.1% in the worst case, indicating that test
suite accuracy is needed. Our implementation,
along with distilled test suites for eleven Text-
to-SQL datasets, is publicly available.1

1 Introduction

A Text-to-SQL model translates natural language
instructions to SQL queries that can be executed
on databases and bridges the gap between expert
programmers and non-experts. Accordingly, re-
searchers have built a diversity of datasets (Dahl,
1989; Iyer et al., 2017; Zhong et al., 2017; Yu
et al., 2018) and improved model performances
(Xu et al., 2017; Suhr et al., 2018; Guo et al., 2019;
Bogin et al., 2019a; Wang et al., 2020). However,
evaluating the semantic accuracy of a Text-to-SQL
model is a long-standing problem: we want to know
whether the predicted SQL query has the same de-
notation as the gold for every possible database.
“Single” denotation evaluation executes the pre-
dicted SQL query on one database and compares
its denotation with that of the gold. It might cre-
ate false positives, where a semantically different

1Metric implementation and test suites available here, for
datasets: Spider, CoSQL, SParC, Academic, Advising, ATIS,
Geography, IMDB, Restaurants, Scholar and Yelp.

Query: “Who is above 34 years old?”

NAME AGE
Alice 35
Bob 37

Test Suite “People” Databases
database 1

Predicted 1

Gold
SELECT NAME FROM People
 WHERE AGE > 34

SELECT NAME FROM People
 (missing WHERE)

…

Denotations:
 Gold: Alice, Bob
Predicted 1: Alice, Bob
Predicted 2: Alice, Bob

NAME AGE
Alice 20
Bob 37Predicted 2 SELECT NAME FROM People

 WHERE AGE >= 35

Bob
Alice, Bob
BobExecutes

Matches

Exact String Match:
 “SELECT NAME FROM People WHERE AGE > 34”
 “SELECT NAME FROM People WHERE AGE >= 35”
!=

database n

Figure 1: Prediction 2 is semantically correct, and Pre-
diction 1 is wrong. Exact string match judges predic-
tion 2 to be wrong, which leads to false negatives. Only
comparing denotations on database 1 judges prediction
1 to be correct, which leads to false positives. Test suite
evaluation compares denotations on a set of databases
and reduces false positives.

prediction (Figure 1 prediction 1) happens to have
the same denotation as the gold, on a particular
database. In contrast, exact string match might
produce false negatives: Figure 1 prediction 2 is
semantically equivalent to the gold but differs in
logical form.

The programming language research community
developed formal tools to reliably reason about
query equivalence for a restricted set of query types.
They lift SQL queries into other semantic represen-
tations such as K-relations (Green et al., 2007),
UniNomial (Chu et al., 2017) and U-semiring (Chu
et al., 2018); then they search for an (in)equivalence
proof. However, these representations cannot ex-
press sort operations and float comparisons, and
hence do not support the full range of operations
that Text-to-SQL models can use. We ideally need
a method to approximate semantic accuracy reli-
ably without operation constraints.

If the computational resources were unlimited,
we could compare the denotations of the predicted
query with those of the gold on a large number of
random databases (Section 4.1), and obtain a tighter
upper bound for semantic accuracy than single de-

https://github.com/ruiqi-zhong/TestSuiteEval

397

notation evaluation. The software testing literature
calls this idea fuzzing (Padhye et al., 2019; AFL;
Lemieux et al., 2018; Qui). However, it is undesir-
able to spend a lot of computational resources every
time when we evaluate a Text-to-SQL model. In-
stead, we want to check denotation correctness only
on a smaller test suite of databases that are more
likely to distinguish2 any wrong model-predicted
queries from the gold.

We propose test suite accuracy (Section 2) to
efficiently approximate the semantic accuracy of
a Text-to-SQL model, by checking denotations of
the predicted queries on a compact test suite of
databases with high code coverage. We introduce
how to construct/search for such a test suite without
prior information about model-predicted queries.

Our search objective is formally defined through
neighbor queries (Section 3.1), which are gener-
ated by modifying one aspect of the gold query.
For example, prediction 1 in Figure 1 is a neigh-
bor query of the gold, since they differ only by a
“WHERE” clause. These neighbor queries are usu-
ally semantically different from the gold, and if a
test suite can distinguish them from the gold, it is
likely to distinguish other wrong queries as well.
The latter holds because distinguishing all neigh-
bors from the gold requires executions on these
databases to exercise every modified part of the
gold query, hence reflecting comprehensive code
coverage and high test quality (Miller and Maloney,
1963; Ammann and Offutt). Hence, we formalize
our objective as finding a small test suite that can
distinguish all the neighbors (Section 3.2).

We search under this objective by generating a
large number of random databases (Section 4.1)
and keeping a small fraction of them that can dis-
tinguish the neighbors from the gold (Section 4.2).
We call this set of databases a distilled test suite.
While evaluating model-predicted queries, we only
check their denotations on the distilled test suite to
approximate semantic accuracy efficiently.

Application We distill a test suite for the Spider
dataset (Yu et al., 2018) (Section 5) from 1000 ran-
dom databases, which can distinguish more than
99% of the neighbor queries. We use the test suite
to evaluate 21 Spider leader board submissions, ran-
domly sample 100 model-predicted queries where
our method disagrees with exact set match (ESM,
the current Spider official metric), and manually

2Section 2 defines that a database distinguishes two queries
if their executions lead to different results.

verify that our method is correct in all these cases
(Section 6.1).

We use test suite accuracy as a proxy for seman-
tic accuracy to examine how well ESM approx-
imates the semantic accuracy (Section 6.2), and
identify several concerns. (1) ESM tends to under-
estimate model performances, leading to a 2.5%
false negative rate on average and 8.1% in the worst
case. (2) ESM does not reflect all improvements in
semantic accuracy. For example, it undervalues a
high-score submission with 61% semantic accuracy
by 8%, but instead favors five other submissions
with lower semantic accuracy, thus misrepresent-
ing state of the art. (3) ESM becomes poorer at
approximating semantic accuracy on more com-
plex queries. Since models are improving and pro-
ducing harder queries, ESM deviates more from
semantic accuracy. We need test suite accuracy to
better track progress in Text-to-SQL development.

Our main paper focuses on Spider. However, we
also generated distilled test suites for other pop-
ular text-to-SQL datasets including CoSQL (Yu
et al., 2019a), SParC (Yu et al., 2019b), Academic
(Li and Jagadish, 2014), Advising (Finegan-Dollak
et al., 2018a), ATIS (Dahl et al., 1994), Geography
(Zelle and Mooney, 1996), IMDB (Yaghmazadeh
et al., 2017), Restaurants (Popescu et al., 2003),
Scholar (Iyer et al., 2017) and Yelp (Yaghmazadeh
et al., 2017). We will release our test suites3 and the
details of these datasets can be seen in Appendix
A.2.

To summarize, we contribute:

• A method and a software to create compact
high quality test suites for Text-to-SQL se-
mantic evaluation.

• Test suites to reliably approximate semantic
accuracy for eleven popular datasets.

• A detailed analysis of why current metrics are
poor at approximating semantic accuracy.

2 Problem Statement

Let w ∈ W be a database input to a SQL query q ∈
Q, and ~q�w be the denotation of q on w,4 where
W/Q is the space of all databases/SQL queries.
Two queries q1 and q2 are semantically equivalent

3https://github.com/ruiqi-zhong/TestSuiteEval
4As in Yu et al. (2018), we use Sqlite3 to obtain the deno-

tation. Define ~q�w = ⊥ if execution does not end, which is
implemented as timeout in practice.

https://yale-lily.github.io/spider

398

if their denotations are the same for all possible
databases, i.e.

∀w ∈ W, ~q1�w = ~q2�w (1)

We refer to the ground truth query as g and
the model-predicted query to be evaluated as q.
Ideally, we want to evaluate whether q is seman-
tically equivalent to g (abbreviated as semantic
accuracy), which is unfortunately undecidable in
general (Chu et al., 2017). Traditionally, people
evaluate a model-predicted query q by either exact
string match or compare denotations on a single
database w (abbreviated as single denotation ac-
curacy). Exact string match is too strict, as two
different strings can have the same semantics. Sin-
gle denotation evaluation is too loose, as the de-
notations of g and q might be different on another
database w.

We use test suite to refer to a set of databases. A
database w distinguishes two SQL queries g, q if
~g�w , ~q�w, and a test suite S distinguishes them
if one of the databases w ∈ S distinguishes them:

∃w ∈ S , ~g�w , ~q�w (2)

For convenience, we define the indicator function:

DS (g, q) B 1[S distinguishes g, q] (3)

We use the test suite S to evaluate a model-
predicted query q: q is correct iff DS (g, q) = 0; i.e.,
g and q have the same denotations on all databases
in S .

To summarize, if M1 ⇒ M2 means that “cor-
rectness under M1 implies correctness under M2”,
exact match⇒ semantic accuracy⇒ test suite ac-
curacy⇒ single denotation accuracy. Our goal is
to construct a test suite of databases S to obtain a
tight upper bound on semantic accuracy with test
suite accuracy reliably and efficiently.

3 Desiderata

Since we want to construct a test suite S of
databases for each gold query g, we use S g to de-
note the target test suite. Before describing how to
generate S g, we first list two criteria of a desirable
test suite. Later we construct S g by optimizing over
these two criteria.

Computational Efficiency. We minimize the
size of S g to speed up test suite evaluations.

Gold g SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace
Column Name

SELECT AGE FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Replace
Comparison

SELECT NAME FROM People
 WHERE AGE > 34 AND NAME LIKE “%Alice%”

Replace
Numerical

SELECT NAME FROM People
 WHERE AGE >= 33 AND NAME LIKE “%Alice%”

Replace
String

SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Bob%”

Drop
Span

SELECT NAME FROM People
 WHERE AGE >= 34 AND NAME LIKE “%Alice%”

Figure 2: Automatically generating a set of neighbor
queries Ng. We apply one type of modification to the
original gold query g at a time. The modified queries
are likely to be semantically close but inequivalent to
the gold.

Code Coverage. The test suite needs to cover
every branch and clause of the gold query such that
it can test the use of every crucial clause, variable,
and constant. For example, database 1 in Figure 1
alone does not have a row where “AGE ≤ 34” and
hence does not have comprehensive code coverage.

3.1 Measure Coverage through Neighbors

We measure the code coverage of a test suite by its
ability to distinguish the gold query from its neigh-
bor queries: a set of SQL queries that are close to
the gold in surface forms but likely to be semanti-
cally different. To generate them, we modify one of
the following aspects of the gold query (Figure 2):
(1) replace an integer (float) constant with either a
random integer (float) or its value ± 1 (0.001); (2)
replace a string with a random string, its sub-string
or a concatenation of it with another random string;
(3) replace a comparison operator/column name
with another; (4) drop a query span unless the span
does not change the semantics of the query. For
example, the “ASC” keyword does not change the
semantics because it is the default sort order. We
then remove modified queries that cannot execute
without any errors.

Note that our method does not pre-determine
the number of neighbor queries. It is adaptive and
generates more neighbors for longer and more com-
plex queries since there are more spans to drop and
more constants to replace.

Neighbor queries have two desirable properties.
First, they are likely to be semantically different
from the gold query. For example, “> 34” is se-
mantically different from “≥ 34” (replace com-
parison operator) and “> 35” (replace constants);

399

however, we only apply one modification at a time,
since “> 34” is semantically equivalent to “≥ 35”
for an integer. Secondly, their subtle differences
from the gold require the test suite to cover all
the branches of the gold query. For example, the
database needs to have people above, below and
equal to age 34 to distinguish all its neighbors.
Hence, the test suite tends to have high quality
if it can distinguish the gold from all its neighbors.

We use Ng to denote the set of neighbor queries
of the gold query g.

3.2 Optimization Objective

To recap, our objective is to search for a small
test suite S g that can distinguish as many neighbor
queries as possible. Formally, we optimize over S g

with the objective below:

minimize |S g|

s.t. ∀q ∈ Ng,DS g(g,q) = 1
(4)

4 Fuzzing

We optimize the above objective through fuzzing:
a software testing technique that generates a large
number of random inputs to test whether a program
satisfies the target property (e.g., SQL equivalence).
We describe a procedure to sample a large number
of random databases and keep a small fraction of
them to distill a test suite S g.

4.1 Sampling Databases

A database w needs to satisfy the input type con-
straints of the gold program g, which include using
specific table/column names, foreign key reference
structure, and column data types. We describe how
to generate a random database under these con-
straints and illustrate it with Figure 3.

If a column c1 refers to another column c2 as its
foreign key, all elements in c1 must be in c2 and
we have to generate c2 first. We define a partial
order among the tables: table A < table B if B
has a foreign key referring to any column in table
A. We then generate the content for each table
in ascending order found by topological sort. For
example, in Figure 3, we generate the “State”
table before the “People” table because the latter
refers to the former.

We now sample elements for each column such
that they satisfy the type and foreign key con-
straints. If a column c1 is referring to another col-
umn c2, each element in c1 is uniformly sampled

NAME
(text)

AGE
(int)

BORN STATE
(text)

Alice 34 DFWEU

aAlicegg 35 CA

qwertyasdf 24601 CA

gg-no-re 33 VA

STATE
(text)

AREA
(float)

NY ...

CA ...

GA ...

DFWEU ...

Random “People” Table Random “State” Table

Foreign key
reference

Gold: SELECT NAME FROM People WHERE
 AGE >= 34 AND NAME LIKE “%Alice%”

Figure 3: A random database input w from the distribu-
tion Ig, where g is the gold SQL query. We generate
the “State” column before the “BORN STATE” column
because the latter has to be a subset of the former. Each
element of the column “BORN STATE” is sampled uni-
formly at random from the parent “STATE” column. For
the column that has data type int/string, each element
is either a random number/string or a close variant of a
constant used the gold query.

from c2. Otherwise, if the column is a numeri-
cal(string) type, each element is sampled uniformly
from [−263, 263] (a random string distribution). We
also randomly add in constant values used in g (e.g.,
34 and “Alice”) and their close variants (e.g., 35
and “aAlicegg”) to potentially increase code cover-
age. We denote the database distribution generated
by this procedure as Ig.

4.2 Distilling a Test Suite

We use samples from Ig to construct a small test
suite S g such that it can distinguish as many neigh-
bor queries (Section 3.1) in Ng as possible. We
initialize S g to be empty and proceed greedily. A
database w is sampled from the distribution Ig; if
w can distinguish a neighbor query that cannot be
distinguished by any databases in S g, we add w to
S g. Appendix A.1 gives a more rigorous descrip-
tion. In the actual implementation, we also save the
disk space by sharing the same random database
wt across all gold SQL queries that are associated
with the same schema. Though this algorithm is far
from finding the optimal solution to Objective 4, in
practice, we find a test suite that is small enough to
distinguish most neighbor queries.

5 Evaluation Setup

We introduce the dataset and the model-predicted
queries we use to study our test suite evaluation.
We also adapt our test suite evaluation and the offi-
cial Spider metric to make a fair comparison.

400

5.1 Dataset

We generate test suites S g for the development
set of Spider (Yu et al., 2018), which contains
1034 English utterances and their corresponding
SQL queries, spanning across 20 different database
schemata. It stratifies data into four categories
(easy, medium, hard, and extrahard) according
to difficulty level measured by gold SQL complex-
ity. We decide to focus on Spider because it in-
vites researchers to submit their model-predicted
queries and requires them to follow a standard for-
mat, which makes it convenient to study a wide
variety of model-predicted queries.

5.2 Model-Predicted Queries

We obtain the development set model-predicted
queries from 21 submissions.5 They include mod-
els from Guo et al. (2019); Bogin et al. (2019b);
Choi et al. (2020); Wang et al. (2020). 6 These
models capture a broad diversity of network archi-
tectures, decoding strategies, and pre-traning meth-
ods, with accuracy ranging from below 40% to
above 70%. The first author obtained these model-
predicted queries from the second author after pro-
ducing the test suites to ensure that our method
is general and not tailored to a specific family of
model-predicted queries.

5.3 Metric Adaptation

The Spider official evaluation metric is exact set
match (abbreviated as ESM) (Zhong et al., 2017;
Yu et al., 2018). It parses the gold and model-
predicted queries into sub-clauses and determines
accuracy by checking whether they have the same
set of clauses. It improves over exact string match-
ing by preventing false negatives due to seman-
tically equivalent clause reordering. However, it
is still considered a strict metric and creates false
negatives.

To further reduce false negatives, the actual im-
plementation of the official Spider metric is looser.
We list all of its major differences from the standard
ESM below; accordingly, we either adapt our test
suite evaluation or fix the Spider implementation
to make a fair comparison.

(1) The Spider metric does not check constant
prediction correctness. Therefore, our adapted test
suite evaluation enumerates all possible ways to re-
place the constants in a model-predicted query with

5The model-predicted queries are available here.
6Many dev set submissions do not have public references.

the gold constants and consider a model-predicted
query to be correct if one of the replacements
passes the test suite. (2) The Spidermetric does not
check column order, so our adapted evaluation con-
siders two denotations equivalent if they only differ
by column order. (3) The Spider evaluation script
accidentally ignores any join predicate. We fix this
bug. (4) The Spider metric does not check table
variable names. Yu et al. (2018) implemented this
because different intermediate tables can contain
the same column, hence selecting any of them is
equivalent. We keep this feature since it effectively
rules out many false negatives. However, it also
introduces new false positives (e.g., Figure 8 row
1).

Unless we explicitly specify, in the rest of our
paper, “ESM” and “test suite accuracy” refer to
these adapted metrics rather than the original ones.

6 Results

We first show that our test suite evaluation is reli-
able by verifying that the test suite distinguishes
most neighbor queries, and always makes the cor-
rect judgement on 100 model-predicted queries we
manually examined (Section 6.1). Then we use test
suite accuracy as a proxy for semantic accuracy to
calculate the error rate of the existing commonly
used metrics (Section 6.2) and their correlations
(Section 6.3). At last we discuss the computational
efficiency of test suite evaluation (Section 6.4).

6.1 Reliability

Distinguish Neighbor Queries. For each gold
query in Spider, we generate on average 94 neigh-
bor queries (Figure 2). We sample 1000 random
databases for each database schema and run fuzzing
(Section 4.2) to construct S g, which takes around
a week on 16 CPUs. Figure 5 plots the fraction of
neighbor queries that remain undistinguished after
attempting t random databases.

Checking single database denotation fails to
distinguish 5% of the neighbor queries, and the
curve stops decreasing after around 600 random
databases; 1000 random databases can distinguish
> 99% of the neighbor queries. A large number of
random databases is necessary to achieve compre-
hensive code coverage.

Figure 4 presents some typical neighbor queries
that have the same denotations as the gold on all
the databases we sampled. These queries are only
a small fraction (1%) of all the neighbors; in most

https://github.com/ruiqi-zhong/TestSuiteEval/tree/main/predictions

401

Modification Gold & Modified Passing Reason

Comparison
Operator
Replaced

Gold: SELECT T1.NAME FROM Conductor …
 GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) > 1
Modified: SELECT T1.NAME FROM Conductor …
 GROUP BY T2.CONDUCTER_ID HAVING COUNT(*) != 1

Count is always positive, so “> 1” is
equivalent to “!= 1”. modification is
semantically equivalent to the original SQL.

Constant
Replaced

Gold: SELECT NAME FROM City
 WHERE POPULATION BETWEEN 160000 AND 90000
Modified: SELECT NAME FROM City
 WHERE POPULATION BETWEEN 160000 AND 21687

Original annotation is wrong and both the
original and the modification lead to empty
results, which are semantically equivalent.

Column Name
Dropped

Gold: SELECT COUNT(T2.LANGUAGE), T1.NAME …
Modified: SELECT COUNT(*), T1.NAME FROM …

The SQL interpreter infers it should count
the number of rows. modification is
semantically equivalent to the original SQL.

Comparison
Operator
Replaced

Gold: SELECT COUNT(*) FROM Dogs
 WHERE age < (SELECT AVG(AGE) FROM Dogs)
Modified: SELECT COUNT(*) FROM Dogs
 WHERE age <= (SELECT AVG(AGE) FROM Dogs)

A dog entry needs to have exactly the
average age to distinguish the modification.
This happens with low probability and our
test suite fails to distinguish them.

Figure 4: Representative modifications in Ng that produce the same results as the gold (pass) on all sampled
databases.

Figure 5: The progress of fuzzing (Section 4.2). The
x-axis represents the number of random databases at-
tempted (t), and the y-axis (re-scaled by log) is the frac-
tion of neighbor queries left. y-value at x = 0 is the
fraction of neighbors left after checking denotations on
the database provided by Yu et al. (2018).

cases they happen to be semantically equivalent to
the gold. We acknowledge that our fuzzing based
approach has trouble distinguishing semantically
close queries that differ only at a floating-point pre-
cision (e.g. “≤ 2.31” vs. “< 2.31”). Fortunately,
however, we cannot find a false positive caused by
this weakness in our subsequent manual evaluation.

Manual Evaluation. Even though our test suite
achieves comprehensive code coverage, we still
need to make sure that our method does not cre-
ate any false positive on model-predicted queries.
We focus on the queries from the 21 submissions
that are considered incorrect by ESM but correct
by our test suite evaluation, randomly sampled and

manually examined 100 of them. All of them are
semantically equivalent to the gold query; in other
words, we did not observe a single error made
by our evaluation method. We release these 100
model-predicted queries along with annotated rea-
sons for why they are equivalent to the gold labels,7

such that the research community can conveniently
scrutinize the quality of our evaluation method.

We also confirm that our method can reliably
evaluate model-predicted queries on WikiSQL
(Zhong et al., 2017). We refer the readers to Ap-
pendix A.3 for further experimental details.

Difficulty Mean Std Max
easy (%) 0.5 / 2.2 0.5 / 1.3 2.0 / 7.2

medium (%) 0.2 / 1.9 0.3 / 1.9 0.7 / 8.0
hard (%) 0.5 / 4.4 1.2 / 3.8 4.0 / 12.1
extra (%) 1.7 / 3.2 1.8 / 1.6 5.3 / 8.2

all data (%) 0.5 / 2.6 1.0 / 1.7 2.0 / 8.1

Table 1: The false positive/negative rate of the adapted
exact set match metric (Section 5.3) for each difficulty
split. We report the mean / std / max of these two statis-
tics among 21 dev set submissions.

6.2 Errors of Traditional Metrics
Given that test suite evaluation empirically pro-
vides an improved approximation of semantic
equivalence, we use test suite accuracy as ground
truth and retrospectively examine how well ESM
approximates semantic accuracy. We calculate the

7Manual examinations are available here.

https://github.com/ruiqi-zhong/TestSuiteEval/blob/main/ESMFalseNegatives.tsv

402

Difficulty Mean Std Max
easy (%) 3.6 1.2 6.0

medium (%) 5.9 0.9 8.2
hard (%) 8.0 1.5 10.3
extra (%) 11.0 3.5 17.6

all data (%) 6.5 1.0 9.0

Table 2: The false positive rate of single denotation ac-
curacy (i.e., checking denotation only on the databases
originally released in Yu et al. (2018)) for each diffi-
culty split. We report the mean / std / max of these two
statistics among 21 dev set submissions.

false positive/false negative rate for each difficulty
split and report the mean, standard deviation, and
max for all 21 submissions.

Table 1 shows the results. ESM leads to a non-
trivial false negative rate of 2.6% on average, and
8.1% in the worst case. The error becomes larger
for harder fractions of queries characterized by
more complex queries. On the hard fraction, false
negative rate increases to 4% on average and 12.1%
in the worst case.

In Table 2, we report the difference between
test suite accuracy and single denotation accuracy,
which effectively means checking denotations of
the model-predicted queries only on the databases
from the original dataset release (Yu et al., 2018).
In the worst case, single denotation accuracy cre-
ates a false positive rate of 8% on the entire devel-
opment set, and 4% more on the extrahard fraction.

6.3 Correlation with Existing Metrics

Could surface-form based metric like ESM reli-
ably track improvements in semantic accuracy?

(a) τ = 91.4% on all
queries in the dev set.

(b) τ = 74.1% on
hard fraction of the dev set.

Figure 6: Kendall τ correlation between exact set
match and test suite accuracy. Each dot is a dev set
submission to the Spider leaderboard.

We plot ESM against test suite accuracy for all 21
dev set submissions in Figure 6. On a macro level,
ESM correlates well with test suite accuracy with
Kendall τ correlation 91.4% in aggregate; however,

(a) τ = 97.9% on all
queries in the dev set.

(b) τ = 82.2% on extrahard
fraction of the dev set.

Figure 7: Kendall τ correlation between single execu-
tion accuracy as originally defined in Yu et al. (2018)
and test suite accuracy. Each dot is a dev set submis-
sion to the Spider leaderboard.

the correlation decreases to 74.1% on the hard frac-
tion. Additionally, ESM and test suite accuracy
starts to diverge as model performance increases.
These two facts jointly imply that as models are be-
coming better at harder queries, ESM is no longer
sufficient to approximate semantic accuracy. On a
micro level, when two models have close perfor-
mances, improvements in semantic accuracy might
not be reflected by increases in ESM. On the hard
fraction, 5 out of 21 submissions have more than
four others that have lower test suite accuracy but
higher ESM scores (i.e., there are five dots in Fig-
ure 6b such that for each of them, four other dots
is located in its upper left).

Figure 7 plots the correlation between single de-
notation accuracy against test suite accuracy. On
the extrahard fraction, four submissions have more
than three others that have higher single denotation
accuracy but lower test suite accuracy. Checking
denotation only on the original database is insuffi-
cient.

We list the Kendall τ correlations between test
suite accuracy and different metrics in Table 3 and
plot them in the appendix Section A.4. The correla-
tion with the current official metric is low without
fixing the issue (3) identified in Section 5.3.

6.4 Computational Efficiency

On average, we distill 42 databases for each of the
1034 queries. In total, there are 695 databases since
queries with the same database schema share the
same test suite. These databases take 3.27GB in
space (databases from the original datasets take
100.7MB). Running the gold queries on the entire
test suite takes 75.3 minutes on a single CPU (com-
pared to 1.2 minutes on the databases from the
original datasets). Although test suite evaluation
consumes more space and computational resources

403

Difficulty Adapted Official Single Denot.
easy (%) 91 86 90

medium (%) 90 37 96
hard (%) 75 28 94
extra (%) 91 20 82

all data (%) 91 40 98

Table 3: Kendall τ correlation between various met-
rics and test suite accuracy across 21 submissions.
Adapted refers to ESM after we fix the issue (3) iden-
tified in Section 5.3. Official refers to directly running
the official evaluation script to evaluate, and Single De-
not. refers to only checking denotation on the one
database provided by Yu et al. (2018).

than single denotation evaluation, it is paralleliz-
able and affordable by most researchers.

We may speed up the evaluation by checking
denotation only on a single database sampled from
the distribution Ig. While this sped-up version
sacrifices precision for speed, retrospectively, it
produces the exact same outcomes as running the
full test suite on the 21 submissions. Therefore, the
sped-up version might be useful when occasional
errors are tolerable (e.g. denotation based training).
However, we still recommend using the full test
suite for reliable evaluation, since a single sam-
ple from Ig cannot distinguish all neighbors, and
checking denotations on multiple databases with
comprehensive code coverage is always more reli-
able, especially when we have no prior information
about the model-predicted queries.

7 Metrics Comparison and Analysis

We explain how ESM and test suite accuracy differ
and provide representative examples (Figure 8).

False Positives Although standard ESM is strict,
the adapted ESM (Section 5.3) can introduce false
positives because it ignores table variable names.
See Figure 8 row 1 for an example.

False Negatives Row 2-4 shows that slightly
complicated queries usually have semantically
equivalent variants, and it is nontrivial to tell
whether they are semantically equivalent unless
we execute them on a test suite or manually verify.

Nevertheless, even though test suite accuracy
reliably approximates semantic accuracy accord-
ing to our observation, researchers might also care
about other aspects of a model-predicted query. Se-
mantic accuracy is only concerned with what are
the denotations of a query, but not how it calcu-

lates them. For example, Figure 8 row 5 represents
one of the most common types of false negatives,
where the model-predicted query chooses to join
other tables even though it is unnecessary. While
semantically correct, the model-predicted query in-
creases running time. Figure 8 row 7 exhibits a
similar but more complicated and rare example.

Inserting gold values into model-predicted
queries as described in Section 5 might also unex-
pectedly loosen the semantic accuracy metric. For
example, in Figure 8 row 6, the model-predicted
query uses the “LIKE” keyword rather than the “=”
operator. By SQL style conventions, “LIKE” usu-
ally precedes a value of the form “%[name]%” and
corresponds to natural language query “contains
[name]” rather than “matches [name]”; it seems
plausible that the model does not understand the
natural language query. However, if we replace
the wrong value “%[name]%” with the gold value
“[name]” after the “LIKE” operator, the predicate
becomes semantically equivalent to “= [value]”
and hence makes the query semantically correct.
Value prediction is a crucial part of evaluating Text-
to-SQL models.

8 Discussion and Conclusion

Semantic Evaluation via Test Suites We pro-
pose test suite accuracy to approximate the seman-
tic accuracy of a Text-to-SQL model, by automati-
cally distilling a small test suite with comprehen-
sive code coverage from a large number of random
inputs. We assure test suite quality by requiring it
to distinguish neighbor queries and manually ex-
amining its judgments on model-predicted queries.
Our test suites will be released for eleven datasets
so that future works can conveniently evaluate test
suite accuracy. This metric better reflects seman-
tic accuracy, and we hope that it can inspire novel
model designs and training objectives.

Our framework for creating test suites is gen-
eral and only has two requirements: (1) the input
is strongly typed so that the fuzzing distribution
Ig can be defined and the sample input can be
meaningfully executed, and (2) there exist neighbor
queries Ng that are semantically close but different
from the gold g. Since these two conditions hold
in many execution environments, our framework
might potentially be applied to other logical forms,
such as λ-DCS (Liang, 2013), knowledge graphs
(Lin et al., 2018), and python code snippets (Yin
et al., 2018; Oda et al., 2015) if variable types can

404

Error Gold & Model Prediction Explanation
1 False Positive Gold: SELECT T3.NAME, T2.COURSE FROM Course_arrange AS T1 JOIN Course AS T2 ON

 T1.COURSE_ID = T2.COURSE_ID JOIN Teacher AS T3 ON T1.TEACHER_ID = T3.TEACHER_ID;
Prediction: SELECT T1.NAME, T2.COURSE FROM Course_arrange AS T1 JOIN Course AS T2 ON
 T1.COURSE_ID = T2.COURSE_ID JOIN Teacher AS T3 ON T1.TEACHER_ID = T3.TEACHER_ID;

Exact set match does not account
for table variable names.

2 False Negative Gold: SELECT TEMPLATE_ID FROM Templates
 EXCEPT SELECT TEMPLATE_ID FROM Documents;
Prediction: SELECT TEMPLATE_ID FROM Templates
 WHERE TEMPLATE_ID NOT IN (SELECT TEMPLATE_ID FROM Documents);

“EXCEPT” is semantically
equivalent to “NOT IN”

3 False Negative Gold: SELECT COUNT(*) FROM Area_code_state;
Prediction: SELECT COUNT(STATE) FROM Area_code_state;

Counting any column is the same.

4 False Negative Gold: SELECT TRANSCRIPT_DATE FROM Transcripts ORDER BY TRANSCRIPT_DATE DESC LIMIT 1;
Prediction: SELECT MAX(TRANSCRIPT_DATE) FROM Transcripts;

First element of descendingly sorted
column is equivalent to maxing.

5 False Negative Gold: SELECT COUNT(*) FROM Cars_data WHERE HORSEPOWER > 150;
Prediction: SELECT COUNT(*) FROM Cars_data as T1
 JOIN Car_names as T2 on T1.ID = T2.MAKEID where T1.HORSEPOWER > 150;

Semantically correct redundant join.

6 False Negative Gold: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION = "UAL";
Prediction: SELECT AIRLINE FROM Airlines WHERE ABBREVIATION LIKE "UAL";

If the string value is the same, “=”
is equivalent to “LIKE”

7 False Negative Gold: SELECT LANGUAGE FROM Country_language
 GROUP BY LANGUAGE ORDER BY Count(*) DESC LIMIT 1;
Prediction: SELECT Country_language.LANGUAGE FROM Country JOIN Country_language
 GROUP BY Country_language.LANGUAGE ORDER BY Count(*) Desc LIMIT 1;

The redundant join is implicitly a
cross join, which will repeat every
row in Country_language by [size
of Country table] times. It leads to
the same ranking if counted.

Figure 8: Representative examples where the exact set match (ESM) metric is different from test suite accuracy.
False Positives happen when ESM judges a model-predicted query to be correct but test suite accuracy judges it to
be wrong. False Negatives happen when the reverse takes place.

be heuristically extracted. We hope to see more
future work that evaluates approximate semantic
accuracy on the existing benchmarks and formu-
lates new tasks amenable to test suite evaluation.

We do not attempt to solve SQL equivalence
testing in general. While our test suite achieves
comprehensive code coverage of the gold query, it
might not cover all the branches of model-predicted
queries. Adversarially, we can always construct a
query that differs from the gold only under extreme
cases and fools our metric. Fortunately, we never
observe models making such pathological mistakes.
However, it is necessary to revisit and verify this
hypothesis some time later due to Goodhardt’s law,
since researchers will optimize over our metric.

Beyond Semantic Evaluation Although test
suite evaluation provably never creates false neg-
atives in a strict programming language sense, it
might still consider “acceptable answers” to be
wrong and result in false negatives in a broader
sense. For example, in a database of basketball
game results, the predicate “A wins” is equiva-
lent to “scoreA > scoreB” according to com-
mon sense. However, such a relation is not explic-
itly reflected in the database schema, and our proce-
dure might generate an “unnatural” database where
“scoreA > scoreB” but not “A wins”, hence dis-

tinguishing the model-predicted query from the
gold. Fortunately, this issue is mitigated by cur-
rent models. If “A wins” is mentioned in the
text, the model would prefer predicting “A wins”
rather than “scoreA > scoreB”. Nevertheless, to
completely solve this issue, we recommend future
dataset builders to explicitly define the database
generation procedure. Automatic constraint induc-
tion from database content and schema descriptions
might also be possible, which is on its own an open
research problem.

Additionally, some answers might be pragmat-
ically acceptable but semantically wrong. For ex-
ample, if a user asks “who is the oldest person?”,
the correct answer is a person’s name. However, it
also makes sense to return both the name and age
columns, with the age column sorted in descending
order. Collecting multiple gold SQL query ref-
erences for evaluation (like machine translation)
might be a potential solution.

Finally, as discussed in Section 7, there might
be other crucial aspects of a model-predicted query
beyond semantic correctness. Depending on the
goal of the evaluation, other metrics such as mem-
ory/time efficiency and readability are also desir-
able and complementary to test suite accuracy.

405

Acknowledgement

We thank Wanyong Feng, Naihao Deng and Songhe
Wang for rewriting queries and cleaning databases
from Finegan-Dollak et al. (2018b). We thank
Rishabh Agarwal, Tong Guo, Wonseok Hwang,
Qin Lyu, Bryan McCann, Chen Liang, Sewon Min,
Tianze Shi, Bailin Wang and Victor Zhong for re-
sponding to our cold email looking for WikiSQL
model-predicted queries.

References
American fuzzy lop. http://lcamtuf.coredump.cx/
afl. Accessed: 2020-5-12.

Automatic testing of haskell programs. https:

//hackage.haskell.org/package/QuickCheck-2.

14/docs/Test-QuickCheck.html. Accessed:
2020-5-12.

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and
Mohammad Norouzi. 2019. Learning to generalize
from sparse and underspecified rewards. In Pro-
ceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Pro-
ceedings of Machine Learning Research, pages 130–
140. PMLR.

P Ammann and J Offutt. Introduction to software test-
ing. cambridge university press, 2008.

Ben Bogin, Jonathan Berant, and Matt Gardner. 2019a.
Representing schema structure with graph neural
networks for text-to-sql parsing. In ACL.

Ben Bogin, Matt Gardner, and Jonathan Berant. 2019b.
Representing schema structure with graph neural
networks for text-to-sql parsing. arXiv preprint
arXiv:1905.06241.

DongHyun Choi, Myeong Cheol Shin, EungGyun
Kim, and Dong Ryeol Shin. 2020. Ryan-
sql: Recursively applying sketch-based slot fillings
for complex text-to-sql in cross-domain databases.
https://arxiv.org/abs/2004.03125.

Shumo Chu, Brendan Murphy, Jared Roesch, Alvin
Cheung, and Dan Suciu. 2018. Axiomatic founda-
tions and algorithms for deciding semantic equiva-
lences of sql queries. Proceedings of the VLDB En-
dowment, 11(11):1482–1495.

Shumo Chu, Chenglong Wang, Konstantin Weitz, and
Alvin Cheung. 2017. Cosette: An automated prover
for sql.

Deborah A. Dahl. 1989. Book reviews: Computer in-
terpretation of natural language descriptions. Com-
putational Linguistics, 15(1).

Deborah A. Dahl, Madeleine Bates, Michael Brown,
William Fisher, Kate Hunicke-Smith, David Pallett,
Christine Pao, Alexander Rudnicky, and Elizabeth
Shriberg. 1994. Expanding the scope of the atis
task: The atis-3 corpus. In HUMAN LANGUAGE
TECHNOLOGY: Proceedings of a Workshop held at
Plainsboro, New Jersey, March 8-11, 1994.

Catherine Finegan-Dollak, Jonathan K Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018a. Improving
text-to-sql evaluation methodology. arXiv preprint
arXiv:1806.09029.

Catherine Finegan-Dollak, Jonathan K. Kummerfeld,
Li Zhang, Karthik Ramanathan, Sesh Sadasivam,
Rui Zhang, and Dragomir Radev. 2018b. Improving
text-to-SQL evaluation methodology. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 351–360, Melbourne, Australia. Asso-
ciation for Computational Linguistics.

Todd J Green, Grigoris Karvounarakis, and Val Tannen.
2007. Provenance semirings. In Proceedings of the
twenty-sixth ACM SIGMOD-SIGACT-SIGART sym-
posium on Principles of database systems, pages 31–
40.

Hongyu Guo. 2017. A deep network with visual text
composition behavior. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
372–377, Vancouver, Canada. Association for Com-
putational Linguistics.

Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao,
Jian-Guang Lou, Ting Liu, and Dongmei Zhang.
2019. Towards complex text-to-sql in cross-domain
database with intermediate representation. arXiv
preprint arXiv:1905.08205.

Pengcheng He, Yi Mao, K. Chakrabarti, and W. Chen.
2019. X-sql: reinforce schema representation with
context. ArXiv, abs/1908.08113.

Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and
Minjoon Seo. 2019. A comprehensive exploration
on wikisql with table-aware word contextualization.
ArXiv, abs/1902.01069.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Caroline Lemieux, Rohan Padhye, Koushik Sen, and
Dawn Song. 2018. Perffuzz: Automatically gen-
erating pathological inputs. In Proceedings of the
27th ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 254–265.

http://lcamtuf.coredump.cx/afl
http://lcamtuf.coredump.cx/afl
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
https://hackage.haskell.org/package/QuickCheck-2.14/docs/Test-QuickCheck.html
http://proceedings.mlr.press/v97/agarwal19e.html
http://proceedings.mlr.press/v97/agarwal19e.html
https://www.aclweb.org/anthology/J89-1008
https://www.aclweb.org/anthology/J89-1008
https://www.aclweb.org/anthology/H94-1010
https://www.aclweb.org/anthology/H94-1010
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/P17-2059
https://doi.org/10.18653/v1/P17-2059
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089

406

Fei Li and HV Jagadish. 2014. Constructing an in-
teractive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73–84.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. In Advances in Neural Information
Processing Systems, pages 9994–10006.

Percy Liang. 2013. Lambda dependency-based compo-
sitional semantics. arXiv preprint arXiv:1309.4408.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3243–3253, Brussels, Belgium.
Association for Computational Linguistics.

Qin Lyu, Kaushik Chakrabarti, Shobhit Hathi, Souvik
Kundu, Jianwen Zhang, and Zheng Chen. 2020. Hy-
brid ranking network for text-to-sql. arXiv preprint
arXiv:2008.04759.

B. McCann, N. Keskar, Caiming Xiong, and R. Socher.
2018. The natural language decathlon: Mul-
titask learning as question answering. ArXiv,
abs/1806.08730.

Joan C Miller and Clifford J Maloney. 1963. System-
atic mistake analysis of digital computer programs.
Communications of the ACM, 6(2):58–63.

Sewon Min, Danqi Chen, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2019. A discrete hard EM ap-
proach for weakly supervised question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2851–
2864, Hong Kong, China. Association for Computa-
tional Linguistics.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (t). In 2015 30th IEEE/ACM In-
ternational Conference on Automated Software En-
gineering (ASE), pages 574–584. IEEE.

Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike
Papadakis, and Yves Le Traon. 2019. Semantic
fuzzing with zest. In Proceedings of the 28th
ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis, pages 329–340.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th Inter-
national Conference on Intelligent User Interfaces,
IUI ’03, page 149–157, New York, NY, USA. Asso-
ciation for Computing Machinery.

Tianze Shi, Kedar Tatwawadi, K. Chakrabarti, Yi Mao,
Oleksandr Polozov, and W. Chen. 2018. Incsql:
Training incremental text-to-sql parsers with non-
deterministic oracles. ArXiv, abs/1809.05054.

Alane Suhr, Srinivasan Iyer, and Yoav Artzi. 2018.
Learning to map context-dependent sentences to ex-
ecutable formal queries. In Proceedings of the Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 2238–2249. Association
for Computational Linguistics.

Alane Laughlin Suhr, Kenton Lee, Ming-Wei Chang,
and Pete Shaw. 2020. Exploring unexplored general-
ization challenges for cross-database semantic pars-
ing. In ACL 2020.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for
text-to-sql parsers.

Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu,
Changliang Li, Derek F. Wong, and Lidia S. Chao.
2019. Learning deep transformer models for ma-
chine translation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 1810–1822, Florence, Italy. Associa-
tion for Computational Linguistics.

Xiaojun Xu, Chang Liu, and Dawn Song. 2017. Sqlnet:
Generating structured queries from natural language
without reinforcement learning. arXiv preprint
arXiv:1711.04436.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis from
natural language. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):1–26.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In International Conference on Min-
ing Software Repositories, MSR, pages 476–486.
ACM.

Tao Yu, Rui Zhang, Heyang Er, Suyi Li, Eric Xue,
Bo Pang, Xi Victoria Lin, Yi Chern Tan, Tianze
Shi, Zihan Li, Youxuan Jiang, Michihiro Yasunaga,
Sungrok Shim, Tao Chen, Alexander Fabbri, Zifan
Li, Luyao Chen, Yuwen Zhang, Shreya Dixit, Vin-
cent Zhang, Caiming Xiong, Richard Socher, Walter
Lasecki, and Dragomir Radev. 2019a. CoSQL: A
conversational text-to-SQL challenge towards cross-
domain natural language interfaces to databases. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 1962–
1979, Hong Kong, China. Association for Computa-
tional Linguistics.

https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D18-1362
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.18653/v1/D19-1284
https://doi.org/10.1145/604045.604070
https://doi.org/10.1145/604045.604070
http://aclweb.org/anthology/N18-1203
http://aclweb.org/anthology/N18-1203
https://doi.org/10.18653/v1/P19-1176
https://doi.org/10.18653/v1/P19-1176
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/https://doi.org/10.1145/3196398.3196408
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204
https://doi.org/10.18653/v1/D19-1204

407

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
3911–3921.

Tao Yu, Rui Zhang, Michihiro Yasunaga, Yi Chern
Tan, Xi Victoria Lin, Suyi Li, Heyang Er, Irene
Li, Bo Pang, Tao Chen, Emily Ji, Shreya Dixit,
David Proctor, Sungrok Shim, Jonathan Kraft, Vin-
cent Zhang, Caiming Xiong, Richard Socher, and
Dragomir Radev. 2019b. SParC: Cross-domain se-
mantic parsing in context. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4511–4523, Florence,
Italy. Association for Computational Linguistics.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence - Volume
2, AAAI’96, page 1050–1055. AAAI Press.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries
from natural language using reinforcement learning.
CoRR, abs/1709.00103.

https://doi.org/10.18653/v1/P19-1443
https://doi.org/10.18653/v1/P19-1443

408

A Appendix

A.1 Algorithmic Description of Section 4.2

Algorithm 1: Distilling a test suite S g. Ng

is the set of neighbor queries of g; Ig is a
distribution of database inputs.

S g := ∅,N := Ng ;
for t = 1, 2, . . . 1000 do

wt ∼ Ig;
for q ∈ Ng do

if D{wt}(q, g) = 1 then
S g.add(wt);
N.remove(q)

return S g

A.2 Test Suite for Other Datasets
Data We download Academic, Advising, ATIS,
Geography, IMDB, Restaurants, Scholar and Yelp
from Finegan-Dollak et al. (2018a). For each
dataset, we distill a test suite for the test split if
it is already defined; otherwise we distill for the
entire dataset.

We distill one shared test suite for the develop-
ment set of Spider (Yu et al., 2018), CoSQL (Yu
et al., 2019a) and SParC (Yu et al., 2019b), since
they share the same 20 database schemata.

Test Suite Statistics The detailed test suite statis-
tics can be seen in Table 4. The following list
describes what each column represents:

• # Queries: the number of SQL queries we
generate test suites for. Notice that this is not
the full dataset size.

• Time: the time needed (in minute) to execute
all the gold queries on its corresponding test
suite on a single CPU. The smaller the value,
the better.

• Size: the total size (in Giga-Bytes(G)/Mega-
Bytes(M)) of the test suite. The smaller the
value, the better.

• OrigSize: the size of the databases (in Giga-
Bytes) in the original release.

• |Ng|: the average number of neighbor queries
generated for each gold query g in the dataset.

• Undistinguished: the fraction of neighbor
queries that cannot be distinguished by the
test suite. The smaller the value, the better.

• # “Reliable”: the estimated fraction of gold
queries in a dataset that can be reliably eval-
uated (defined below). The larger the value,
the better.

Spider, CoSQL and SParC have approximately
the same statistics, since they share the same
database schema and annotation convention. The
other eight datasets have significantly longer
queries with much more “JOIN” and “WHERE” op-
erations. Hence, there are more spans to drop and
more neighbors are generated per query.

Reliability Table 4 column “Undistinguished”
implies that fuzzing cannot distinguish a non-trivial
fraction of neighbor queries for some datasets. Be-
sides cases where the neighbor queries are acci-
dentally semantically equivalent to the gold, there
are two major categories where fuzzing fails to
distinguish semantically inequivalent neighbors.

• The gold query contains too many “WHERE”
operations. For example, among the 93
queries in the ATIS test split, the maximum
number of “WHERE” operations is 24 for a
single query, whereas this number is only 2
among 1034 queries in the Spider develop-
ment set. Distinguishing two queries that dif-
fer by only one “WHERE” operation is hard be-
cause the randomly sampled database needs
to have a row that exactly satisfies all the
“WHERE” clauses.

• The gold query contains predicates like
“WHERE COUNT(*) > 5000”. Distinguishing
“WHERE COUNT(*) > 5000” from “WHERE
COUNT(*) > 4999” requires the number of
the target (intermediate) table to have a size
exactly 5000. Such a requirement is particu-
larly hard for randomly generated databases.

We say that a datapoint can be reliably evaluated
if all of its undistinguished neighbors do not fall
into the above two categories; then we estimate the
fraction of datapoints that can be reliably evaluated
for each dataset in Table 4. Fortunately, the major-
ity of queries can be reliably evaluated for every
dataset. Future manual efforts to hand-craft test
suite might be needed to distinguish the neighbor
queries and make test suite evaluation more reliable
on ATIS and Advising.

Finally, Suhr et al. (2020) evaluates execution
accuracy only on datapoints where the gold deno-
tation is not empty. In comparison, at least one

409

Dataset # Queries Time ↓ Size ↓ OrigSize |Ng| Undistinguished ↓ # “Reliable” ↑
Spider 1034 75.3m 3.27G 0.10G 94 0.44% 100.0%
CoSQL 1007 75.6m 3.27G 0.10G 93 0.48% 100.0%
SParC 1203 86.7m 3.27G 0.10G 81 0.71% 100.0%

Academic 189 1.6m 0.03G 4.81G 368 1.36% 94.7%
Advising 76 1.7m 0.14G 0.03G 520 0.91% 63.2%

ATIS 93 19.2m 0.92G 0.06G 974 0.63% 76.3%
Geography 51 0.4m 2.21M 0.26M 108 5.28 % 88.2%

IMDB 97 0.8m 0.02G 0.99G 253 0.23% 100.0%
Restaurants 23 0.2m 1.37M 1.03M 379 0.14% 100.0%

Scholar 101 0.9m 9.43M 6.45G 107 0.54% 92.1%
Yelp 122 1.4m 0.02G 2.15G 274 0.07% 98.3%

Table 4: Detailed test suite statistics by datasets. Appendix Section A.2 includes detailed explanation of each
column name. ↓/↑ means that we hope the number to be small/large. Spider, CoSQL and SParC share the same
test suite.

database from our test suite produces non-empty
gold denotation for every datapoint in all eleven
datasets.

A.3 Evaluation on WikiSQL

We show that our test suite evaluation strategy also
works well for model-predicted queries on Wik-
iSQL (Zhong et al., 2017). The dev/test set contains
8420/15878 SQL queries, respectively.

Model-Predicted Queries We reached out to au-
thors of individual works to obtain real model pre-
dictions on WikiSQL, and heard back from Min
et al. (2019); McCann et al. (2018); Lyu et al.
(2020); Hwang et al. (2019); He et al. (2019); Shi
et al. (2018); Guo (2017); Agarwal et al. (2019);
Liang et al. (2018); Wang et al. (2019).

We use the model-predicted queries from the first
six works cited above since they provided model-
predicted queries in the format consistent with
Zhong et al. (2017), which can be easily converted
into SQL queries. Specifically, we consider the
model-predicted queries from the following eight
models: MQAN unordered (McCann et al., 2018),
X-SQL (He et al., 2019), HydraNet with/without
Execution Guidance (Lyu et al., 2020), IncSQL
(Shi et al., 2018), SQLova with/without Execution
Guidance (Hwang et al., 2019) and HardEM (Min
et al., 2019). This provides us in total (8420 +

15878) × 8 ≈ 200K model-predicted queries.

Test Suite Generation We run the fuzzing al-
gorithm (Section 4) as before to create test suite.
Since the most complex query in WikiSQL is sim-
ple and only consists of a single “WHERE” clause

with an aggregation operation, our test suite can
distinguish all the neighbors.

Metric Difference To check whether our test
suite reliably evaluates semantic accuracy, we ex-
amine model-predicted queries where test suite ac-
curacy disagrees with Exact Set Match (ESM) (as
in Section 6.1).

We find that there is only one pattern where
a semantically correct prediction is considered
wrong by ESM: counting any column of a table
gives exactly the same denotation. For exam-
ple, “SELECT count(col1) from Table” is se-
mantically equivalent to “SELECT count(col2)
from Table” but different in surface form. After
implementing a rule to filter out this equivalence
pattern, we only find one model-predicted query
that is considered wrong by ESM but correct by
test suite accuracy, and we present it below.

The gold query is
SELECT MAX(col2) table WHERE col4 =

10;

, while the model-predicted query is
SELECT MAX(col2) FROM table WHERE

col2 > 10 AND col4 = 10;

.This model-predicted query is not semantically
equivalent to the gold, and hence our test suite eval-
uation makes an error. It over-generates a clause
“WHERE col2 > 10” that is not covered by the test
suite. None of our sampled database leads to a gold
denotation fewer or equal to 10, which is a neces-
sary and sufficient condition to distinguish these
two queries.

To conclude, on WikiSQL, we only find 1 out of
200K model-predicted queries where our test suite

410

accuracy makes an error, while we are able to verify
that our test suite accuracy is correct for all the
other model-predicted queries. This further implies
that our method to develop semantic evaluation is
robust and not dataset-specific.

On the other hand, however, the only semanti-
cally equivalent variant of the gold query in Wik-
iSQL is replacing the column to be counted. Since
we might still want to check which column the
model-predicted query is counting for code read-
ability, we do NOT recommend researchers to use
test suite accuracy for WikiSQL.

A.4 Correlation Plot with Other Metrics
We plot the correlation between test suite accuracy
and (1) adapted exact set match (Figure 9), (2)
official Spider exact set match (Figure 10), and
(3) single denotation accuracy (Figure 11) on each
fraction of the difficulty split.

(a) τ = 90.8% on
easy fraction.

(b) τ = 90.1% on
medium fraction.

(c) τ = 74.1% on
hard fraction.

(d) τ = 91.0% on
extra hard fraction.

(e) τ = 91.4% on
all data.

Figure 9: Kendall τ correlation between adapted exact
set match and fuzzing-based accuracy. Each dot in the
plot represents a dev set submission to the Spider leader
board.

(a) τ = 86.0% on
easy fraction.

(b) τ = 37.3% on
medium fraction.

(c) τ = 27.8% on
hard fraction.

(d) τ = 20.4% on
extra hard fraction.

(e) τ = 40.0% on
all data.

Figure 10: Kendall τ correlation between the official
Spider exact set match and fuzzing-based accuracy.
Each dot in the plot represents a dev set submission
to the Spider leader board.

411

(a) τ = 90.3% on
easy fraction.

(b) τ = 96.4% on
medium fraction.

(c) τ = 93.7% on
hard fraction.

(d) τ = 82.2% on
extra hard fraction.

(e) τ = 97.9% on
all data.

Figure 11: Kendall τ correlation between single deno-
tation accuracy and fuzzing-based accuracy. Each dot
in the plot represents a dev set submission to the Spider
leader board.

