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Abstract

Contextualized word embeddings have been
employed effectively across several tasks in
Natural Language Processing, as they have
proved to carry useful semantic information.
However, it is still hard to link them to struc-
tured sources of knowledge. In this paper we
present ARES (context-AwaRe Embeddings
of Senses), a semi-supervised approach to pro-
ducing sense embeddings for the lexical mean-
ings within a lexical knowledge base that lie in
a space that is comparable to that of contextu-
alized word vectors. ARES representations en-
able a simple 1-Nearest-Neighbour algorithm
to outperform state-of-the-art models, not only
in the English Word Sense Disambiguation
task, but also in the multilingual one, whilst
training on sense-annotated data in English
only. We further assess the quality of our em-
beddings in the Word-in-Context task, where,
when used as an external source of knowledge,
they consistently improve the performance of
a neural model, leading it to compete with
other more complex architectures. ARES em-
beddings for all WordNet concepts and the
automatically-extracted contexts used for cre-
ating the sense representations are freely avail-
able at http://sensembert.org/ares.

1 Introduction

Contextualized word embeddings have proved to
be highly beneficial to the majority of Natural Lan-
guage Processing tasks (Wang et al., 2019). Indeed,
language models like BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), XLNet (Yang et al.,
2019), etc., enable architectures built on top of
them to attain performances that were previously
out of reach (Wang et al., 2019). The main reason
behind this great success is the fact that contextu-
alized embeddings of words encode the semantics
defined by their input context (Reif et al., 2019).
Indeed, when tested in the Word-in-Context (WiC)

task (Pilehvar and Camacho-Collados, 2019), i.e.,
a binary classification problem where a model has
to classify whether a target word is used with the
same meaning in two different sentences, contex-
tualized word embeddings placed themselves as
the best approaches across the board. Nevertheless,
these latent representations do not provide any ex-
plicit information regarding the meaning expressed
by the word in context, hence making it difficult to
link texts to structured sources of knowledge such
as lexical knowledge bases (LKB).

The task of associating a word in context with the
most suitable meaning from a predefined sense in-
ventory is better known as Word Sense Disambigua-
tion (Navigli, 2009, WSD), and is usually tackled
by two kinds of approach: knowledge-based and
supervised ones. On the one hand, knowledge-
based approaches (Scozzafava et al., 2020; Conia
and Navigli, 2020) are able to scale across lan-
guages since they do not need sense-annotated cor-
pora and rely only on the information within their
underlying LKB. On the other hand, supervised
models (Huang et al., 2019; Bevilacqua and Nav-
igli, 2020) have proved to achieve state-of-the-art
results on the English benchmarks by taking ad-
vantage of manually-annotated data for the task
and machine learning algorithms. However, super-
vised approaches are mostly focused on English
(Navigli, 2018; Pasini, 2020) and have only re-
cently been applied to lower-resourced languages
thanks to automatically-produced datasets (Scarlini
et al., 2019; Barba et al., 2020; Pasini and Navigli,
2020). Another effective approach in this direc-
tion has been presented by Scarlini et al. (2020),
who introduced SensEmBERT, a knowledge-based
approach to building sense embeddings without
relying on sense-annotated data. Since it is not
tied to semantic annotations, SensEmBERT scales
over different languages. However, it is limited
to nominal concepts only and provides different

http://sensembert.org/ares
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representations for the same concepts across dif-
ferent languages, which hinders its applicability to
cross-lingual tasks.

In this paper we present ARES (context-AwaRe
Embeddings of Senses), a semi-supervised ap-
proach to producing sense embeddings for all the
word senses in a language vocabulary. ARES
makes up for the paucity of manually-annotated
examples for a large portion of words’ meanings by
coupling the information within a knowledge base
with the representational power of a pre-trained
language model. This enables reliable representa-
tions to be built for those senses not appearing in
manually-curated resources, while at the same time
enriching the vectors for all the other concepts.

We tested our embeddings on the two tasks that
measure a model’s capabilities to encode word
meanings, i.e., WSD and WiC. In both tasks,
ARES representations prove to be of great ben-
efit. In WSD, while employing a simple 1-Nearest-
Neighbour (1-NN) algorithm, they attain state-of-
the-art results on English, even beating dedicated
architectures with long and expensive fine-tuning
procedures. In WiC they lead a simple BERT-
based model to perform in the same ballpark as
other state-of-the-art alternatives which rely on
more complex architectures. Furthermore, by tak-
ing advantage of pre-trained multilingual models
we provide unified representations of meanings
across languages, which, while using English data
only, outperform their competitors and achieve the
state of the art on all the languages available in
the all-words multilingual WSD tasks, i.e., French,
German, Italian and Spanish.

2 Related Work

Word Sense Disambiguation (WSD) is a core task
in lexical semantics and has mainly been tackled by
two kinds of approach: knowledge-based and super-
vised ones. Knowledge-based methods build upon
lexical knowledge bases, such as WordNet (Miller
et al., 1990) and BabelNet (Navigli and Ponzetto,
2012), and employ algorithms on graphs to address
the word ambiguity in texts (Moro et al., 2014;
Agirre et al., 2014; Tripodi and Navigli, 2019; Scoz-
zafava et al., 2020). These approaches do not rely
on semantically-tagged training data and are hence
able to scale over all the languages supported by
their underlying knowledge base. Nevertheless,
they lag behind their supervised counterparts on
English in terms of performance. Supervised ap-

proaches, by framing WSD as a classification task,
have acquitted themselves as the state of the art
in English (Hadiwinoto et al., 2019; Huang et al.,
2019; Blevins and Zettlemoyer, 2020; Bevilacqua
and Navigli, 2020; Bevilacqua et al., 2020), out-
performing their knowledge-based competitors by
several points.

Recently, Pilehvar and Camacho-Collados
(2019) provided a new declination of WSD, formu-
lating it as a binary classification problem where,
given a target word and two contexts, a model has
to predict whether the target word is used with the
same meaning. This setting has the advantage of
not drawing on sense inventories and provides an
effective testbed for context-based word embed-
dings (Peters et al., 2019; Levine et al., 2020).

Contextualized sense representations have re-
cently been employed to compute sense representa-
tions that can be applied directly to disambiguation.
Some of the first approaches of this kind were pro-
posed by Melamud et al. (2016) and Peters et al.
(2018), who exploited the semantically-tagged sen-
tences of SemCor (Miller et al., 1993) and neu-
ral language models to create embeddings for the
senses in WordNet. Similarly, Loureiro and Jorge
(2019, LMMS) computed sense embeddings using
BERT (Devlin et al., 2019) and the relations in a
lexical knowledge base in order to also provide
vectors for those meanings that do not appear in
SemCor. The most recent effort in this direction is
SensEmBERT (Scarlini et al., 2020), which drops
the need for sense-annotated corpora by exploiting
the BabelNet mapping between WordNet senses
and Wikipedia pages so as to collect contextual in-
formation for the senses in WordNet. Since it does
not rely on manually-annotated data SensEmBERT
can scale over different languages, being limited,
however, to nominal senses only.

In this work we continue along this latter line of
research and propose a novel method for producing
sense embeddings which, by relying on English
data only, also proves to be able to model meanings
across languages. Rather than leveraging Word-
Net relations as LMMS does, ARES creates vec-
tor representations for all senses by automatically
providing usage examples for the synsets within a
knowledge base. In contrast to SensEmBERT, in-
stead, ARES covers all the four WordNet POS tags,
and, at the same time, disposes of the resources
required by SensEmBERT, such as NASARI and
the Wikipedia category graph.
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3 Preliminaries

We now describe the resources that we use to build
ARES embeddings.

WordNet (Miller et al., 1990) is the most used
lexical knowledge base for English. It can be
viewed as a graph where nodes are concepts, i.e.,
synsets, and edges are semantic relations between
them. Each synset contains a set of synonyms,
e.g., the synset defined as A natural flow of ground
water comprises the lemmas spring, fountain and
natural spring. We use the notation {l1, . . . , ln} (g)
to refer to the concept with gloss g and expressed
by the lemmas l1, . . . , ln. We define a sense as a
lemma-gloss pair, i.e., a meaning that is specific
to a given lemma, e.g., fountain-(A natural flow
of ground water) is a sense of {spring, fountain,
natural spring} (A natural flow of ground water).

SyntagNet (Maru et al., 2019) is a repository
containing approximately 88K lexical-semantic
collocations, i.e., pairs of WordNet synsets that
co-occur more frequently than would be expected.1

For example, the concepts {coach, bus, autobus}
(A vehicle carrying many passengers) and {driver,
motorist} (The operator of a motor vehicle) appear
in SyntagNet as they form a collocation.

UKB (Agirre et al., 2014) is a knowledge-based
approach to WSD based on the Personalized PageR-
ank algorithm (Haveliwala et al., 2002). We set
WordNet as underlying knowledge base, disable
the Most Frequent Sense backoff strategy and set
the parameters according to Agirre et al. (2018).

SemCor (Miller et al., 1993) is the standard
manually-curated corpus for WSD including more
than 220K words tagged with 25K distinct Word-
Net meanings, hence providing annotated contexts
for roughly 15% of the synsets in WordNet.

BERT (Devlin et al., 2019) is a deep neural archi-
tecture trained with the masked language model ob-
jective. Given a text, it provides contextual embed-
dings for the subtokens therein. We choose BERT
because it has proven to capture the semantics of a
word in context (Reif et al., 2019), while also be-
ing able to effectively generalize cross-lingually
thanks to its multilingual representations (Pires
et al., 2019).2

1http://syntagnet.org/
2We note that a comparison with other pre-trained lan-

guage models is outside the scope of this paper and a more
extensive evaluation is left as future work.

4 ARES

We now introduce ARES, a semi-supervised ap-
proach for creating sense embeddings that cover
all the senses in a language vocabulary. Given as
input a corpus C of raw sentences and a synset
s ∈ WordNet together with its lexicalizations Ls,
ARES operates the following three steps:

1. Context extraction, which exploits the repre-
sentation capabilities of BERT and the collo-
cational information comprised in SyntagNet
to extract a meaningful set of contexts where
s is likely to appear (Section 4.1);

2. Synset embedding, which creates the embed-
ding of the synset s by encoding the contex-
tual information of the sentences gathered in
the previous step (Section 4.2);

3. Sense embedding, which combines the sense-
annotated contexts in SemCor, the definitional
information of the glosses and our synset em-
beddings to create the final sense representa-
tion (Section 4.3).

4.1 Context Extraction

In this Section we describe our approach for auto-
matically retrieving contexts for WordNet’s synsets.
First, as in Pasini et al. (2020), we utilize BERT and
UKB to find contexts that are similar to each other
and link them to a meaning in WordNet. Then,
we enrich the set of contexts retrieved for a given
synset s by exploiting the semantic collocations
available in SyntagNet.

Similarity-Based Extraction Given a synset s
and one of its lexicalizations l, we collect the oc-
currences of l in the input corpus C and compute
their contextualized representations by means of
BERT.3 We then cluster the contextualized vectors
of l’s occurrences by using the k-means algorithm.
We note that the sentences comprised within the
same cluster define similar contexts for the target
word, hence implying that l is very likely to be used
with the same meaning across sentences. Therefore,
we associate each cluster with one of l’s meanings
and a disambiguation score. To this end, we apply
UKB (see Section 3) to the set of words that most
characterize the given cluster, i.e., the top n most

3We discard all the sentences in which l is part of a larger
span that is identified as a named entity.

http://syntagnet.org/
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Sentences for {spring, fountain, natural spring}
Springs that contain significant amounts of minerals are called
’mineral springs’.
The forcing of the spring to the surface can be the result of a
confined aquifer.
Other fountains are the result of pressure from an underground
source in the earth
Natural springs that contain significant amounts of minerals are
called ’mineral springs’.
Other natural springs are the result of pressure from an under-
ground source in the earth.

Table 1: Sentences retrieved for the synset {spring,
fountain, natural spring} (upper part) and sentences
where the target lemmas have been replaced with the
missing ones (bottom part).

Sentences
He learned how to play the guitar at the age of eleven.

Michelle can play skillfully on guitar and piano.
The Ventures played Fender guitars for their live performances.

Table 2: Excerpt of sentences where the synsets {play}
(Play on an instrument) and {guitar} (A stringed in-
strument) appear together.

frequent words4 among its sentences.5 Once each
cluster has been disambiguated with one meaning
of l, we retain only those clusters that are associ-
ated with s. Then, we associate each sentence with
the disambiguation score provided by UKB for its
cluster and sample t sentences according to their
score, creating a set of contexts Φl,s for the lemma
l in the synset s. We note that it might happen
that none of the clusters of l is associated with s.
This limits both the number and the diversity of
contexts available for the target synset. To over-
come this issue and increase coverage, we sample
a set of ξ sentences from ∪l′∈LsΦl′,s and replace
the lexicalizations l′ of s that appear therein with
the lemma l. For example, let {spring, fountain,
natural spring} (A natural flow of ground water)
be the input synset, and the sentences in Table 1
(top) be the contexts retrieved thanks to the clus-
tering and disambiguation steps, we replace some
occurrences of spring and fountain with natural
spring, as shown in the bottom part of the Table.

Collocation-Aware Extraction We now enrich
the set Φl,s by leveraging the semantic colloca-
tions available in SyntagNet (see Section 3) for the
synset s. To this end, we first retrieve from Syn-
tagNet all the synsets s′ that collocate with s, and

4We discard from this calculation the non-content words
and the stopwords.

5We use UKB as it can directly take as input the Bag-of-
Words representations of the clusters.

then extract all the sentences in C where any of the
lemmas l and l′ of s and s′, respectively, appear
within a small windoww. Finally, we disambiguate
each occurrence of l with its synset s. For example,
given the concepts {play} (Play on an instrument)
and {guitar} (A stringed instrument) which are in
collocation in SyntagNet, we search for all the oc-
currences of play and guitar in the sentences of the
input corpus and retain only those where the two
words appear within a window of size 3. In Table 2
we show an excerpt of the sentences extracted for
the two aforementioned synsets. Each occurrence
of play in those sentences is hence disambiguated
with {play} (Play on an instrument).

At the end of this step, the synset s is associated
with the set of sentences Φs = ∪l∈LsΦl,s where
any of the lemmas of s is disambiguated with s.

4.2 Synset Embedding
In this step we exploit the contexts retrieved for a
target synset s in order to compute its latent repre-
sentation.

First, we create the set L̂s containing the lexi-
calizations of the synsets that are collocated with
s in SyntagNet. For example, given the synset
s = {spring, fountain, natural spring} (A natu-
ral flow of ground water), we consider the lexi-
calizations of its related concepts in SyntagNet,
i.e., flow and flowing from the synset {flow, flow-
ing} (The motion characteristic of fluids) and create
L̂s = {flow, flowing}.

Then, we leverage the contexts in Φl,s and the
lemmas in both Ls and L̂s to compute the vector
representation vs for the synset s as follows:

vsC =

∑
l∈Ls

E(Φl,s) +
∑
l′∈L̂s

E(Φ̂l′,s)

Z
(1)

E(Φλ,s) =
∑

σ∈Φλ,s

BERT (λ, σ) (2)

where Φ̂l′,s is a subset of Φl,s containing all the sen-
tences where the lemma l′ ∈ L̂s appears in colloca-
tion with l ∈ Ls, Z is

∑
l∈L |Φl,s|+

∑
l′∈L̂ |Φ̂l′,s|,

and BERT(λ, σ) is the contextualized embedding
for the lemma λ in the context σ.

At the end of this step, the synset s is associated
with a vector vsC created as shown above.

4.3 Sense Embedding
In this final step, we first create sense-level repre-
sentations by leveraging the contexts in SemCor
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Synsets Sentences Annotations
Avg sentences

per synset
Synsets with
1 example

Cluster 71,025 9,274,698 10,575,541 148 1096

SyntagNet 19,706 1,324,863 2,649,726 134 763

ALL 77,195 10,599,561 13,225,267 141 1318

Table 3: Statistics of the contexts extracted by the similarity-based (Cluster) and collocation-aware (SyntagNet)
extraction step in Section 4.1.

Figure 1: Histogram showing the number of synsets
(y axis) by the number of annotated examples (x axis,
bucket-based).

and the WordNet glosses, and then enrich them
with our synset embeddings.

For each sense θ of s we create its embedding
from its contextual occurrences within SemCor and
its definition in WordNet. As for the SemCor part,
we apply Peters et al. (2018)’s method to compute
its representation vθSC, i.e., we average the BERT
embeddings of all the words in SemCor tagged with
θ. As regards the sense gloss part, instead, we fol-
low Loureiro and Jorge (2019) and prepend to the
gloss of s both the lemma of θ and all the lexicaliza-
tions of s, and compute the sense gloss embedding
vθG by averaging the BERT representations of the
words therein. For example, given the spring sense
of the synset {spring, fountain, natural spring} (A
natural flow of ground water), its sense gloss em-
bedding is the average of the BERT representations
of the following enriched gloss: “spring - spring,
fountain, natural spring - A natural flow of ground
water”.

We compute the representation ARESθ for the

sense θ of the synset s as follows:

ARESθ = vθSC ‖ vθG � vsC

where � represents the mean between two vec-
tors, and ‖ their concatenation. If a sense does not
occur in SemCor, we replace vθSC with vθG and ap-
ply the above formula. We recall from Section 3
that SemCor covers only 15% of WordNet’s senses,
nevertheless ARES is able to generalize over all
the senses in WordNet thanks to the glosses and its
automatically-retrieved contexts.

5 Statistics

In Table 3 we report the statistics of the sentences
extracted as in Section 4.1. As one can see, our
automatically-extracted annotations cover 65% of
WordNet synsets (77,195 out of 117,659), pro-
viding at least one annotated example for 56,022
synsets that are not covered by SemCor. The total
number of distinct tagged sentences is more than
10M for a total of 13M annotations. On average,
most synsets have around 150 annotated examples,
as shown in Figure 1.

6 WSD Experimental Setup

We now report the setup of the evaluation we con-
ducted on the English and multilingual WSD tasks.

Evaluation Datasets We carried out the evalua-
tion on the English all-words WSD framework by
Raganato et al. (2017),6 comprising five standard
test sets, namely, Senseval-2 (Edmonds and Cot-
ton, 2001), Senseval-3 (Snyder and Palmer, 2004),
SemEval-07 (Pradhan et al., 2007), SemEval-13
(Navigli et al., 2013), SemEval-15 (Moro and Nav-
igli, 2015) along with ALL, i.e., the concatenation
of all the test sets. As concerns the multilingual
evaluation, we considered the latest versions of
the two multilingual all-words WSD datasets of

6http://nlp.uniroma1.it/wsdeval/

http://nlp.uniroma1.it/wsdeval/
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SemEval-13 (Navigli et al., 2013) and SemEval-
15 (Moro and Navigli, 2015), containing test sets
for French, German, Italian and Spanish.7 We re-
port all results in terms of the F1 score, i.e., the
harmonic mean of the precision and recall.8

ARES Configuration We used Wikipedia as in-
put corpus since it is the largest general-domain
resource currently available. Regarding the context
extraction step (see Section 4.1), we set the num-
ber of clusters k for a lexeme l as the number of
its senses in WordNet. We varied the number of
words n to give as input to UKB between 5 and
25 with a 5 step and selected the value n = 5 by
manually assessing the quality of a sample of the
clusters’ disambiguation output. As for the number
of sentences t and ξ, we ranged them between 50
and 300 with a 50 step9 and selected the values
that maximized the performance in terms of F1 of
ARES on SemEval-07,10 i.e., t = 150 and ξ = 50.
As regards the window size w, we followed Maru
et al. (2019) and set w = 3.

Concerning BERT representations, we used the
BERT large-cased model for English. To scale
across languages, instead, we made use of BERT
base-multilingual-cased (mBERT) so as to build
unified representations that are shared across lan-
guages, i.e., ARESm. For our multilingual rep-
resentations, we focused on synset embeddings
rather than sense ones. In fact, senses are language-
specific as they are tied to one of the lemmas of the
synset. Hence, we built ARESm synset embeddings
by averaging the representations of their English
senses. We note that, while the pre-trained model
differs between the two representations, the sen-
tences used to create the embeddings are the same
as the ones used for English. Following Loureiro
and Jorge (2019), we took as BERT representation
the sum of the last four hidden layers.

WSD Setup To test ARES on the WSD task, we
employed the 1-NN algorithm. To this end, we
computed the BERT representation of each word
w in the test sentences and compared it with the
embeddings corresponding to the senses of w in
WordNet. Since ARES vectors are made of the con-

7https://github.com/SapienzaNLP/
mwsd-datasets

8We used the scoring script in the Raganato et al. (2017)’s
framework to compute all performances.

9All hyperparameters search spaces were manually chosen.
10We chose SemEval-07 as it is the standard development

set used in the literature (Raganato et al., 2017).

catenation of two BERT representations (Section
4.3), we repeated the embedding of w in order to
match the shape of ARES vectors. Thus, we took
as prediction the sense that maximizes the similar-
ity with w’s representation. For languages other
than English, we considered as candidate synsets
for a lemma those associated with it in BabelNet
4.0, i.e., a multilingual knowledge base providing
lexicalizations of concepts in different languages.

Comparison systems We compared ARES with
both knowledge-based and supervised approaches
on English. As knowledge-based systems, we con-
sidered UKB with SyntagNet’s relations (Scoz-
zafava et al., 2020, UKB+Syn), and SensEmBERT
(Scarlini et al., 2020), along with its supervised
version, i.e., SensEmBERTsup. SensEmBERT and
SensEmBERTsup cover only nominal senses, so
we used the Most Frequent Sense (MFS) backoff
strategy, i.e., predicting the most frequent sense of
a lemma in WordNet, for tagging instances with
other POS tags.

Among supervised systems, we tested against
EWISEConvE (Kumar et al., 2019), KnowBERT
(Peters et al., 2019), the vocabulary compression
model by Vial et al. (2019, BERThyp),11 Gloss-
BERT (Huang et al., 2019) and the approach pro-
posed by Hadiwinoto et al. (2019, BERTGLU+LW).
Moreover, we compared against Loureiro and Jorge
(2019, LMMS) and Peters et al. (2018)’s method
using BERT (BERT k-NN). We also report the per-
formance of these two latter approaches by using
mBERT instead of BERT large, i.e., LMMSmBERT
and mBERT k-NN. All supervised systems under
comparison use SemCor only as training corpus.

We performed additional comparisons by us-
ing Peters et al. (2018)’s method with BERT
on SemCor+OMSTI (Taghipour and Ng, 2015,
SemCor+OMSTIBERT), a semi-automatically gen-
erated extension of SemCor, and OneSeC (Scarlini
et al., 2019, OneSeCBERT), an automatically-tagged
corpus.12

On the multilingual WSD tasks we compared
against SensEmBERT and UKB augmented with
SyntagNet’s relations (Scozzafava et al., 2020,
UKB+Syn). We also trained a baseline on English
data only, i.e., SemCor, and we tested it in all the

11We excluded from the comparison both the ensemble and
the model trained on SemCor and the WordNet disambiguated
glosses reported by Vial et al. (2019) as it would not allow a
fair comparison with the other systems under evaluation.

12OneSeC covers only nominal senses, so we resorted to
the MFS strategy for instances with other POS tags.

https://github.com/SapienzaNLP/mwsd-datasets
https://github.com/SapienzaNLP/mwsd-datasets
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Model
Test Sets Concatenation of All Test Sets

Senseval-2 Senseval-3 SemEval-07 SemEval-13 SemEval-15 Nouns Verbs Adj Adv ALL

K
B

MFS 65.6 66.0 54.5 63.8 67.1 67.7 50.3 74.3 80.9 65.2
OneSeC BERT (2019) 64.0 58.7 49.9 62.8 69.9 62.8 50.3 74.3 80.9 62.3
UKB+Syn (2020) 71.2 71.6 59.6 72.4 75.6 - - - - 71.5
SensEmBERT (2020) 70.8 65.4 58.0 74.8 75.0 75.9 50.3 74.3 80.9 70.1

Su
pe

rv
is

ed

BERThyp (2019) - - - - - - - - - 75.6
EWISEConvE (2019) 67.3 73.8 71.1 69.4 74.5 74.0 60.2 78.0 82.1 71.8
KnowBert (2019) - - - - - - - - - 75.1
BERTGLU+LW (2019) 75.5 73.4 68.5 71.0 76.2 - - - - 74.0
GlossBERT (2019) 77.7 75.2 76.1 72.5 80.4 79.8 67.1 79.6 87.4 77.0

Su
p c

on
t

SemCor+OMSTIBERT (2015) 74.0 70.6 63.1 72.4 75.0 74.8 60.1 77.5 83.2 72.2
mBERT k-NN + MFS (2019) 72.7 70.1 62.4 69.0 72.0 73.2 57.9 75.9 82.1 70.5
BERT k-NN + MFS (2019) 77.0 73.5 66.0 71.6 74.5 75.7 63.3 79.8 85.8 73.9
LMMSmBERT (2019) 68.5 64.0 57.6 68.1 66.1 70.3 50.2 73.1 74.6 66.3
LMMS (2019) 76.3 75.6 68.1 75.1 77.0 78.0 64.0 80.7 83.5 75.4
SensEmBERTsup (2020) 72.2 69.9 60.2 78.7 75.0 80.5 50.3 74.3 80.9 72.8

O
ur

s ARESm 74.8 71.5 64.8 72.7 77.0 75.9 62.3 76.8 81.2 73.2
ARES 78.0 77.1 71.0 77.3 83.2 80.6 68.3 80.5 83.5 77.9

Table 4: F1 on the test sets of the all-words English WSD framework. KB: knowledge-based approaches; Supcont:
supervised models exploiting contextual representations. Statistically-significant difference computed on the recall
attained on the ALL dataset between ARES and GlossBERT is underlined (χ2 with p < 0.05).

Model ALLLFS ALLLFW

LMMS 61.6 74.8
GlossBERT 62.0 75.6

ARES 65.2 81.1

Table 5: Results in terms of F1 on the ALLLFS and
ALLLFW datasets.

other languages. To this end, we used mBERT
with frozen weights followed by a linear layer with
swish activation and an unbiased softmax classifier
on top.13 In addition, we report the performance of
LMMSmBERT and mBERT k-NN on the multilin-
gual datasets.

7 WSD Results

We now report the results of the evaluation we car-
ried out on the English and multilingual WSD tasks,
along with an ablation study of ARES components.

7.1 English all-words WSD
In Table 4 we report the results attained by the
systems under comparison on the all-words En-
glish WSD datasets. Our direct competitors, i.e.,
SensEmBERTsup and LMMS, score, respectively,
5.1 and 2.5 F1 points lower than ARES. This
comparison shows the effectiveness of different
approaches in coping with the paucity of sense-
annotated data for WSD. On the one hand, the
SensEmBERT approach is effective in modeling
nominal meanings, however, it cannot scale over

13See Appendix A.2 for training details.

other POS tags due to the limitations of its un-
derlying resources. On the other hand, LMMS
shows that the WordNet topology can be exploited
to propagate the latent representations of frequent
meanings towards those not appearing in sense-
annotated corpora. Nevertheless, these less fre-
quent senses do not have a specific characterization
and thus their representations are less refined, as we
also show in Section 7.2. Our approach overcomes
both these limitations, being able to create better-
characterizing representations across senses with
different POS tags. This leads ARES to outper-
form the state of the art at the time of writing, i.e.,
GlossBERT, by almost 1 point on ALL by simply
employing a 1-NN algorithm, and hence requiring
no expensive fine-tuning procedure.

7.2 WSD on Infrequent Words and Senses
To test the ability of ARES and its competitors
to scale over rare words and senses, we extracted
two new test sets from ALL: i) ALLLFS, which in-
cludes the 1139 instances in ALL associated with
a sense not in SemCor; ii) ALLLFW, which in-
cludes the 222 instances in ALL associated with
a non-monosemous word not tagged in SemCor.
As shown in Table 5, ARES proves to be the best
system across the board, achieving the highest re-
sult on both datasets. This shows that the con-
texts extracted by ARES help balance the quality
of meanings’ representations across senses with
different frequencies, without disadvantaging rare
senses in favor of the more frequent ones. In
contrast, both LMMS and GlossBERT are more
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Model ALL

Clustercont 70.5
Syncont 60.1
Clustercont � Syncont 71.1

SemCor 69.2
SemCor ‖ Gloss 75.7
SemCor ‖ ACS 77.1
SemCor ‖ (ACS � Gloss) 77.9

Table 6: Ablation in terms of F1 of the different com-
ponents of ARES on the ALL dataset. ‖ indicates the
concatenation while � the average.

biased towards those representations in SemCor,
hence losing ground on both datasets with a gap of
3.6 and 3.2 points, respectively, on ALLLFS when
compared to ARES. This latter, instead, by taking
advantage of its automatically-retrieved contexts,
scales better over rare words and senses, and out-
performs its competitors on both datasets with the
highest result of 81.1 on ALLLFW.

7.3 Ablation Study

We now measure the impact that each part of our
vectors has on the final results by means of an ab-
lation study on the ALL dataset. The upper side
of Table 6 compares the two kinds of contexts that
we automatically retrieve (Section 4.1). As one
can see, the Clustercont alone, i.e., the sentences
retrieved by means of the similarity-based step, al-
ready attains good results. When combined with
the contexts extracted thanks to SyntagNet, i.e.,
Syncont, it gains 0.6 extra points. In the lower part
of the Table, we show different combinations of the
vectors built from SemCor, our contexts and the
WordNet glosses. We indicate with ACS and Gloss
the vectors built from our extracted contexts (see
Equation 4.2) and the sense gloss (see Section 4.3),
respectively. SemCor alone attains 69.2 points, 1.3
points less than Clustercont. This is because Sem-
Cor does not provide examples for all WordNet
meanings, therefore having a lower recall. When
combining SemCor with WordNet’s glosses (Sem-
Cor ‖ Gloss) and ACS (SemCor ‖ ACS), we have
a 6.5 and 7.9 improvement, respectively. Finally,
when combining the three components, we obtain
our best score of 77.9 F1 points on ALL.

7.4 Multilingual all-words WSD

Finally, we investigate the ability of ARESm to
scale across languages by testing it on the multilin-
gual WSD datasets of SemEval-13 and SemEval-

Model
SemEval-13 SemEval-15

AVGIT ES FR DE IT ES
N ALL N ALL

mBERT 74.8 74.6 80.3 79.0 63.8 69.1 60.9 64.7 73.8

UKB+SyntagNet 72.1* 74.1* 70.3* 76.4* 68.2* 69.0* 64.3* 63.4* 70.9*
SensEmBERT 69.8* 73.4* 77.8* 79.2* 68.1* - 68.1* - -
mBERT k-NN 68.6 69.3 75.4 73.8 59.1 64.6 56.3 61.6 68.8
LMMSmBERT 68.0 66.3 76.2 78.3 61.2 62.5 63.0 60.1 68.5

ARESm 77.0 75.3 81.2 79.6 68.0 71.4 68.6 70.1 75.7

Table 7: F1 on the WSD tasks’s languages (SemEval-
13 and SemEval-15) and the macro F1 score computed
across all languages. Statistically-significant difference
between ARESm and mBERT’s recalls is underlined
(χ2 with p < 0.05). *: Recomputed on the latest ver-
sion of the datasets.

15.14 As shown in Table 7, ARESm is the best
system across the board, achieving state-of-the-art
results on all languages of both datasets but the Ital-
ian nominal instances of SemEval-15. On average,
ARES scores almost 2.0 F1 points higher compared
to the second best performing system, i.e., mBERT.
When compared to LMMSmBERT, ARES achieves
7.0 F1 points higher on average. This may be due to
the fact that our automatically-retrieved sentences
provide a better contextualization of meanings than
the propagation technique employed by LMMS,
hence allowing our embeddings to scale effectively
across languages. Finally, we surpass SensEm-
BERT and attain state-of-the-art performance on
all languages of the multilingual all-words WSD
tasks while at the same time keeping the quality on
nouns high.

The evaluation carried out shows how beneficial
our embeddings are to the English and the multi-
lingual WSD tasks. ARES, in fact, proves to carry
high-quality semantic information within its repre-
sentations, which enables it to generalize over both
words and languages, and achieve state-of-the-art
results in all the tested settings.

8 WiC Experimental Setup

In this Section we further inspect the properties of
our embeddings by measuring the improvements
they bring to the Word-in-Context (WiC) task.15

Evaluation Dataset We tested on the Word-in-
Context task (Pilehvar and Camacho-Collados,
2019, WiC),16 i.e., a binary classification problem
where, given a target word w and two contexts c1

and c2, the task is to determine if w occurs with the

14We also report the results on only the nominal instances
of SemEval-15 to be comparable with SensEmBERT.

15https://super.gluebenchmark.com/
16Version 1.1 of SuperGLUE (Wang et al., 2019).

https://super.gluebenchmark.com/


3536

Model Accuracy
Trainable

Parameters

BERTLARGE (2019) 69.6 340 M
RoBERTa (2019) 69.9 355 M
KnowBert W+W (2019) 70.9 523 M
SenseBERTLARGE (2020) 72.1 380 M
T5-Large (2019) 69.3 770 M
T5-3B (2019) 72.1 3000 M
T5-11B (2019) 76.1 11000 M

BERTARES 72.2 342 M

Table 8: Results in terms of accuracy on the WiC test
set and number of trainable parameters of each model.

same meaning in c1 and c2. We report the results
in terms of accuracy, i.e., the number of correct
answers over the total number of predictions.

WiC Model We integrated our embeddings as
features in the English BERT large-cased model,
i.e., BERTARES, during finetuning. Following
Wang et al. (2019) we concatenated the two in-
put sentences c1 and c2 with the [SEP] token and
fed them to BERT with a logistic regression classi-
fier on top. The last layer took as input the [CLS]
embedding and the two representations of the tar-
get word w in c1 and c2. As additional features,
we considered the senses s1 and s2 of w in c1 and
c2, respectively, that we predicted by means of
ARES as in Section 6. Then, we applied a dense
layer – which we trained during finetuning – to
the ARES embeddings of s1 and s2 and reduced
their dimensionality to 1024. Finally, we concate-
nated the input of the classifier with these two new
representations.17

Comparison Systems We compared ARES
against the best performing models on the WiC
task. We considered three pre-trained language
models fine-tuned on WiC, i.e., BERTLARGE (De-
vlin et al., 2019), RoBERTa (Liu et al., 2019) and
T5 (Raffel et al., 2019), and two language mod-
els which leverage external knowledge while pre-
training, i.e., KnowBert (Peters et al., 2019) and
SenseBERTLARGE (Levine et al., 2020).

9 WiC Results

In Table 8 we report the results of the systems un-
der comparison on the WiC test set. BERTARES
attains 2.6 points more than its base model, i.e.,
BERTLARGE, while exploiting ARES embeddings

17See Appendix A.3 for training details.

in a straightforward manner at finetuning. More-
over, BERTARES performs better than or on a
par with its closest competitors, i.e., KnowBert,
SenseBERTLARGE and T5 (Large, and 3B), which,
instead, rely on more complex architectures, spe-
cific pre-training phases and between 3000 M and
40 M more parameters. T5-11B is the only model
achieving better results than BERTARES, mainly
due to the large difference in terms of trainable
weights (with T5-11B being 30 times bigger.)

10 Conclusion

In this paper we presented ARES, a semi-
supervised approach for producing embeddings of
senses in English and across different languages.
ARES can couple the information within sense-
annotated corpora with that automatically created
by means of a cluster-based algorithm so as to
produce high-quality latent representations for the
concepts within a lexical knowledge base. Our
experiments showed that despite relying on En-
glish data only ARES outperforms all its alterna-
tives. It achieves state-of-the-art results on both
English and multilingual WSD benchmarks, lever-
aging BERT large and mBERT, respectively, as
underlying pre-trained language models. We fur-
ther tested our embeddings in the WiC task where
they lead a baseline neural model to outperform its
closest competitors that rely on larger architectures
or dedicated pre-training routines. Our embeddings
computed with BERT large and mBERT and the
automatically-extracted contexts are available at
http://sensembert.org/ares.

As future work, we plan to exploit the informa-
tion brought by our embeddings to other down-
stream tasks, such as multilingual Semantic Role
Labeling (Di Fabio et al., 2019; Conia et al., 2020)
and cross-lingual Semantic Parsing (Blloshmi et al.,
2020).

Acknowledgments
The authors gratefully acknowledge
the support of the ERC Consolidator
Grant MOUSSE No. 726487 under
the European Union’s Horizon 2020
research and innovation programme.

This work was supported in part by the MIUR
under grant “Dipartimenti di eccellenza 2018-2022”
of the Department of Computer Science of the
Sapienza University of Rome.

http://sensembert.org/ares


3537

References
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A Supplementary Materials

A.1 Computing Infrastractures
All the experiments were performed using a x86-64
architecture with 64 GBs of RAM and a GeForce
GTX 1080 Ti.

A.2 mBERT Baseline Training Details
The model was trained with Adam (Kingma and
Ba, 2015) optimizer on SemCor for 50 epochs, and
tuned on the SemEval-07 dataset. The learning rate
was set to 2 ·10−5 and gradient clipping to 1.0. The
training was stopped earlier in the case that the loss
ceased decreasing for 3 consequent epochs on the
development set. We encoded each word by taking
the sum of its hidden representations of the last
four layers of the BERT base-multilingual-cased
pre-trained model.

A.3 WiC Finetuning Details
We trained our BERT-based model with the
jiant’s library.18 As for the hyperparame-
ters, we used the ones reported by Devlin et al.
(2019), which are the standard configuration in
the jiant’s framework. We finetuned the BERT
large-cased pretrained model for 4 epochs with
batch size equal to 4, learning rate 1 · 10−4 and
Adam as optimizer (Kingma and Ba, 2015). The
dropout probability was set to 0.1 on every layer.
The average runtime of the model was 30 minutes,
including the validation on the development set at
the end of each epoch. The accuracy we achieved
on the development set was 73.7.

The accuracy on the test set was computed by
uploading the predictions of our model on the Su-
perGLUE website (Wang et al., 2019).19

18https://github.com/nyu-mll/jiant
19https://super.gluebenchmark.com

https://github.com/nyu-mll/jiant
https://super.gluebenchmark.com

