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Abstract

The challenge of both achieving task comple-

tion by querying the knowledge base and gen-

erating human-like responses for task-oriented

dialogue systems is attracting increasing re-

search attention. In this paper, we propose

a “Two-Teacher One-Student” learning frame-

work (TTOS) for task-oriented dialogue, with

the goal of retrieving accurate KB entities

and generating human-like responses simul-

taneously. TTOS amalgamates knowledge

from two teacher networks that together pro-

vide comprehensive guidance to build a high-

quality task-oriented dialogue system (student

network). Each teacher network is trained via

reinforcement learning with a goal-specific re-

ward, which can be viewed as an expert to-

wards the goal and transfers the professional

characteristic to the student network. Instead

of adopting the classic student-teacher learn-

ing of forcing the output of a student network

to exactly mimic the soft targets produced by

the teacher networks, we introduce two dis-

criminators as in generative adversarial net-

work (GAN) to transfer knowledge from two

teachers to the student. The usage of discrim-

inators relaxes the rigid coupling between the

student and teachers. Extensive experiments

on two benchmark datasets (i.e., CamRest and

In-Car Assistant) demonstrate that TTOS sig-

nificantly outperforms baseline methods. For

reproducibility, we release the code and data at

https://github.com/siat-nlp/TTOS.

1 Introduction

Task-oriented dialogue systems (TDSs), which help

users to complete specific tasks with natural lan-

guage, have attracted increasing attention recently

due to the broad applications such as event schedul-

ing and flight booking. Conventional TDSs have

∗ Min Yang is corresponding author

a complex pipeline (Williams and Young, 2007),

which consists of modularly connected components

for natural language understanding (NLU), dia-

logue state tracking (DST), and dialogue policy

(DP). A limitation of such pipelined design is that

errors made in upper stream modules may propa-

gate to downstream components, making it hard

to identify and track the source of errors. In addi-

tion, these methods usually require a large number

of handcrafted features and labels, which may re-

strict the expressive power and learnability of the

models.

To ameliorate the limitations with the conven-

tional pipeline TDSs, great efforts have been made

in designing deep neural network-based end-to-end

solutions (Bordes et al., 2017; Eric et al., 2017;

Madotto et al., 2018). Recent advances are over-

whelmingly contributed by sequence-to-sequence

(seq2seq) models (Bordes et al., 2017; Eric and

Manning, 2017; Eric et al., 2017), which have taken

the state-of-the-art of TDSs to a new level. These

methods map dialogue context to output responses

directly without explicitly providing handcrafted

features and NLU/DST/DP labels, thus reduce hu-

man effort and are easily adapted to new domains.

Despite the effectiveness of previous studies,

there are several technical challenges in building

a TDS that is capable of retrieving accurate en-

tries from the knowledge base (KB) and generating

human-like responses. (1) Previous work (Car-

bonell, 1983) shows that users of TDSs tend to

use succinct language which often omits entities

or concepts made in previous utterances. How-

ever, seq2seq models often ignore how the conver-

sation evolves as information progresses (Raghu

et al., 2019) and thus result in generating incoher-

ent and ungrammatical responses that are domi-

nated by words appearing with high frequency in
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the training data. (2) Seq2seq models suffer from

effectively reasoning over and incorporating KB

information (Madotto et al., 2018). It is difficult

to encode and decode the knowledge from a large

and dynamic KB, making the response generation

unstable. In addition, typically, a shared memory is

used for both dialogue context and KB triples, mak-

ing the TDSs struggle to reason over the two forms

of data. Although some previous methods (Reddy

et al., 2019) leverage separate memories for mod-

eling dialogue context and KB facts, they either

focus on capturing the dialogue patterns or retriev-

ing accurate KB entities, but not both. One pos-

sible solution to the aforementioned problems is

to explicitly encourage the seq2seq model to learn

dialogue patterns and model the exterior KB knowl-

edge retrieval with separate guidance for each.

In this study, we propose a “Two-Teacher One-

Student” learning framework (TTOS) for build-

ing a high-quality TDS (student), where a student

network is encouraged to integrate the knowledge

from two expert teacher networks. Concretely, a

KB-oriented teacher network (TKB ) is trained via

reinforcement learning with entity score as the re-

ward, which specializes in retrieving accurate KB

entities; a dialogue pattern-oriented teacher net-

work (TDP ) is trained via reinforcement learning

with BLEU as the reward, which is expected to

learn the language patterns of the dialogue (Eric

and Manning, 2017), and thus specializes in gener-

ating coherent and grammatical responses. After-

wards, we optimize the student with distilled expert

knowledge from two teacher networks. Our moti-

vation is that the two teachers can provide different

supervisory information that can be fully utilized

through collaborative training. Instead of adopt-

ing the classic student-teacher learning strategy

of forcing the output of a student network to ex-

actly mimic the soft targets produced by the teacher

networks, we employ the generative adversarial

network (GAN) to transfer knowledge from two

teachers to the student. To be more specific, the

generator is the student network to produce dia-

logue responses, and the two discriminators distin-

guish the learned output representations from the

student and teacher networks. By employing the

output of the two discriminators as feedback, the

student network can achieve collective success in

both retrieving accurate KB entities and generating

natural responses.

This paper has three main contributions listed as

follows.

• We introduce a “Two-Teacher One-Student”

learning framework for TDSs, where the

student network benefits from the two

teacher networks’ complementary targets and

achieves collective success in both retrieving

accurate KB entities and generating natural

responses.

• The expert knowledge is transferred from

two teacher networks to the student network

through two discriminators in our GAN-based

approach. The usage of discriminators relaxes

the rigid coupling between the student and

teachers.

• Experimental results on In-Car Assistant and

CamRest datasets demonstrate that TTOS

achieves impressive results compared to the

baseline methods across multiple evaluation

metrics.

2 Related Work

2.1 Task-oriented Dialogue Systems

Task-oriented dialogue systems (TDSs), different

from open-domain dialogue systems, are required

to help users complete specific tasks with natural

language. Conventional TDSs usually require a

large number of handcrafted features, which may

restrict the expressive power and learnability of the

models (Williams and Young, 2007; Young et al.,

2013). Inspired by the success of the sequence-to-

sequence (seq2seq) models in text generation, there

are several studies that build TDSs with the seq2seq

model in an end-to-end trainable way. These meth-

ods have shown promising results recently since

they have a great ability to learn the latent represen-

tations of dialogue context and are easily adapted

to a new domain (Lei et al., 2018; Eric et al., 2017;

Madotto et al., 2018).

However, as revealed by previous studies (Eric

et al., 2017; Madotto et al., 2018), the perfor-

mance of the seq2seq model deteriorates quickly

with the increase of the length of the generated

sequence. Therefore, how to improve the stabil-

ity of the neural network models has gained in-

creasing attention. (Eric et al., 2017) proposed a

copy augmented seq2seq model by copying rel-

evant information directly from the KB informa-

tion. Mem2Seq (Madotto et al., 2018) and GLMP

(Wu et al., 2019) further augmented memory-based
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methods by incorporating copy mechanism (Gul-

cehre et al., 2016) to enable copying words from

past dialog utterances or from KB when generating

responses. Recently, separating memories for mod-

eling dialog context and KB results are explored

to improve the performance of TDSs (Raghu et al.,

2019; Reddy et al., 2019; Chen et al., 2019). Boss-

Net (Raghu et al., 2019) implicitly disentangled

the language model from knowledge incorporation

and thus enhanced the ability to copy unknown

KB entries. Multi-level memory model (Reddy

et al., 2019) represented the KB results using a

multi-level memory instead of the form of triples.

WMM2Seq (Chen et al., 2019) further employed

a working memory to interact with two separated

memories. Nevertheless, existing methods either

achieve a good language model for the response

generation or effective progress towards the KB

modeling, but not both.

2.2 Student-teacher Learning Paradigm

In parallel, student-teacher learning has received

intensive attention because of its excellent perfor-

mance on various tasks. A typical application is to

transfer knowledge from a large, powerful teacher

network to a compact yet accurate student network,

so as to boost the training process and the resulting

performance (Watanabe et al., 2017; Bucilu and

Niculescu-Mizil, 2006; Wang et al., 2018). For

example, in (Bucilu and Niculescu-Mizil, 2006),

a student network was encouraged to mimic the

output of a teacher network via mean squared er-

ror. (You et al., 2017) proposed a dark knowledge

distillation method, in which the student network

accommodated the true labels and captured the

structures among the labels. Instead of considering

one single teacher network, several studies trained

a student network by incorporating multiple teacher

networks in the output layer or the hidden layers

(Park and Kwak, 2019; You et al., 2017).

3 Our Methodology

Given the dialogue context x = {x1, x2, . . . , xM}
with M words and the system response y =
{y1, y2, . . . , yT } with T words, the dialogue sys-

tem aims to optimize the generation probability of

y conditioned on x, i.e., p(y|x).
As illustrated in Figure 1, TTOS consists of three

networks: a KB-oriented teacher network (TKB )

that is specialized for retrieving entities from KB,

a dialogue pattern-oriented teacher network (TDP )

that is specialized for learning the dialogue patterns,

and a student network (S) that tries to extract accu-

rate KB entities and generate human-like responses.

The three networks share the same network struc-

ture but different training strategies.

The learning procedure of TTOS contains two

stages of training. In the first stage, the three net-

works are pre-trained independently with different

training strategies. In particular, the student net-

work is trained with supervised learning, while the

two teacher networks TKB and TDP are trained via

the reinforcement learning (RL) with goal-specific

rewards (i.e., entity score and BLEU respectively),

which can be viewed as experts towards the goals.

Then, we employ GAN to learn the student net-

work, where the generator is the student network

to produce dialogue responses, and two discrim-

inators distinguish the learned output responses

from student and teacher networks. Next, we will

introduce the three networks and the GAN-based

student-teacher learning paradigm in detail.

3.1 Student Network
The student network a task-oriented dialogue sys-

tem, which is responsible for both inquiring KB

and generating human-like responses. In this study,

the sequence-to-sequence (seq2seq) model (Luong

et al., 2015) is used as the backbone to implement

the student network. The seq2seq model addition-

ally consists of a dialogue memory module and a

KB memory module to store the information from

the dialogue context and the retrieved KB entities,

respectively.

Encoder Each input token in the dialogue con-

text is converted to a fixed-length vector via an

embedding layer. The input embedding sequence

then goes into a layer of the bidirectional gated re-

current unit (BiGRU) (Chung et al., 2014) to learn

the contextualized representation of the dialogue

context, which is then passed into the dialogue

memory.

Dialogue Memory and KB memory Different

from Mem2Seq (Madotto et al., 2018), our dia-

logue memory is implemented with a dynamic key-

value memory network (Zhang et al., 2017), which

maintains a timely updated key memory to keep

track of attention history and a fixed value-memory

to store the dialogue context features throughout

the whole generation process. In this way, the

task-oriented dialogue system can keep track of

the attention history along with the update-chain of
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Figure 1: The overview of TTOS, which consists of two teacher networks (TKB and TDP ) and a student network

(S).

the decoder state, and therefore generate coherent

and natural responses. In addition, we employ a

separate KB memory, which is implemented with

end-to-end memory networks (Sukhbaatar et al.,

2015), to store the KB tuples.

Decoder The seq2seq model generates the re-

sponse word by word. At decoding step t, the

target word is either generated from the vocabulary

or copied from the dialogue memory or KB mem-

ory. Formally, we use P s
t,v, P s

t,d, P s
t,k to denote

the probabilities of generating the t-th target word

from vocabulary, copying it from dialogue mem-

ory and KB memory, respectively. A soft gate g1
controls whether a word is generated from vocab-

ulary or copied from memories, and another gate

g2 determines which of the two memories is used

to copy values. The final output distribution Pt for

the t-th target word is calculated as:

P s
t = g1P

s
t,v + (1− g1)

[
g2P

s
t,d + (1− g2)P

s
t,k

]

(1)

The student network is optimized with supervised

learning. We compute the loss function LS of the

student network as the cross-entropy between the

output distribution P s
t and the ground-truth target

word yt:

LS = −
T∑

t=1

yt log(P
s
t ) (2)

where T is the length of the output response.

3.2 Two Teacher Networks

The two teacher networks share the same seq2seq

network structure with the student network. Differ-

ent from the student network that is trained with

supervised learning, the two teacher networks TDP

and TKB are trained via the reinforcement learn-

ing with goal-specific rewards (i.e., entity score

and BLEU respectively), which can be viewed as

experts towards different goals.

Dialogue Pattern-oriented Teacher Network
The teacher network TDP is specialized for learn-

ing the dialogue patterns so as to generate natural

responses. To this end, we adopt the reinforce-

ment learning technique, i.e., self-critical sequence

training (SCST) algorithm (Rennie et al., 2017), to

train the teacher network TDP by using the BLEU

as the reward function. As discussed in (Eric and

Manning, 2017), BLEU can be used to gauge the

model’s ability to accurately generate the dialogue

patterns seen in the training data. In particular,

we generate two separate output sequences at each

training iteration: (1) the output ys that is obtained

by sampling from the output distribution P dp
t , and

(2) the baseline output ŷ that is obtained by maxi-

mizing the output distribution with a greedy search.

Following (Rennie et al., 2017), the loss function
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of the SCST algorithm for TDP can be derived as:

LDP = −(BLEU(ys)−BLEU(ŷ))
T∑

t=1

log(P dp
t )

(3)

KB-oriented Teacher Network The teacher net-

work TKB is specialized for retrieving accurate KB

entities from KB to accomplish the task. We em-

ploy SCST to optimize the network TKB by using

entity F1 score (Ent.F1) as the reward function.

The entity F1 metric evaluates the model’s ability

to generate relevant entities from the underlying

KB. Similar to the network TDP , the loss function

of the SCST algorithm for TKB can be derived as:

LKB = −(Ent.F1(ys)−Ent.F1(ŷ))

T∑

t=1

log(P kb
t )

(4)

where P kb
t is the output distribution of the teacher

network TKB .

3.3 Improving Student Network with GAN
After pre-training the three networks, we further

train the student network to amalgamate expert

knowledge from the two teacher networks. Differ-

ent from previous student-teacher learning meth-

ods (Hinton et al., 2015; Kim and Rush, 2016)

which force the output of the student network to ex-

actly mimic the soft targets produced by the teacher

networks, we introduce two discriminators as GAN

to transfer knowledge from the two teacher net-

works to the student network. The two discrimi-

nators are trained to distinguish the learned output

representations from student and teacher networks,

while the student network (generator) is adversari-

ally trained to produce dialogue responses to fool

the discriminators. To be more specific, a discrimi-

nator DDP , a binary classifier implemented with a

BiGRU, is proposed to distinguish the output distri-

butions generated by the student S and the teacher

TDP . Similarly, another binary classifier discrim-

inator DKB is employed to distinguish whether

the output distribution is from the student S or the

teacher TKB .

By alternatively updating the student and the

two discriminators in an adversarial process, the ex-

pert knowledge transferred from discriminators can

eventually guide the student to produce responses

similar to the responses generated by the two teach-

ers. The details of the adversarial training are sum-

marized in Algorithm 1.

3.3.1 Discriminator Update
The two discriminators and the student (genera-

tor) are alternatively updated in the GAN-based ap-

proach. We first introduce the update process of the

discriminators. The discriminators are two binary

classifiers that are trained to distinguish the out-

put responses generated by the student and teach-

ers. For each discriminator, we encode the output

distribution P o with a BiGRU as it shows great

effectiveness in text classification. The last hid-

den state (hT ) is then passed to an output layer

(sigmoid) whose output is the probability of being

“true”. Formally, given the output distribution P o
t at

t-th time step, the binary classifier (discriminator)

D is defined as:

ht = BiGRU(P o
t ,ht−1), t ∈ [1, T ] (5)

D(P o) = sigmoid(WhT ) (6)

where W is a learnable parameter, ht is the hidden

state at the t-th time step. In this way, we can

obtain the dialogue pattern-oriented discriminator

DDP that predicts whether the input sequence is

generated by the teacher TDP and the KB-oriented

discriminator DKB that predicts whether the input

sequence is generated by the teacher TKB .

When training the discriminators, we fix the stu-

dent (generator). The two discriminators (i.e., LDP

and LKB ) are trained to minimize the probability

of assigning the incorrect labels to the output dis-

tributions of the student and teacher networks:

LDP = − log(1−DDP (P
s))− log(DDP (P

dp))
(7)

LKB = − log(1−DKB (P
s))− log(DKB (P

kb))
(8)

LD = LDP + LKB (9)

where are P s, P dp, P kb are the output distributions

produced by S, TDP , TKB , respectively. LD is

the final objective function for the discriminator

update.

3.3.2 Student Update
In each iteration, we update the student network

(generator) S after updating the two discriminator

networks. When updating the student network S,

we try to fool the two discriminators and minimize

the adversarial loss LG which is defined as:

LG = − log(DDP (P
s))− log(DKB (P

s)) (10)
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Algorithm 1 Adversarial training procedure.

Input: Three pre-trained networks S, TDP , TKB , and train-
ing dataset (X,Y ).
Output: Student network S that integrates expert knowledge
from two teachers.

1: Initialize the generator (G = S) and two discriminators
(DDP and DKB ) in GAN;

2: repeat
3: Sample an instance (x, y) from the training data;

4: Produce the output distributions P dp and P kb by two
teachers TDP and TKB ;

5: Produce output distribution P s by student S;
6: Fix generator G and update discriminators DDP and

DKB by minimizing Eq. (9) via gradient descent.
7: Fix the discriminators and update generator G by min-

imizing Eq. (11) via gradient descent.
8: until convergence

The final loss function L̃S for the student net-

work S is computed as:

L̃S = LS + αLG (11)

where α is a scalar that determines the importance

of the adversarial loss LG of the student network.

4 Experimental Setup

Dataset We evaluate the proposed TTOS model

on two widely used multi-turn task-oriented dia-

logue datasets: CamRest (Wen et al., 2016) and

In-Car Assistant (Eric and Manning, 2017). The

CamRest dataset is composed of 676 human-to-

human multi-turn conversations in the restaurant

reservation domain. The average number of turns

per dialogue is about 5. Following in (Reddy

et al., 2019), we divide the dataset into train-

ing/validation/testing sets with 406/135/135 dia-

logues respectively. The In-Car Assistant dataset

contains 3031 multi-turn dialogues, which are

divided into 2425/302/304 dialogues for train-

ing/validation/testing, respectively. In-Car As-

sistant includes three distinct domains: calen-

dar scheduling, weather information retrieval, and

point-of-interest navigation. There are 2.6 turns

on average per dialogue. Compared to CamRest,

the In-Car Assistant dataset is more diverse in the

utterances, and the KB information is also more

complicated.

Training Details The grid search algorithm

(Bergstra et al., 2013) is applied on the valida-

tion set to automatically tune the hyper-parameters.

We use the 300-dimensional word2vec vectors

(Mikolov et al., 2013) to initialize the word em-

beddings. The size of the GRU hidden units is set

Model BLEU Entity F1

Seq2Seq 7.9 17.6

Seq2Seq+Attn 7.7 21.4

Ptr-Unk 5.1 16.4

Mem2Seq 13.51 33.57

BossNet 15.20 43.10

ECET 18.50 58.60

GLMP 16.70 50.61

TTOS (Ours) 20.45 61.50
S# 18.77 58.80

T DP 20.49 57.03

T KB 18.77 59.26

Table 1: Automatic evaluation results on CamRest

dataset. S#, T DP, and T KB denote the pre-trained

student and teacher networks before adversarial train-

ing.

to 256. The number of hops for the memory net-

work is set to 3. The recurrent weight parameters

are initialized as orthogonal matrices. We initial-

ize the other weight parameters with the normal

distribution N (0, 0.01) and set the bias terms to

zero. To stabilize the process of training GAN, we

use Adam optimizer (Kingma and Ba, 2014) with

a relatively small initial learning rate of 1e−4 to

train the model. The batch size is set to 8. The

step ratio of G and D is set to 1:1 for reaching

a training balance. We set the value of α to 1.0,

because a too large α value will make student rely

excessively on teachers’ outputs without concrete

guidance at each time step, while a loss with too

low α value cannot guide the student to fool the

two discriminators, which may make the adversar-

ial training process unstable. In addition, we also

apply dropout (dropout rate=0.2) on several layers

of generator, but not for discriminators.

It is noteworthy that we first pre-train the three

networks separately by optimizing the networks

with different training strategies. Then, we switch

to the GAN training to learn the student network

by amalgamating knowledge from the two teacher

networks.

Compared Methods We compare TTOS with

several state-of-the-art task-oriented dialogue sys-

tems, including Seq2Seq/+Attn (Luong et al.,

2015), Seq2Seq model with copy mechanism

(Ptr-Unk) (Gulcehre et al., 2016), network-based

seq2seq (Mem2Seq) (Madotto et al., 2018), bag-

of-sequences memory network (BossNet) (Raghu

et al., 2019), entity-consistent network with KB

retriever (ECET) (Qin et al., 2019), global-to-
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Model BLEU Ent. F1 Sch.F1 Wea.F1 Nav.F1

Seq2Seq 8.4 10.3 9.7 14.1 7.0

Seq2Seq+Attn 9.3 19.9 23.4 25.6 10.8

Ptr-Unk 8.3 22.7 26.9 26.7 14.9

Mem2Seq 12.6 33.4 49.3 32.8 20.0

BossNet 8.3 35.9 50.2 34.5 21.6

ECET 14.1 53.7 54.5 52.2 55.6
GLMP 14.79 59.97 69.56 62.58 52.98

TTOS (Ours) 17.35 55.38 63.50 64.09 45.90

S# 16.80 51.84 60.71 62.67 40.76

T DP 17.23 51.49 61.18 63.78 39.14

T KB 17.05 55.88 67.53 63.71 44.86

Table 2: Automatic evaluation results on In-Car Assis-

tant dataset.

local memory pointer network (GLMP) (Wu et al.,

2019).

Automatic Evaluation Metrics Following pre-

vious works (Madotto et al., 2018; Wu et al.,

2019), we evaluate TTOS and compared methods

on two automatic evaluation metrics: BLEU (Pa-

pineni et al., 2002) and entity F1 (Madotto et al.,

2018) scores. BLEU calculates n-gram overlaps

between the generated response and the gold re-

sponse, which could gauge the model’s ability to

accurately generate the dialogue patterns seen in

our data. BLEU shows a comparatively strong

correlation with the human assessment on task-

oriented systems (Sharma et al., 2017). Entity F1

is computed by micro-averaging the precision and

recall over KB entities in the entire set of system

responses, which evaluates the ability of the TDSs

to generate relevant entities to accomplish specific

tasks by inquiring the provided KBs.

5 Experimental Results

Automatic Evaluation Results For each test in-

stance, we use the response generated by the stu-

dent network (learned by adversarial training) as

the final output response. Table 1 shows the au-

tomatic evaluation results of TTOS and baseline

methods. From the results, we can observe that

TTOS achieves substantially and significantly bet-

ter performance than the compared methods over

the two evaluation metrics. Mem2Seq and BossNet

consistently perform better than Seq2Seq(+Attn)

and Ptr-Unk. This verifies the effectiveness of

memory networks in incorporating KB informa-

tion into the seq2seq model for generating better

responses. GLMP has achieved a strong improve-

ment over both BLEU and entity F1 scores over the

previous models, which is mainly benefited from its

global and local memory pointers to guide the KB
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Figure 2: The performance of TTOS and baselines on

CamRest dataset with the increase of dialogue turns.

attention and response generation. TTOS performs

even better than GLMP on both metrics. Further-

more, Figure 2 shows the changes in average BLEU

scores of TTOS and several baselines along with

the increase of dialog turns on the CamRest dataset.

The BLEU scores of the baseline models decrease

sharply after four turns while TTOS achieves much

more stable performance even in the last few turns.

This verifies the effectiveness and stableness of

TTOS in retrieving accurate KB entities and gen-

erating human-like responses. We observe similar

trends on the In-Car Assistant dataset, as shown

in Table 2. TTOS achieves competitive results on

both BLEU and entity F1 compared to most of the

baseline methods. In particular, TTOS achieves

the best BLEU on the whole dataset and best en-

tity F1 score in the domain of weather information

retrieval.

Note that most methods (e.g., TTOS, GLMP,

BossNet, Mem2Seq) except ECET achieve much

worse entity F1 on Nav. sub-domain than on

Sch./Wea. sub-domains. This may be because

the KB of Nav. sub-domain is more complicated

than the KBs of other two sub-domains. In par-

ticular, each entry in the KB of Nav. sub-domain

has more complex attributes. On the other hand,

the dialogues in Nav. sub-domain often involve

multi-step reasoning, while single-step reasoning

is usually involved in Sch./Wea. sub-domains. For

example, for the request “give me directions to the

nearest grocery store”, the dialogue system should

first restrict the location type to be “grocery store”

and then find the nearest location based on distance

attribute. In the future, we plan to design more ad-

vanced techniques to integrate the KB knowledge

and further improve the multi-step reasoning ability

of TTOS.
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Restaurant Area Address Food Price Phone Postcode
pizza hut cherry hinton south g4 cambridge leisure park clifton way cherry hinton italian moderate 01223 323737 cb17dy

frankie and bennys south cambridge leisure park clifton way cherry hinton italian expensive 01223 412430 cb17dy

... ... ... ... ... ... ...

Role Turn Utterance
User 1 i want a restaurant in the south part of town and serves panasian food.

System 1 sorry, there are no restaurants in the south part of town serving panasian food.

Mem2Seq 1 pizza hut cherry hinton is a restaurant in the south part of town.

GLMP 1 pizza hut cherry hinton serves panasian food in the south part of town.

T DP 1 there are no restaurants serving panasian food in the south part of town.

T KB 1 there are no south restaurants serving panasian food in the v part of town.

S# 1 there are no restaurants in the south part of town.

TTOS (S#) 1 there are no south restaurants serving panasian food in the south part of town.

User 2 italian food please. phone number and postcode please.

System 2 frankie and bennys serves italian food in the south part of town. the phone number is 01223 412430, and the postcode is cb17dy.

Mem2Seq 2 their phone number is is 01223 323737 and their postcode is cb17dy.

GLMP 2 their phone number is 01223 412430 and their postcode is cb17dy in the south part of town.

T DP 2 frankie and bennys serves italian food. their phone number is 01223 323737 and their postcode is cb17dy in the south part of town.

T KB 2 frankie and bennys frankie and bennys frankie and bennys is 01223 412430 and cb17dy in the south part of town.

S# 2 frankie and bennys their phone number is 01223 323737 and their postcode is cb17dy.

TTOS (S#) 2 frankie and bennys serves italian food. their phone number is 01223 412430 and their postcode is cb17dy.

User 3 sorry what type of food do they serve?

System 3 they serve italian food.

Mem2Seq 3 pizza hut cherry hinton serve serve food in the south part of town and in the south part of town.

GLMP 3 pizza hut cherry hinton serve italian food in the south part of town.

T DP 3 they serves italian food in the south part of town.

T KB 3 frankie and bennys serves italian food.

S# 3 they serves italian food.

TTOS (S#) 3 frankie and bennys serves italian food.

User 4 what is the price range?

System 4 they are quite expensive.

Mem2Seq 4 pizza hut cherry hinton is moderate restaurant in the south part of town and in the south part of town.

GLMP 4 they serve moderate food in the south part of town.

T DP 4 they are expensive in the south part of town.

T KB 4 frankie and bennys are expensive.

S# 4 they serves moderate food.

TTOS (S#) 4 frankie and bennys serves expensive food.

Table 3: Case study of generated responses by TTOS and baselines on CamRest test set. Gold entities in responses

are highlighted in bold.

Model
CamRest In-Car

Infor. Humanlike. Infor. Humanlike.

Mem2Seq 3.33 3.78 3.76 3.65

BossNet 3.74 4.11 3.78 3.73

GLMP 4.05 4.15 4.21 4.09

TTOS (Ours) 4.19 4.28 4.22 4.18

Table 4: Human evaluation results on CamRest and In-

Car Assistant.

Model
In-Car CamRest

BLEU Ent. F1 BLEU Ent.F1
w/o TDP 17.02 54.69 19.56 60.66
w/o TKB 17.11 52.96 19.98 59.88
w/o GAN 16.80 51.84 18.77 58.80

TTOS with KD 16.95 53.74 19.79 60.10
TTOS with GAN 17.35 55.38 20.45 61.50

Table 5: Ablation results of TTOS on two datasets.

Case Study To evaluate the proposed model

qualitatively, we choose an exemplary dialogue

from the CamRest test set and illustrate some gen-

erated responses by TTOS and the compared meth-

ods in Table 3. We observe that Mem2Seq fails

to understand the dialogue context and thus gener-

ates irrelevant responses. GLMP generates more

readable responses than Mem2Seq but fails to ex-

tract correct KB entities. In particular, the perfor-

mance of GLMP deteriorates significantly with the

increase of dialogue turns. Compared to GLMP,

TTOS can retrieve more accurate KB entities and

generate more natural responses, especially in the

last few turns. This verifies that TTOS can identify

key entities and keep track of dialog context from

previous turns.

We also provide the generated responses by two

teachers (T DP and T KB) and the pre-trained stu-

dent (S#), to analyze where the empirical gains

come from. From Table 3, we can observe that

T DP can captures the dialogue pattern while the

response generated by S# fails to extract “serv-

ing panasian food” that modifies the word “restau-

rants”. On the other hand, the teacher T KB works

well for entity retrieval. For example, in the fourth

turn, T KB can trigger the accurate entity word

“expensive”, which is not recognized by S#.

Human Evaluation Results Similar to the pre-

vious work (Wu et al., 2019), we use human evalu-

ation to evaluate the generated responses from two

perspectives: informativeness (Infor.) and human-

likeness (Humanlike.). Specifically, we randomly

select 100 dialogues from the CamRest and In-Car

Assistant test sets, and invite three annotators to
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independently assign two scores (i.e., informative-

ness and human-likeness scores) from 1 to 5 for

each generated response. A higher score means bet-

ter performance. The agreement ratios computed

with Fleiss’ kappa (Fleiss, 1971) are 0.58 on Cam-

Rest and 0.51 on In-Car Assistant, showing moder-

ate agreement. We report the average rating scores

from all annotators as the final human evaluation

results. As shown in Table 4, TTOS outperforms

the compared methods on both informativeness and

human-likeness by a noticeable margin, which is

consistent with the automatic evaluation.

Ablation Study To investigate the effectiveness

of each module in TTOS framework, we conduct

ablation test in terms of removing the teacher T DP

(w/o TDP), removing the teacher T KB (w/o TKB),

removing the GAN-based student-teacher learning

(w/o GAN). In addition, we also replace the GAN-

based student-teacher learning with the standard

knowledge distillation method (denoted as TTOS

with KD). The experimental results are reported in

5. The performance of TTOS drops sharply when

we discard the two teachers and the GAN-based

student-teacher learning. This is within our expec-

tation since TTOS achieves collective success from

two teachers that are specialized for two different

goals through two discriminators in GAN-based

approach.

6 Conclusion

In this paper, we propose a novel “Two-Teacher

One-Student” learning framework (TTOS) for task-

oriented dialogue, which aims to improve the

performance of the task-oriented dialogue sys-

tem in retrieving accurate entries from KB and

generating human-like responses simultaneously.

With adversarial learning, we train the student net-

work to amalgamate expert knowledge naturally

from the two teacher networks for the above two

goals. The experimental results on two benchmark

datasets demonstrated that our model achieves im-

pressive results compared to the state-of-the-art

task-oriented dialogue systems.
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