
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 3472–3483,
November 16–20, 2020. c©2020 Association for Computational Linguistics

3472

Learning a Simple and Effective Model for Multi-turn Response
Generation with Auxiliary Tasks

Yufan Zhao1, Can Xu1∗, Wei Wu2

1Microsoft Corporation, Beijing, China
2Meituan, Beijing, China

{yufzhao,caxu}@microsoft.com
wuwei19850318@gmail.com

Abstract

We study multi-turn response generation for
open-domain dialogues. The existing state-of-
the-art addresses the problem with deep neural
architectures. While these models improved
response quality, their complexity also hin-
ders the application of the models in real sys-
tems. In this work, we pursue a model that
has a simple structure yet can effectively lever-
age conversation contexts for response gener-
ation. To this end, we propose four auxil-
iary tasks including word order recovery, ut-
terance order recovery, masked word recovery,
and masked utterance recovery, and optimize
the objectives of these tasks together with max-
imizing the likelihood of generation. By this
means, the auxiliary tasks that relate to con-
text understanding can guide the learning of
the generation model to achieve a better local
optimum. Empirical studies with three bench-
marks indicate that our model can significantly
outperform state-of-the-art generation models
in terms of response quality on both automatic
evaluation and human judgment, and at the
same time enjoys a much faster decoding pro-
cess.

1 Introduction

As an important topic in conversational AI, open-
domain human-machine conversation is gaining
increasing attention from both academia and in-
dustry. A common approach to building such a
system is to learn a response generation model
within an encoder-decoder framework using neu-
ral sequence architectures (Sutskever et al., 2014;
Vaswani et al., 2017). While the encoder-decoder
framework has been successfully applied in vari-
ous text generation tasks such as machine transla-
tion (Vaswani et al., 2017), summarization (Rush
et al., 2015), paraphrase generation (Dong et al.,
2017), etc., it has to deal with a unique challenge

∗Corresponding author: Can Xu (caxu@microsoft.com).

in the task of response generation: modeling con-
versation contexts. A conversation context often
exhibits a hierarchical structure with dependency
existing on both a word-level and an utterance-
level. Moreover, as indicated in (Xing et al., 2018;
Zhang et al., 2019), information in a context is
rather redundant for responding: commonly only a
few words and utterances are useful for response
generation, and the positions of the relevant words
and utterances vary from case to case. To model
the hierarchy of conversation contexts, hierarchical
recurrent encoder-decoder (HRED) (Serban et al.,
2016) extends the vanilla sequence-to-sequence
model by a word-level encoder and an utterance-
level encoder. Later on, a hierarchical recurrent
attention network (HRAN) (Xing et al., 2018) har-
nesses the decoder of the HRED model with word-
level attention and utterance-level attention to dy-
namically highlight the effect of relevant words
and utterances in response synthesis. Very recently,
ReCoSa (Zhang et al., 2019) further exploits multi-
layer multi-head self-attention1 to model long-term
dependency among utterances and responses. From
HRED to HRAN, and then to ReCoSa, the perfor-
mance of the models in terms of response quality
becomes better and better (Zhang et al., 2019), but
the models also grow to be more and more com-
plicated. For example, the number of parameters
in ReCoSa is more than twice as that in HRED.
Thus, when we enjoy the improved performance
from the increased complexity, the complexity may
also impede the application of the models in some
scenarios (e.g., in a mobile scenario).

In this work, we study multi-turn response gen-
eration and target on a model that has a simple
structure yet can make use of conversation contexts

1The fact that both the encoder and the decoder of ReCoSa
contain multiple layers is not highlighted in the paper, but is
revealed by the source code released by the authors at https:
//github.com/zhanghainan/ReCoSa.

https://github.com/zhanghainan/ReCoSa
https://github.com/zhanghainan/ReCoSa

3473

as well as the existing deep models. The key idea
is to transfer the burden of context understanding
from modeling to learning by designing several
auxiliary tasks, and leverage the auxiliary tasks as
regularization in model estimation. Specifically,
the model we use for response generation concate-
nates utterances in a conversation context as a long
sequence, and only exploits one-layer self-attention
in encoding and one-layer context attention in de-
coding. In such a frugal setting, the representation
capability of the model shrinks a lot compared with
deep transformers. As a remedy, we augment the
maximum likelihood estimation (MLE) in learning
with objectives from four auxiliary tasks includ-
ing word order recovery, utterance order recovery,
masked word recovery, and masked utterance re-
covery. In the first two tasks, we predict the correct
order of words and utterances from a random shuf-
fle of words in an utterance and a random shuffle
of utterances in a context respectively. The goal of
the two tasks is to enhance understanding of the se-
quential dependency among words and utterances
within a context. The other two tasks are inspired
by the recent breakthrough from BERT (Devlin
et al., 2019), in which we randomly mask a word
in an utterance and an utterance in a context respec-
tively, and predict the masked word and the masked
utterance using the remaining words and utterances.
The two tasks may encourage the learning process
to pay more attention to semantics of words and
utterances in their contexts, and help the learning
process find better representations of words and
utterances for the generation model. The auxiliary
tasks and the MLE task share the encoder of the
generation model. Through learning with multiple
tasks, optimization for response generation and op-
timization for context understanding are performed
in a joint form. The context understanding related
tasks can guide the MLE to achieve a better local
optimum, and thus realize superior performance in
response generation with a simple neural structure.

We test the proposed approach with three bench-
marks including the Ubuntu Dialogue Corpus
(Lowe et al., 2015), DailyDialog (Li et al., 2017),
and PERSONA-CHAT (Zhang et al., 2018). Evalu-
ation results on all three datasets indicate that our
model can significantly outperform state-of-the-art
generation models in terms of both automatic eval-
uation and human judgment. Moreover, with a
parameter set even smaller than HRED, our model
is 2x faster than ReCoSa in response decoding.

Our contributions in the paper are three-fold:
(1) proposal of balancing model complexity and
model capability in multi-turn response generation;
(2) proposal of four auxiliary learning tasks that
transfer context understanding from modeling to
learning; and (3) empirical verification of the effec-
tiveness and the efficiency of the proposed model
on three benchmarks.

2 Related Work

End-to-end open-domain dialogue generation is
built upon the encoder-decoder architecture (Shang
et al., 2015; Vinyals and Le, 2015), and the vanilla
sequence-to-sequence structure has been widely
extended to address challenges such as generic re-
sponses (Li et al., 2015; Xing et al., 2017), context
modeling (Serban et al., 2016, 2017; Xing et al.,
2018; Zhang et al., 2019), and grounding by per-
sona/emotion/knowledge (Li et al., 2016; Zhang
et al., 2018; Zhou et al., 2018; Dinan et al., 2018).
In this work, we study how to leverage conver-
sation context for multi-turn response generation,
which represents a fundamental problem in dia-
logue generation. Different from the existing work
that enhances the representation capability of mod-
els through neural architecture engineering, we turn
to an orthogonal direction that we keep the genera-
tion model simple, and optimize the simple struc-
ture by learning with auxiliary tasks that encode
context understanding. As a result, our model can
provide high-quality responses at a low cost. Be-
fore us, there have been a few studies on learning
a primary task with auxiliary ones (Rei and Yan-
nakoudakis, 2017; Yu and Jiang, 2016; Ding et al.,
2017; Trinh et al., 2018; Mehri et al., 2019; Wu
et al., 2019). The work is unique in that through ex-
tensive empirical studies, we verified that a simple
structure learned with auxiliary tasks can work as
well as deep architectures in dialogue generation.

3 Approach

We first formalize the problem in question, and
then detail the model and the learning tasks.

3.1 Problem Formalization

Suppose that we have a datasetD = {(Ui, Ri)}Ni=1,
where Ui = (Ui,1, . . . , Ui,n) denotes a context with
Ui,j the j-th utterance, and Ri is a response re-
garding to Ui. The goal is to estimate a generation
probability distribution P (R|U) from D, and thus,
given a new context U , one can generate a response

3474

for U following P (R|U). A common practice is to
learn P (R|U) by maximizing the log-likelihood of
D (i.e. MLE) which can be formulated as

N∑
i=1

logP (Ri|Ui). (1)

When P (R|U) is in a simple structure, only learn-
ing with MLE could be insufficient to obtain a
model that can well capture the syntax and the
semantics of contexts. An evidence is that sim-
ple architectures like HRED is much worse than
complicated architectures like ReCoSa in terms of
response quality, as reported by the existing work
(Zhang et al., 2019). Since a simple structure is
still favored, we consider aiding the objective given
by Equation (1) with extra ones that can reinforce
context understanding in the learning process.

3.2 Generation Model
Figure 1 illustrates the architecture of the gen-
eration model. In a nutshell, the model is in a
transformer-based structure (Vaswani et al., 2017)
with one attentive layer (in the transformer layer) in
the encoder and one attentive layer in the decoder.
The auxiliary tasks, which will be presented later,
share the encoder with the generation model. We
prefer a transformer-based structure instead of a
recurrent structure, because the former is easier to
parallelize than the latter, and thus can further en-
hance efficiency of the model in an online system.

Encoder: we unfold all words in (U , R) into
W = (w1, . . . , wm, wm+1, . . . , wm+t), where m
is the number of words in context U , and t is the
number of words in response R. ∀i ∈ {1, . . . ,m+
t}, wi is represented by a summation of word em-
bedding, position embedding, and segment embed-
ding:

B(wi) = WE(wi) + PE(wi) + SE(wi), (2)

where WE(wi) represents the word embedding of
wi initialized using GloVe (Pennington et al., 2014),
PE(wi) is the position embedding of wi which
is defined by Pe(wi), where e(wi) is a one-hot
vector with the only non-zero entry indicating the
position ofwi inW , and P ∈ Rd×Mp is a randomly
initialized matrix with Mp an upper bound of the
number of words in a dialogue. SE(wi) is the
segment embedding of wi defined similarly with
the one-hot vector indicating the position of the
utterance that contains wi. The embedding matrix

is then fed to a transformer layer, which can be
formulated as

I = [B(w1), B(w2), . . . , B(wm+t)],

E = FNN(MultiHead(I, I, I)),
(3)

where FNN(·) is a feed-forward neural network
and MultiHead(Q,K, V) is a multi-head atten-
tion function with Q a query, K a key, and V
a value. To control the receptive field of self-
attention in different tasks, we add a mask matrix
M ∈ R(m+t)×(m+t) (Dong et al., 2019) in atten-
tion computation, and let M determine whether a
pair of words can attend to each other according to
the learning tasks. Thus, MultiHead(Q,K, V) is
defined by

MultiHead(Q,K, V) = ⊕K
i=1Headi(Q,K, V),

Headi(Q,K, V) = Attention(WiQ,WiK,WiV),

Attention(Q,K, V) = softmax(
QK>√
dk

+M)V,

(4)

where ⊕ refers to a concatenation operation, and
M is given by

Mij =

{
0, allow to attend,
−∞, prevent from attending.

(5)

Decoder: suppose that (wm+1, . . . , wm+l−1) are
words generated until step l−1, then the next word
wm+l is predicted according to:

P (wm+l|w1, . . . , wm+l−1) = softmax(WsO(wm+l−1)),
(6)

where O(wm+l−1) is defined by
FNN(MultiHead(E(wm+l−1), E,E) with
E = [E(w1), . . . , E(wm+l−1)] the output of the
encoder, and Ws is a trainable parameter.

3.3 Auxiliary Tasks

Heading for learning the simple structure that can
effectively make use of contexts for response gen-
eration, we design two kinds of auxiliary tasks
including order recovery and masked content re-
covery. The order recovery tasks aim to enhance
the capability of the self-attention module on cap-
turing the sequential relationship among words and
utterances, while the masked content recovery tasks
can optimize the self-attention module to enhance
semantic connection among words and utterances.

3475

Utterance_1

Segment Embedding
Position Embedding

Word Embedding

Transformer Layer

Encoder

Auxiliary Tasks

 Attention

K V Q

FeedForward

Softmax

Decoder

W1,1 W1,2 W1,3

Utterance_2

W2,1 W2,2 W2,3

Utterance_3

W3,1 W3,2 W3,3

Utterance_4

W4,1 W4,2 W4,3

E1,1 E1,2 E1,3 E2,1 E2,2 E2,3 E3,1 E3,2 E3,3 E4,1 E4,2 E4,3

Context-Response
Attention

Figure 1: Architecture of the generation model.

Order recovery: a recent study (Sankar et al.,
2019) indicates that transformer-based models are
insensitive to ordering of words and utterances,
which means that the information they learn could
be just bag-of-words representations. Thus, we
consider recovering the correct order from random
shuffling on both a word level and an utterance
level to force self-attention to be aware of relative
positions of words and utterances in the context.
Word order recovery: Figure 2 (a) illustrates
the task. Given a randomly sampled utterance
U = (w1, . . . , wk) from a context U , we randomly
shuffle the words in U and obtain a disordered ut-
terance Ū = (w̄1, . . . , w̄k). Then, we replace U in
U with Ū and form a corrupt context Ū . The goal
of the task is to predict U from Ū . The loss of the
task can be formulated as

Lwor = −1

k

k∑
i=1

log(p(wi|Ū)),

p(wi|Ū) = softmax(WsE(w̄i)),

(7)

where E(w̄i) is obtained from E(Ū) which is the
representation of Ū given by the encoder of the
generation model, Ws is shared with Equation (6).

For this task, the mask matrix M in Equation (4)
is defined by:

Mij =

{
0, wi and wj are in the same utterance,
−∞, wi and wj are in different utterances.

(8)

Utterance order recovery: Figure 2 (d) illustrates
the task. Given context U = (U1, . . . , Un), we ran-
domly shuffle the utterances and obtain a disor-
dered context Ū = (Uo1 , . . . , Uon). The goal is

to predict the correct positions for utterances in
Ū . The prediction model falls in a read-process-
write framework (Vinyals et al., 2015). In the
reading module, the model first represents Ū as
Ē = (Ē(w1,1), . . . , Ē(wn,m)) via the encoder of
the generation model, where wi,j is the j-th word
in utterance Uoi (words within an utterance are
ordered), and then obtains the representation of
utterance Uoi through

Si =

ki∑
j=1

Ē(wi,j), (9)

where ki is the number of words in Uoi . S =
{Si}ni=1 forms a sentence memory that is accessi-
ble by the processing module. The processing mod-
ule exploits multi-head self-attention and GRU to
guarantee the property that vectors retrieved from
memory S will not change if the memory is ran-
domly shuffled. Formally, the processing module
is defined by

{Ai}ni=1 = MultiHead(S,S,S),

ht = GRU(ht−1, At),
(10)

where the last hidden state hn is permutation in-
variant regarding to input. The writing module is
another GRU that decodes {o1, . . . , on} one by one.
At step i, the hidden state h̄i is defined by

h̄i = GRU(h̄i−1, [ci ⊕ xi]), (11)

where h̄i−1 is the hidden state at step i − 1 with
h̄0 = hn, xi is the embedding of oi−1 (i.e., the
embedding of the ground-truth position of Uoi−1 in
U), and ci is a context vector which is defined via
attention over {ht}nt=1:

ci =
n∑

t=1

ai,tht,

{ai,t}nt=1 = softmax({ei,t}nt=1),

ei,t = V >tanh(W1h̄i−1 +W2ht + b1),

(12)

where V1, W1, W2, and b1 are parameters. The
prediction model is finally formulated as

P (oi|{o1, . . . oi−1}, Ū) = softmax(ui),

ui = FNN(h̄i ⊕ xi ⊕ ci).
(13)

The loss function of the task is defined by

Luor = − 1

n

n∑
i=1

log(p(oi|{o1, . . . , oi−1}, Ū)).

(14)

3476

Word Order Recovery

Utterance Order Recovery

Masked Word Recovery Masked Utterance Recovery

Embedding Layer

Transformer Layer

U1 W2,3W2,1W2,2 U3...

Ground
Truth

Embedding Layer

Transformer Layer

U2

Sum

Multi-Head Attention

GRU GRU GRU GRU

GRU GRU GRU GRU

Embedding Layer

Transformer Layer
Embedding Layer

Transformer Layer

W2,1,W2,2W2,3

E2,3,E2,1E2,2

U1 W2,1W2,maskW2,3 U3...

FeedForward

Softmax

Ground
Truth W2,2

E2,mask

FeedForward

Softmax

Ground
Truth U2

Emask
FeedForward

Softmax

U1 Umask U3...

C2

U3 U4 U1

E2 E3 E4 E1

S2 S3 S4 S1

A2 A3 A4 A1

o1

o2
Ground
Truth

a b c d

Figure 2: Auxiliary tasks.

For this task and the following ones, M in Equa-
tion (4) is defined as a zero matrix meaning that
every pair of words can attend to each other in the
context.

Masked content recovery: a major challenge in
context understanding is the information omission
problem (e.g., coreferences) that widely exists in
utterances (Su et al., 2019). The challenge requires
a model to connect semantically related words and
utterances. Thus, we design masked content re-
covery tasks on both a word level and an utterance
level to enhance the self-attention module in terms
of awareness of the semantic connections.

• Word level: for each utterance in a context,
we randomly replace 15% words with a spe-
cial token [MASK].

• Utterance level: we randomly pick an utter-
ance from a context, and replace all words in
the utterance with a special token [MASK].

Figure 2 (b) and Figure 2 (c) illustrate the task
of masked word recovery (mwr) and the task
of masked utterance recovery (mur) respectively.
Since the only difference of the two tasks is the in-
put, we present them in a uniform way. Given
a context U = (w1, . . . , wm), suppose that the
masked context is Ū = (w∗1, . . . , w

∗
m), where

w∗i = [MASK] if wi is masked, otherwise w∗i =

wi, then, the loss of the tasks can be formulated as

Lx = −1

k

m∑
i=1

I[w∗i =[MASK]] log(p(wi|Ū)),

k =
m∑
i=1

I[w∗i =[MASK]],

p(wi|Ū) = softmax(WsE(w∗i)),

(15)

where E(w∗i) is the representation of w∗i obtained
by passing Ū through the encoder of the generation
model, x ∈ {mwr,mur} indexes the two tasks, I[·]
is an indicator function, and Ws is shared with
Equation (6).

3.4 Learning Objective
The full loss function is finally defined by:

Lfull = MLE + αLaux,

Laux = Lwor + Luor + Lmwr + Lmur,
(16)

where α is a hyper-parameter as a trade-off between
MLE and the objectives of the auxiliary tasks. The
learning algorithm is summarized in Algorithm 1,
where Θ refers to a set of parameters including
both the parameters of the generation model and
the parameters of the auxiliary objectives.

4 Experiments

We conduct experiments on DailyDialog (Li et al.,
2017), PERSONA-CHAT (Zhang et al., 2018), and
the Ubuntu Dialogue Corpus (UDC) (Lowe et al.,
2015), and compare our model with state-of-the-art
baselines in terms of response quality, parameter
size, and decoding speed.

3477

Algorithm 1: Optimization Algorithm
Input: Training data D, GlobalMaxStep T1,

AuxTrainEpoch T2, InitialRate α,
BatchNumPerEpoch N

Init: Θ
1 t = 0
2 α = 1.0
3 d = α/(T2 ∗N)
4 while t < T1 do
5 Randomly sample a mini-batch k from

D.
6 if α > 0 then
7 Compute Laux.
8 Compute MLE.
9 Update the parameters of the model

with respect to Lfull using Adagrad.
10 α = max(0, α− d)
11 t = t+ 1

Output: Θ

4.1 Datasets

Both DailyDialog and PERSONA-CHAT are open
domain datasets. Dialogues in DailyDialog cover
a wide range of topics in daily scenarios and re-
semble human communications in their daily life;
while PERSONA-CHAT contains multi-turn chit-
chat conversations between turkers according to
their assigned profiles. Since the focus of the work
is how to leverage conversation history for response
generation, we just append the profiles (the orig-
inal ones) to the corresponding dialogues as an
extension of contexts. To control the length of the
dialogues and increase the number of instances, we
slide a window on the training/validation/test dia-
logues in both datasets, and split a dialogue longer
than 11 utterances to multiple instances (i.e., the
window size is 11). Moreover, we also truncate
long utterances with the first 25 words kept. Vo-
cabularies are formed with all words appearing
in the entire data and are shared by contexts and
responses. The vocabulary size of DailyDialog
is 25, 000 and the vocabulary size of PERSONA-
CHAT is 18, 750. The UDC data are collected from
Ubuntu chat logs with two-person multi-turn con-
versations about Ubuntu-related problems. Here
we use the same data as in (Zhang et al., 2019).
Table 1 reports some statistics of the three datasets.

DailyDialog PERSONA-CHAT Ubuntu

dialogues for training 44,050 95,682 3980,000
dialogues for validation 4,176 11,602 10,000
dialogues for test 3,864 11,152 10,000
avg. # utter. per dialogue 7.0 9.4 4.3
avg. utter. length 13.6 14.5 16.6

Table 1: Statistics of the datasets.

4.2 Baselines
We select several multi-turn response generation
models as baselines: (1) HRED2: hierarchical
encoder-decoder proposed in (Serban et al., 2016);
(2) VHRED3: an extension of HRED that fac-
torizes response generation with latent variables
(Serban et al., 2017); (3) HRAN4: hierarchical
encoder-decoder equipped with a hierarchical atten-
tion mechanism (Xing et al., 2018); (4) ReCoSa5:
a hierarchical transformer-based model that ex-
hibits state-of-the-art performance on benchmarks
(Zhang et al., 2019); and (5) SSN: a very recent
study on enhancing dialogue generation learning
with self-supervision signals extracted from utter-
ance order (Wu et al., 2019).

4.3 Implementation Details
We train the baselines and our model on RTX 2080,
and initialize word embedding with GloVe vec-
tors (Pennington et al., 2014). In our model, the
dimension of all vectors is set as 512. The num-
ber of heads in multi-head attention is set as 8.
We adopt the Adagrad algorithm (Duchi et al.,
2011) in optimization with a learning rate 0.05 and
a batch size 80/60/32 in DailyDialog/PERSONA-
CHAT/Ubuntu. All models are tuned on the vali-
dation sets according to perplexity. We stop train-
ing if the perplexity does not drop in three con-
secutive epochs. The GlobalMaxStep T1 is set as
50k. The AuxTrainEpoch T2 is set as 30. The
BatchNumPerEpoch N is 551/1595/124, 375 for
DailyDialog/PERSONA-CHAT/Ubuntu.

4.4 Evaluation Metrics
We evaluate the performance of the models in terms
of response quality with both automatic metrics
and human judgment. In automatic evaluation, be-
sides BLEU-4 (Papineni et al., 2002) and perplexity
(Sutskever et al., 2014), we follow (Serban et al.,

2https://github.com/hsgodhia/hred
3https://github.com/julianser/hed-dlg-

truncated
4https://github.com/LynetteXing1991/

HRAN
5https://github.com/zhanghainan/ReCoSa

https://github.com/hsgodhia/hred
https://github.com/julianser/hed-dlg-truncated
https://github.com/julianser/hed-dlg-truncated
https://github.com/LynetteXing1991/HRAN
https://github.com/LynetteXing1991/HRAN
https://github.com/zhanghainan/ReCoSa

3478

Dataset Model PPL BLEU Distinct-1 Distinct-2 Average Greedy Extrema Parameter size Decoding speed

DailyDialog

HRED 56.22 0.535 1.553 3.569 81.393 65.546 48.109 34.5M 14.79ms
HRAN 47.23 0.447 1.953 7.400 83.460 67.239 49.599 38.2M 17.15ms
VHRED 44.79 0.997 1.299 6.113 83.866 67.186 48.570 34.8M 15.67ms
SSN 44.28 1.250 2.309 7.266 72.796 73.069 44.260 20.0M 12.69ms
ReCoSa 42.34 1.121 1.987 10.180 84.763 67.557 48.957 73.8M 40.89ms
Our Model 38.60 1.658 3.457 14.954 85.224 69.518 49.069 20.3M/14.4M 12.15ms

PERSON-CHAT

HRED 46.04 1.279 0.164 0.450 83.329 64.486 47.132 28.3M 13.14ms
HRAN 41.94 1.997 0.235 0.771 82.850 65.556 47.882 33.1M 18.43ms
VHRED 42.07 2.181 0.312 1.915 82.995 65.578 46.810 28.8M 20.27ms
SSN 47.90 2.288 0.637 2.623 85.002 66.752 47.461 15.2M 15.82ms
ReCoSa 34.19 2.258 0.915 4.217 83.963 66.498 48.163 68.7M 39.38ms
Our Model 33.23 2.434 1.279 5.816 83.632 66.778 48.552 18.4M/12.5M 13.89ms

Ubuntu

HRED 58.23 0.874 0.602 2.724 76.187 62.869 37.508 24.1M 25.09ms
HRAN 48.14 0.922 0.472 2.217 76.654 62.145 37.282 29.5M 31.07ms
VHRED 52.34 0.906 0.571 2.933 76.496 63.051 36.039 24.7M 30.47ms
SSN 57.82 1.681 0.557 2.370 76.431 61.597 35.976 12.3M 21.11ms
ReCoSa 43.67 0.911 0.722 4.439 77.619 63.239 36.742 60.6M 45.34ms
Our Model 40.94 1.625 0.783 5.151 78.754 62.738 38.538 14.4M/8.5M 22.98ms

Table 2: Evaluation results on automatic metrics. Numbers in bold indicate the best performing model on the
corresponding metrics.

2017) and employ Embedding Average (Average),
Embedding Extrema (Extrema), and Embedding
Greedy (Greedy) as metrics. We also follow (Li
et al., 2015) and measure the informativeness of re-
sponses with distinct-1 and distinct-2 that are calcu-
lated as the ratios of distinct unigrams and bigrams.
In human evaluation, we randomly sample 500 dia-
logues from each of the three test sets, and recruit
3 native speakers as human annotators. For each
context in the 500 dialogues, each annotator com-
pares a response from our model and a response
from a baseline model. The two responses are top
one results from greedy search, and are randomly
shuffled to hide their sources. The annotators judge
which response is better based on informativeness,
consistency, and fluency of the responses. If an an-
notator cannot tell which response is better, he/she
is required to label a “tie”. Each annotator indi-
vidually judges 500 pairs for all combinations of
our model and baseline models. In total, each one
labels 2, 500 pairs for one dataset. Fleiss’ kappa
(Fleiss and Cohen, 1973) is employed to measure
agreement among the annotators.

In addition to response quality, we also compare
our model with baselines on decoding speed. We
calculate the average prediction time per word in
response generation using all dialogues in the test
sets. The efficiency comparison is conducted on a
GPU environment with a single RTX 2080.

4.5 Evaluation Results

Table 5 reports evaluation results on automatic met-
rics. Our model outperforms all baseline methods
on most of the metrics on all the three datasets.

The last two columns of the tables compare dif-
ferent models in terms of parameter size and de-
coding speed. Note that in training, the auxiliary
tasks contain parameters outside the generation
model. Therefore, in the column of parameter
size, we report two numbers for our model with
the one before “/” parameter size in training and
the one after “/” parameter size of the generation
model. It is remarkable that the parameter size of
our model, even in training, is smaller than HRED.
In spite of this, the model still outperforms ReCoSa
with only 19.5%/18.2%/14.0% parameters on the
DailyDialog/PERSONA-CHAT/Ubuntu data. This
is because (1) the auxiliary tasks can effectively aid
the learning of the generation model in our method;
and (2) ReCoSa, although in a deep structure, is
still inadequate in terms of context modeling due
to the RNN-based encoder and the only utterance-
level attention. Besides the superior performance
on response quality, our model also enjoys a fast
decoding process, thanks to the small model size.
In terms of decoding speed, our model is compara-
ble with HRED, and 2x faster than ReCoSa. The
generation model of SNN is just a simple RNN
sequence-to-sequence with one layer encoder and
one layer decoder. Therefore, our model is compa-
rable with SSN in terms of complexity and speed.
However, SSN is worse than our model on response
quality due to (1) the RNN-based seq2seq model in
SSN is worse than a transformer-based structure on
the benchmarks used in this work, which has been
indicated by Sankar et al. (2019); (2) SSN only
considers utterance order, while we also leverage
word order, word content, and utterance content in

3479

DailyDialog
model variant PPL BLEU distinct-1 distinct-2 Average Greedy Extrema
full tasks 38.60 1.658 3.457 14.954 85.224 69.518 49.069
- masked word recovery 38.37 1.365 2.629 11.135 85.270 69.901 49.495
- masked utterance recovery 39.06 1.407 2.980 12.544 85.143 69.667 49.791
- word order recovery 41.53 1.082 2.769 11.166 85.020 69.417 49.567
- utterance order recovery 38.69 1.215 2.551 9.764 85.253 69.678 49.644
- all tasks 46.58 0.903 1.775 7.136 84.042 69.017 48.467

PERSONA-CHAT
model variant PPL BLEU distinct-1 distinct-2 Average Greedy Extrema
full tasks 33.23 2.434 1.279 5.816 83.632 66.778 48.552
- masked word recovery 34.74 2.429 1.018 4.764 82.841 66.177 48.610
- masked utterance recovery 33.49 2.638 1.045 5.412 83.402 66.862 48.810
- word order recovery 35.06 2.355 1.028 4.698 82.503 66.011 48.350
- utterance order recovery 33.24 2.484 1.054 5.011 82.652 66.025 47.927
- all tasks 37.16 1.928 0.938 4.141 82.104 65.899 47.162

Ubuntu
model variant PPL BLEU distinct-1 distinct-2 Average Greedy Extrema
full tasks 40.94 1.625 0.783 5.151 78.754 62.738 38.538
- masked word recovery 47.02 1.135 0.404 2.195 74.735 61.683 37.914
- masked utterance recovery 42.48 1.543 0.519 2.419 76.381 62.203 37.482
- word order recovery 48.57 0.962 0.325 1.537 77.615 62.819 38.651
- utterance order recovery 52.04 1.023 0.359 1.609 74.982 59.384 36.825
- all tasks 57.32 0.851 0.391 1.765 73.582 62.581 37.268

Table 3: Results of ablation study.

learning. In fact, we find that the proposed auxil-
iary tasks can improve a 2-layer (one for encoder
and one for decoder) RNN-based seq2seq model
as well, as reported in Supplementary Material. On
most metrics, RNN with full auxiliary tasks is bet-
ter than SSN but worse than the proposed model.

Table 4 summarizes human evaluation results.
We can see that our model outperforms all baseline
models, and most of the kappa values exceed 0.6
indicating substantial agreement among the annota-
tors. Based on the annotation results, we find that
our model tends to generate diverse and context
consistent responses, indicating the effect of the
auxiliary tasks.

4.6 Discussions

To further understand the merit of the auxiliary
tasks, we make some analysis regarding to the fol-
lowing questions: Q1 how do the simple architec-
ture learned with the auxiliary tasks compare with a
deep architecture; Q2 if learning with the auxiliary
tasks can also improve deep architectures; and Q3
how different auxiliary tasks affect the performance
of the model.

Answer to Q1: we aim to move one step fur-

ther to understand how the auxiliary tasks enhance
the capability of the simple generation model on
context understanding. While this is not trivial
for neural models, we assume that one can let
a transformer-based model capture more seman-
tics in contexts by stacking more layers in the en-
coder, and examine to what extent the simple model
learned with the auxiliary tasks is equivalent to a
deep architecture. Figure 3 compares our model
with deep architectures in terms of perplexity on the
three datasets, in which we get the deep architec-
tures by stacking transformer layers in the encoder
of our model. The dotted lines represent our model
learned with the auxiliary tasks, and the solid lines
represent the deep architectures learned with MLE.
Approximately, our model is equivalent to a deep
model with a 4-layer encoder on the DailyDialog
data, a 6-layer encoder on the PERSONA-CHAT
data, and a 7-layer encoder on the Ubuntu data.

Answer to Q2: since the auxiliary tasks are use-
ful for the simple model, it is also interesting to
check if they work as well for deep architectures.
Figure 3 shows the results, in which the dash-dotted
lines represent the deep architectures learned with
the full auxiliary tasks. First of all, we can conclude

3480

Figure 3: Performance of deep architectures. (a) DailyDialog; (b) PERSONA-CHAT; (c) Ubuntu

DailyDialog

models win loss tie kappa
Our Model v.s. HRED 0.42 0.13 0.45 0.675
Our Model v.s. VHRED 0.38 0.19 0.43 0.634
Our Model v.s. HRAN 0.31 0.16 0.53 0.587
Our Model v.s. SSN 0.36 0.22 0.42 0.638
Our Model v.s. ReCoSa 0.34 0.22 0.44 0.733

PERSONA-CHAT

models win loss tie kappa
Our Model v.s. HRED 0.45 0.16 0.39 0.867
Our Model v.s. VHRED 0.39 0.21 0.40 0.650
Our Model v.s. HRAN 0.36 0.23 0.41 0.621
Our Model v.s. SSN 0.49 0.12 0.39 0.695
Our Model v.s. ReCoSa 0.39 0.29 0.32 0.566

Ubuntu

models win loss tie kappa
Our Model v.s. HRED 0.49 0.14 0.37 0.692
Our Model v.s. VHRED 0.48 0.18 0.34 0.603
Our Model v.s. HRAN 0.47 0.13 0.40 0.612
Our Model v.s. SSN 0.45 0.18 0.37 0.698
Our Model v.s. ReCoSa 0.39 0.27 0.34 0.672

Table 4: Human evaluation results. The ratios are cal-
culated by combining annotations from three judges to-
gether.

that the auxiliary tasks are also useful for deep ar-
chitectures, since there is clear PPL drop for the
same models learned with and without (i.e., the
solid lines) the auxiliary tasks. Secondly, the aux-
iliary tasks are more useful for simple structures,
since the gap between the same models learned
with and without the tasks becomes smaller and
smaller when the number of encoding layers in-
creases. The results indicate that after stacking
enough layers, the effect of the auxiliary tasks is
overwhelmed by the model itself. Therefore, the
merit of the auxiliary tasks is to allow us to learn
a generation model that enjoys both efficacy and
efficiency, which is exactly the goal of the work.
Improvement with respect to the number of layers
of the encoder on UDC is more steady than that on

DailyDialog and PERSON-CHAT. This is because
the training set of UDC is much larger than those
of the other two datasets.

Answer to Q3: we keep the architecture of the
generation model and remove the objectives of the
auxiliary tasks one at a time from the full learning
objective given by Equation (16). Table 3 reports
the ablation results. First of all, all auxiliary tasks
are useful as removing any of them will cause a
performance drop. When all auxiliary tasks are
removed, the approach degenerates to learning a 2-
layer transformer architecture through MLE. With-
out any optimization on context understanding, the
simple structure is worse than ReCoSa. Secondly,
on DailyDialog and UDC, order recovery tasks are
more crucial than content recovery tasks due to the
order insensitive nature of self-attention. Finally,
on PERSONA-CHAT, word-level recovery tasks
matter more than utterance-level recovery tasks.
This might stem from the fact that in PERSONA-
CHAT, dialogues highly depend on the profiles
used as contexts. In many cases, utterances are just
formed by copying a proportion of words from the
profiles. Thus, recognizing the semantic connec-
tions and the relationship among words in contexts
is more critical for the data.

5 Conclusions

We propose a simple generation model with order
recovery and masked content recovery as auxiliary
tasks. Evaluation results on three benchmarks in-
dicate that our model can significantly outperform
state-of-the-art deep generation models in terms of
both response quality and decoding speed.

3481

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL, pages 4171–4186.

Emily Dinan, Stephen Roller, Kurt Shuster, Angela
Fan, Michael Auli, and Jason Weston. 2018. Wizard
of wikipedia: Knowledge-powered conversational
agents. arXiv preprint arXiv:1811.01241.

Ying Ding, Jianfei Yu, and Jing Jiang. 2017. Recur-
rent neural networks with auxiliary labels for cross-
domain opinion target extraction. In Thirty-First
AAAI Conference on Artificial Intelligence.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to gener-
ate product reviews from attributes. In EACL, pages
623–632.

Li Dong, Nan Yang, Wenhui Wang, Furu Wei,
Xiaodong Liu, Yu Wang, Jianfeng Gao, Ming
Zhou, and Hsiao-Wuen Hon. 2019. Unified
language model pre-training for natural language
understanding and generation. arXiv preprint
arXiv:1905.03197.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res.,
12:2121–2159.

Joseph L Fleiss and Jacob Cohen. 1973. The equiv-
alence of weighted kappa and the intraclass corre-
lation coefficient as measures of reliability. Educa-
tional and psychological measurement, 33(3):613–
619.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting ob-
jective function for neural conversation models. In
NAACL, pages 110–119.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
persona-based neural conversation model. In ACL,
pages 994–1003.

Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. Dailydialog: A manu-
ally labelled multi-turn dialogue dataset. In IJCNLP,
pages 986–995.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. In Proceedings of the 16th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue, pages 285–294.

Shikib Mehri, Evgeniia Razumovsakaia, Tiancheng
Zhao, and Maxine Eskenazi. 2019. Pretraining
methods for dialog context representation learning.
arXiv preprint arXiv:1906.00414.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, pages 1532–1543.

Marek Rei and Helen Yannakoudakis. 2017. Auxiliary
objectives for neural error detection models. In Pro-
ceedings of the 12th Workshop on Innovative Use of
NLP for Building Educational Applications, pages
33–43.

Alexander M Rush, Chopra, and Jason Weston. 2015.
A neural attention model for abstractive sentence
summarization. In EMNLP, pages 379–389.

Chinnadhurai Sankar, Sandeep Subramanian, Christo-
pher Pal, Sarath Chandar, and Yoshua Bengio. 2019.
Do neural dialog systems use the conversation his-
tory effectively? an empirical study. arXiv preprint
arXiv:1906.01603.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI,
volume 16, pages 3776–3784.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron C Courville,
and Yoshua Bengio. 2017. A hierarchical latent
variable encoder-decoder model for generating dia-
logues. In AAAI, pages 3295–3301.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
In ACL, pages 1577–1586.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Peng-
wei Hu, Cheng Niu, and Jie Zhou. 2019. Improv-
ing multi-turn dialogue modelling with utterance
rewriter. arXiv preprint arXiv:1906.07004.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS, NIPS’14, pages 3104–3112, Cambridge,
MA, USA. MIT Press.

Trieu Trinh, Andrew Dai, Thang Luong, and Quoc Le.
2018. Learning longer-term dependencies in rnns
with auxiliary losses. In International Conference
on Machine Learning, pages 4972–4981.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, NIPS, pages 5998–6008. Curran Asso-
ciates, Inc.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur.
2015. Order matters: Sequence to sequence for sets.
arXiv preprint arXiv:1511.06391.

http://aclweb.org/anthology/E17-1059
http://aclweb.org/anthology/E17-1059
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://aclweb.org/anthology/P02-1040
http://aclweb.org/anthology/P02-1040
https://doi.org/10.18653/v1/D15-1044
https://doi.org/10.18653/v1/D15-1044
http://dl.acm.org/citation.cfm?id=2969033.2969173
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

3482

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869.

Jiawei Wu, Xin Wang, and William Yang Wang. 2019.
Self-supervised dialogue learning. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3857–3867.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang,
Ming Zhou, and Wei-Ying Ma. 2017. Topic aware
neural response generation. In AAAI, pages 3351–
3357.

Chen Xing, Wei Wu, Yu Wu, Ming Zhou, Yalou Huang,
and Wei-Ying Ma. 2018. Hierarchical recurrent at-
tention network for response generation. In AAAI,
pages 5610–5617.

Jianfei Yu and Jing Jiang. 2016. Learning sentence em-
beddings with auxiliary tasks for cross-domain senti-
ment classification. In Proceedings of the 2016 con-
ference on empirical methods in natural language
processing, pages 236–246.

Hainan Zhang, Yanyan Lan, Liang Pang, Jiafeng Guo,
and Xueqi Cheng. 2019. Recosa: Detecting the rel-
evant contexts with self-attention for multi-turn dia-
logue generation. In ACL, pages 3721–3730.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In ACL, pages 2204–2213.

Hao Zhou, Minlie Huang, Tianyang Zhang, Xiaoyan
Zhu, and Bing Liu. 2018. Emotional chatting ma-
chine: Emotional conversation generation with inter-
nal and external memory. In AAAI, pages 730–738.

A RNN with Auxiliary Tasks

As a follow-up investigation, we are curious about
if the auxiliary tasks can enhance the performance
of other simple architectures in the task of multi-
turn response generation. Table 5 reports the results
on the three benchmarks, where the simple architec-
ture is an RNN-base seq2seq model with one layer
encoder and one layer decoder. The architecture of
the model is the same as the one in SSN, that is the
encoder is defined with a bi-directional GRU, the
decoder is defined with a unidirectional GRU, and
the decoder is equipped with an attention mecha-
nism on the input context. From the results, we can
see that the auxiliary tasks are also useful for the
RNN architecture, although it is still worse than
the proposed transformer-based architecture under
the same learning protocol. On most metrics, the
RNN model is better than SSN, since it leverages
signals from full auxiliary tasks.

3483

Model PPL BLEU Distinct-1 Distinct-2 Average Greedy Extrema

DailyDialog
RNN 47.69 0.668 1.001 3.563 80.191 71.211 45.526
RNN+Auxiliary Tasks 42.46 1.271 3.153 12.454 75.259 72.077 45.490
SSN 44.28 1.250 2.309 7.266 72.796 73.069 44.260
Our Model 38.60 1.658 3.457 14.954 85.224 69.518 49.069

PERSON-CHAT
RNN 42.51 1.869 0.172 0.501 81.855 64.284 46.504
RNN+Auxiliary Tasks 38.20 2.356 0.986 4.037 84.907 66.951 48.419
SSN 47.90 2.288 0.637 2.623 85.002 66.752 47.461
Our Model 33.23 2.434 1.279 5.816 83.632 66.778 48.552

Ubuntu
RNN 62.56 0.971 0.398 1.218 74.318 59.027 34.331
RNN+Auxiliary Tasks 55.44 1.479 0.602 3.494 76.494 62.381 38.139
SSN 57.82 1.681 0.557 2.370 76.431 61.597 35.976
Our Model 40.94 1.625 0.783 5.151 78.754 62.738 38.538

Table 5: Evaluation results on automatic metrics.

