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Abstract

Physical common sense plays an essential role
in the cognition abilities of robots for human-
robot interaction. Machine learning methods
have shown promising results on physical com-
monsense learning in natural language pro-
cessing but still suffer from model generaliza-
tion. In this paper, we formulate physical com-
monsense learning as a knowledge graph com-
pletion problem to better use the latent rela-
tionships among training samples. Compared
with completing general knowledge graphs,
completing a physical commonsense knowl-
edge graph has three unique characteristics:
training data are scarce, not all facts can be
mined from existing texts, and the number
of relationships is small. To deal with these
problems, we first use a pre-training language
model BERT to augment training data, and
then employ constrained tucker factorization
to model complex relationships by constrain-
ing types and adding negative relationships.
We compare our method with existing state-of-
the-art knowledge graph embedding methods
and show its superior performance.

1 Introduction

Physical common sense means understanding the
physical properties of objects and how they can
be manipulated (Forbes et al., 2019). Empowering
natural language processing (NLP) methods with
physical common sense is important when dealing
with tasks that are related to the physical world,
such as physical commonsense reasoning (Bisk
et al., 2020), grounded verb semantics (She and
Chai, 2017), and the more general human-robot
interaction problem.

Generally, there are currently three methods of
learning physical common sense: manual annota-
tion, text mining, and machine learning. Manual
annotation is difficult for human annotators due to

inconsistent perceptions and the challenge of enu-
merating all physical facts. Mining text data is also
challenging because some physical facts are not
written in texts explicitly. Machine learning is a
promising method to discover new physical facts
using existing data. Forbes et al. (2019) formulate
physical commonsense learning as three separate
machine learning tasks: 1) given an object and a
property, predicting whether they follow an object-
property (OP) relationship, e.g., an apple is edible;
2) given an object and an affordance, predicting
whether they follow an object-affordance (OA) re-
lationship, e.g., he drove the car; and 3) given
an affordance and a property, predicting whether
they follow an affordance-property (AP) relation-
ship, e.g., if you can eat something, then it is edi-
ble. However, it is difficult for a machine learning
model to generalize through the use of the latent
relationships among samples. For example, even if
we have a training sample an apple is edible, it is
hard to say that the trained model can generalize to
predict a testing sample an apple is red correctly.

In this paper, we propose to model physical com-
monsense learning as a knowledge graph comple-
tion problem to better use the latent relationships
among samples. An knowledge graph can be repre-
sented as a 3-way binary tensor, and each entry is
in triple form (eh, r, et) (Nickel et al., 2016; Wang
et al., 2017), where eh denotes the head entity, et
denotes the tail entity, r denotes the relationship be-
tween eh and et, (eh, r, et) = 1 denotes the fact is
true in the training data, and (eh, r, et) = 0 denotes
the fact does not exist or is false in the training data.
The goal of knowledge graph completion is to pre-
dict the real value of (eh, r, et) when it is missing
or its label is wrong in the training data. In terms
of physical common sense, entities come from the
set of all objects, properties, and affordances, and
relationships come from the set of OP, OA, and AP.

Compared with general knowledge graphs such
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as DBpedia (Auer et al., 2007) and Freebase (Bol-
lacker et al., 2008), a physical commonsense knowl-
edge graph has at least three characteristics: 1)
Training facts are scarce. For example, when label-
ing the properties of an object, people usually name
the ones that are easiest to think of but cannot enu-
merate all properties. 2) Not all facts can be mined
from existing texts. For example, the relationships
between affordances and properties usually do not
appear in texts explicitly and need to be reasoned.
3) The number of relationships is small and all are
n-to-n relationships, which makes modeling rela-
tionships between entities more complicated.

Forbes et al. (2019) show that with supervised
fine-tuning, Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2019)
can learn the relationships OP and OA well but
not AP. In this paper, we first use BERT to aug-
ment training data of OP and OA and then employ
constrained Tucker factorization (Balazevic et al.,
2019) to complete the knowledge graph of physical
common sense. More specially, we use typed con-
straints to reduce the solution space and add nega-
tive relationships to leverage negative training sam-
ples. We evaluate this method on triple classifica-
tion and link prediction tasks using a physical com-
monsense dataset (Forbes et al., 2019), and show
that it can model physical common sense more ef-
fectively compared with state-of-the-art knowledge
graph embedding methods.

The contributions of this paper are: 1) we for-
mulate physical commonsense learning as a knowl-
edge graph completion problem, 2) we propose a
novel pipeline that combines pre-training models
and knowledge graph embedding to learn physical
common sense, and experiment results show its
superior performance.

2 Related Work

2.1 Common Sense and Physical Common
Sense

Common sense learning is one of the main
challenges in NLP (Cambria and White, 2014).
Although existing works have made significant
progress on reading comprehension and question
answering (Rajpurkar et al., 2016), they are still
text-based and challenging to use for common-
sense reasoning (Ostermann et al., 2018). In gen-
eral, commonsense modeling can be classified into
two categories: 1) explicitly encoding via knowl-
edge graphs (Auer et al., 2007; Bollacker et al.,

2008) and 2) implicitly encoding via language mod-
els (Bosselut et al., 2019). Building high-quality
knowledge graphs usually requires expensive hu-
man annotation. There is some research on ex-
tracting facts from unstructured text (Clancy et al.,
2019), but it is not flexible to build domain-specific
knowledge graphs. Recent research works show
that pre-training models can be good at encoding
commonsense knowledge due to a large number of
model parameters and text corpora, and they can
be used to complete knowledge graphs (Bosselut
et al., 2019).

Physical commonsense learning is a recently-
proposed task (Forbes et al., 2019) that is related
to language understanding with a physical world
context, which is a sub-category of commonsense
learning. Forbes et al. (2019) formulate physical
commonsense learning as a machine learning prob-
lem, and show that a pre-training BERT model can
learn the OP and OA tasks well but cannot general-
ize well on the AP task. In this paper, to deal with
the generalization problem of BERT, we explore us-
ing knowledge graph embedding that is commonly
used in commonsense modeling to deal with the
issue of physical commonsense learning.

2.2 Knowledge Graph Embedding

Knowledge graphs have been shown to be useful
for many NLP tasks, such as contextual word em-
bedding (Peters et al., 2019), text classification
(K M et al., 2018), and language generation (Zhou
et al., 2018). In general, knowledge graph embed-
ding can be classified into two categories: trans-
lational distance models and semantic matching
models (Wang et al., 2017). Translational dis-
tance models model the score function of a fac-
tual triple (eh, r, et) as the distance between eh and
et through the relationship r. Typical methods in-
clude TransE (Bordes et al., 2013) and its variants,
such as TransD (Ji et al., 2015). Semantic match-
ing models model the score function of a factual
triple by exploiting the latent semantics between
eh and et, and they are usually modeled as a 3-way
tensor. Typical methods include RESCAL (Nickel
et al., 2011), DistMult (Yang et al., 2015), Com-
plEx (Trouillon et al., 2016), SimplE (Kazemi and
Poole, 2018), and Tucker factorization (Balazevic
et al., 2019). Compared with other methods, the
Tucker factorization method learns a basis of rela-
tionship embeddings and can model more complex
relationships, so it is used in this paper.
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3 Method

Our method consists of two components: 1) we
first augment all pairs of OP and OA tasks using
BERT; 2) with the training data of OP, OA, and AP
as input, we use constrained Tucker factorization
to de-noise and complete the knowledge graph. In
particular, we use typed constraints to reduce the
solution space and add negative relationships to
leverage negative training samples.

3.1 Data Augmentation

Because BERT can only do well on the OP and OA
tasks (Forbes et al., 2019), we only augment data
of these two tasks. In particular, for each pair (o, p)
of OP, where o ∈ O is an instance of objects and
p ∈ P is an instance of properties, we compose a
sentence: “A/An o is p.”, and use fine-tuned BERT
on OP to predict its label lop. Similarly, for each
pair (o, a) of OA, where o ∈ O is an instance of
objects and a ∈ A is an instance of affordances,
we compose a sentence: “He a the o.”, and use fine-
tuned BERT on OA to predict its label loa. We use
the augmented data DOP , DOA, together with the
original AP data DAP as input to the constrained
Tucker factorization model.

3.2 Constrained Tucker Factorization

All (eh, r, et) tuples compose a 3-way binary tensor
X ∈ {0, 1}ne×ne×nr , where each entry X (i, j, k)
denotes whether the i-th head entity and j-th tail
entity follow the k-th relationship, ne is the number
of entities, and nr is the number of relationships.
Each slice of X is a ne × ne matrix of the relation-
ship k. The Tucker factorization model proposed
by Balazevic et al. (2019) approximates X as:

X̂ =W ×1 E ×2 E ×3 R, (1)

where×i denotes the i-mode product,E ∈ Rde×ne

is entity embeddings, R ∈ Rdr×nr is relation em-
beddings, W ∈ Rde×de×dr is a core tensor, de is
the latent dimension of entities, and dr is the latent
dimension of relationships.

3.2.1 Typed Constraints
Similar to the typed tensor decomposition method
in (Chang et al., 2014), because we know that only
objects and properties can potentially have the rela-
tionship OP, we can constrain the remaining entries
of the OP matrix as 0. We can also constrain the
OA and AP relationships in a similar way. There-

fore, we optimize the following objective jointly
for the three tasks:

min
E,R,W

||X −X̂ ||2F +λ||X̂ �M||2F +βf(X̂ ), (2)

where ||·||F denotes the Frobenius norm,� denotes
element-wise production, M is the mask tensor
for the typed constraint, and f(X̂ ) = ||E||2F +
||R||2F + ||W ||2F is the regularization term. λ and β
are coefficient weights of constraints. Because all
entities are categorized and we consider the type
constraint, there is only one possible relationship
for a single head and tail.

3.2.2 Negative Samples
One unique challenge of a physical commonsense
knowledge graph is that we have to use the open-
world assumption. Namely, for unknown facts,
we cannot assume that they are negative samples.
In this paper, we propose encoding negative sam-
ples by adding corresponding negative relation-
ships explicitly. For each OP, OA and AP relation-
ship, we add a corresponding negative relationship,
i.e., NOT-OP, NOT-OA and NOT-AP. For example,
(person, NOT-OP, a tool), (cup, NOT-OA, twist),
(walk, NOT-AP, used for eating). Similar to (Bal-
azevic et al., 2019), we also use reverse relation-
ships. Namely, for each tuple (h, r, t), we add (t,
r-reverse, h). Therefore, there are six negative re-
lationships in total. For the OP and OA tasks, the
negative samples are added through the data aug-
mentation module in subsection 3.1, i.e., the labels
are predicted by BERT, and for the AP task, we use
the negative samples from the dataset. In this way,
we can not only increase the number of relation-
ships but also leverage labeled negative samples
more effectively.

4 Experiments

To evaluate the method, we conducted experiments
with a physical commonsense dataset (Forbes et al.,
2019) on triple classification and link prediction.
To simplify the problem, we only used the situated
OP, OA, and AP data, which contains 80 objects,
50 properties, and 504 affordances. The statistics
are shown in Table 2. With the data augmentation
component, we generated 4000 OP samples and
40320 OA samples. We compared the method with
state-of-the-art knowledge graph embedding meth-
ods, including TransE, TransD, RESCAL, Dist-
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OP OA AP
Method acc F1obj F1prop µF1 acc F1obj F1aff µF1 acc F1aff F1prop µF1
TransE 0.71 0.14 0.18 0.13 0.50 0.47 0.54 0.43 0.62 0.24 0.29 0.21
TransD 0.65 0.25 0.30 0.20 0.56 0.52 0.44 0.51 0.58 0.23 0.24 0.21

RESCAL 0.60 0.21 0.21 0.20 0.47 0.37 0.46 0.35 0.63 0.22 0.24 0.22
DistMult 0.62 0.24 0.22 0.22 0.52 0.45 0.47 0.45 0.64 0.21 0.23 0.21
ComplEx 0.63 0.23 0.22 0.20 0.52 0.40 0.48 0.45 0.62 0.21 0.24 0.20
SimplE 0.61 0.18 0.21 0.17 0.51 0.38 0.49 0.42 0.61 0.23 0.24 0.21
Tucker 0.77 0.21 0.14 0.17 0.62 0.54 0.45 0.55 0.18 0.28 0.30 0.26

Ours (w/o DA) 0.77 0.12 0.12 0.08 0.50 0.11 0.07 0.09 0.80 0.44 0.41 0.47
Ours (w/o CSTR) 0.17 0.29 0.30 0.26 0.55 0.69 0.82 0.69 0.18 0.27 0.30 0.26

Ours 0.91 0.61 0.48 0.62 0.85 0.83 0.67 0.84 0.81 0.43 0.42 0.47

Table 1: Experimental results of triple classification, including macro F1 scores per category, i.e., object (obj),
property (prop), affordance (aff ), and micro F1 score (µF1).

training testing
positive negative total positive negative total

OP 6188 34712 40900 1654 9446 11100
OA 2454 2454 4908 666 666 1332
AP 18564 104136 122700 4962 28338 33300

Table 2: The statistics of the physical commonsense
dataset from Forbes et al. (2019).

Mult, ComplEx, SimplE, and Tucker 1. We opti-
mized equation 2 with Adam in PyTorch and did
not optimize the regularization explicitly. λ was
set to 0.1 through a 5-fold cross validation. de and
dr were set to 200 by default.

4.1 Triple Classification

Triple classification needs to predict whether a fact
(eh, r, et) is correct or not. With the learned E,
R, and W , we calculated the probability that two
entities eh, et follow a relationship r as:

σ(W ×1 eh ×2 et ×3 r), (3)

where σ is the sigmoid function. With the typed
constraint, we then selected the relationship with
the maximal probability. The results are shown
in Table 1. For other methods, we only input the
original training data without data augmentation.

With the data augmentation (DA) and typed con-
straints (CSTR), we achieved the best classifica-
tion accuracy. In particular, we achieved relatively
high micro and macro F1 scores for the three tasks,
indicating that our method can predict positive sam-
ples more accurately.

4.2 Link Prediction

Link prediction predicts the tail entity with one
head and one relationship, i.e., (eh, r, ?). With the

1The implementations of TransE, TransD, RESCAL, Dist-
Mult, ComplEx and SimplE are from OpenKE (Han et al.,
2018). The implementation of Tucker is from Balazevic et al.
(2019). Without any explicit statement, we used their default
parameters.

Method MRR Hits@10 Hits@3 Hits@1
TransE 0.629 0.691 0.636 0.596
TransD 0.631 0.701 0.637 0.596

RESCAL 0.019 0.036 0.017 0.006
DistMult 0.598 0.619 0.605 0.582
ComplEx 0.605 0.615 0.603 0.597
SimpleIE 0.603 0.619 0.606 0.591

Tucker 0.650 0.723 0.648 0.620
Ours (w/o DA) 0.733 0.815 0.764 0.687

Ours (w/o CSTR) 0.514 0.727 0.549 0.416
Ours 0.826 0.931 0.863 0.768

Table 3: Link prediction results, where MRR denotes
Mean Reciprocal Rank.

learned E, R, and W , we calculated probabilities
of all candidate entities as:

σ(W ×1 eh ×3 r). (4)

Similarly, we compared our results with typi-
cal knowledge graph embedding methods. For the
Tucker method, we trained 2000 epochs, and for
our method, we trained 50 epochs. The results are
shown in Table 3. Compared with other methods,
our method usually had relatively higher perfor-
mance, indicating its potential in discovering new
physical commonsense facts.

4.3 Discussion

To evaluate the effectiveness of the data augmen-
tation (DA) and typed constraint (CSTR) compo-
nents, we also conducted ablation studies on triple
classification and link prediction separately, and
the results are shown in Tables 1 and 3, from which
we can see that DA and CSTR can help improve
the performance of Tucker factorization.

Compared with knowledge graph embedding
methods, the pre-training BERT model can per-
form better on OP and OA, but it is more difficult
to generalize well on AP because such facts are not
written in existing texts explicitly and BERT does
not encode them as well as the OP and OA tasks
(Forbes et al., 2019). For example, in terms of AP
triple classification, the results of BERT are: a mi-



3297

cro F1 score of 0.37, an affordance macro F1 score
of 0.36, and a property macro F1 score of 0.25. Our
results for triple classification outperform them by
a large margin, although our results are still worse
in terms of OP and OA classification.

From the perspective of multi-task learning, one
explanation of the improvement on the AP task is
that the core tensor W can be viewed as parameter
sharing among the three tasks and through the pa-
rameter sharing, the OP and OA tasks help improve
the performance of AP. In a separate experiment,
we used a multi-task BERT model (Stickland and
Murray, 2019), and got a micro F1 score of 0.46,
an affordance macro F1 score of 0.37, and a prop-
erty macro F1 score of 0.48 for the AP task, which
was similar to the result with our model.

5 Conclusion

In this paper, we formulate physical commonsense
learning as a knowledge graph completion prob-
lem. We first use BERT to augment training data of
OP and OA, and then employ constrained Tucker
factorization to complete the knowledge graph. We
constrain types to reduce the solution space and add
negative relationships to leverage negative training
samples. Compared with typical knowledge graph
embedding methods, our results show good perfor-
mance on triple classification and link prediction.
Our method also has the potential to be a generic
approach to benefit performance on the knowledge
graph completion problem.
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