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Abstract

Neural networks can achieve impressive per-
formance on many natural language process-
ing applications, but they typically need large
labeled data for training and are not easily in-
terpretable. On the other hand, symbolic rules
such as regular expressions are interpretable,
require no training, and often achieve decent
accuracy; but rules cannot benefit from labeled
data when available and hence underperform
neural networks in rich-resource scenarios. In
this paper, we propose a type of recurrent neu-
ral networks called FA-RNNs that combine
the advantages of neural networks and regu-
lar expression rules. An FA-RNN can be con-
verted from regular expressions and deployed
in zero-shot and cold-start scenarios. It can
also utilize labeled data for training to achieve
improved prediction accuracy. After training,
an FA-RNN often remains interpretable and
can be converted back into regular expressions.
We apply FA-RNNs to text classification and
observe that FA-RNNs significantly outper-
form previous neural approaches in both zero-
shot and low-resource settings and remain very
competitive in rich-resource settings.

1 Introduction

Over the past several years, neural network ap-
proaches have rapidly gained popularity in natu-
ral language processing (NLP) because of their
impressive performance and flexible modeling ca-
pacity. Nevertheless, symbolic rules are still an
indispensable tool in various industrial NLP appli-
cations. Regular expressions (RE) are one of the
most representative and useful forms of symbolic
rules and are widely used for solving tasks such as
pattern matching (Hosoya and Pierce, 2001; Zhang
et al., 2018) and intent classification (Luo et al.,
2018). RE-based systems are highly interpretable
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and therefore support fine-grained human inspec-
tion and manipulation. For example, individual RE
rules in a system can be easily added, revised, or
removed to quickly adapt the system to changes
in the task specification. Moreover, RE-based sys-
tems do not require a training stage with labeled
data and hence can be quickly deployed with decent
performance in zero-shot scenarios. However, REs
rely on human experts to write and often have high
precision but moderate to low recall; RE-based
systems cannot evolve by training on labeled data
when available and thus usually underperform neu-
ral networks in rich-resource scenarios.

How to combine the advantages of symbolic
rules and neural networks is an open question and
is drawing increasing attention recently. One possi-
ble way is to use rules to constrain neural networks,
usually in the manner of regularization via knowl-
edge distillation (Hu et al., 2016) and multi-task
learning (Awasthi et al., 2020; Xu et al., 2018),
or by tuning the output logits of neural networks
(Li and Srikumar, 2019; Luo et al., 2018). In this
way, information from rules can be injected into
neural networks, though the neural networks still
require training and remain black boxes that are
hard to interpret and manipulate. Another way of
utilizing rules is to design novel neural network
architectures inspired by rule systems (Schwartz
et al., 2018; Graves et al., 2014; Peng et al., 2018;
Lin et al., 2019). Models designed based on this
idea usually achieve better interpretability, but they
must be trained on labeled data and cannot be di-
rectly converted from rules or manually specified
by human experts because of their structural differ-
ences from rule systems.

In this paper, we propose finite-automaton recur-
rent neural networks (FA-RNN), a novel type of
recurrent neural networks that is designed based
on the computation process of weighted finite-state
automata. Because of the equivalence between
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Label [distance]

RE $*(how ( far | long ) | distance) $*
Matched
Text

〈BOS〉 tell me how far is oakland air-
port from downtown 〈EOS〉

FA

Table 1: RE for matching sentences asking about dis-
tance, and a matched sentence. ‘$’ is the wildcard. ‘|’
is the OR operator. ‘*’ is the Kleene star operator. We
also show the finite automaton converted from the RE.
s2 is the final state.

REs and finite-state automata, we can convert any
REs into an FA-RNN, which can be deployed in
zero-shot and cold-start scenarios. When there are
labeled data, the FA-RNN can also be trained in
the same way as any neural network, which im-
proves its prediction accuracy over the original REs.
The FA-RNN has good interpretability. When con-
verted from REs, it is (approximately) equivalent to
the REs and is fully interpretable. Even after train-
ing, it often remains highly interpretable and can
be converted back into REs. The interpretability
of FA-RNNs opens the possibility of fine-grained
manipulation such as integrating new REs into a
trained FA-RNN and disabling old REs that are
used to initialize an FA-RNN.

We apply FA-RNNs to the text classification task
and compare them with neural network baselines
as well as existing approaches of integrating REs
and neural networks. Our experiments find that FA-
RNNs show clear advantages in both zero-shot and
low-resource settings and remain very competitive
in rich-resource settings.

2 Background

2.1 Regular Expressions
Regular expressions (RE) are patterns usually used
for searching or matching a string and are a succinct
way to denote regular languages. We show a simple
example RE for matching sentences1 in Table 1.

2.2 RE System for Text Classification
The text classification task aims to assign a class
label to an input sentence. Let x = 〈x0, · · · , xN 〉
be a sentence and L = {l1, · · · , lk} be the label set.
One common and straight-forward way to use REs

1Example taken from the ATIS intent classification dataset.

Figure 1: RE and FA-RNN systems for text classifica-
tion.

for classification is as follows. Firstly, writem REs
R = {r1, · · · , rm}, where each RE corresponds
to some label in L. Then, for each sentence x,
apply these REs to get matching results. Finally,
aggregate the matching results to produce a final
label for sentence x based on a set of propositional
logic rules. Each rule specifies a logical expression
of matching results that implies a specific label.
For example, let Mi represent whether RE ri is
matched, then we may have a rule: (Mi ∨Mj) ∧
¬Mk → lp. The whole procedure is shown in the
top half of Figure.1.

2.3 Finite-State Automaton

Finite-state automata (FA) are machines with finite
numbers of states. An FA can transit from one state
to another in response to an input. It has a start state
s0 and a set of final states S∞. Every RE can be
converted into an FA expressing the same language
by Thompson’s construction algorithm (Thompson,
1968). For a sequence x = 〈x1, · · · , xN 〉, an RE
matches the sequence if and only if the converted
FA starts from s0 and finally reaches a final state
after consuming x. Table 1 shows an FA converted
from the example RE. Further, for every RE, there
exists a unique FA with a minimum number of
states and deterministic transitions (m-DFA) such
that they express the same language (Hopcroft et al.,
2001). Deterministic transitions mean that given
a current state and an input, there is a unique next
state. The m-DFA can be obtained by running
the powerset construction algorithm (Rabin and
Scott, 1959) and the DFA minimization algorithm
(Hopcroft, 1971).
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2.4 Weighted Finite-State Automaton
A weighted finite-state automaton (WFA) assigns a
weight to each transition, which is formally defined
as a 5-tuple: A = 〈 Σ,S,T ,α0,α∞ 〉 .
• Σ: a finite input vocabulary. |Σ| = V .
• S: a finite set of states. |S| = K.
• T ∈ RV×K×K : a tensor of transition weights.
T [σ, i, j] is the weight of transiting from si to sj
in response to input σ. T [σ] ∈ RK×K denotes
the transition matrix of σ.
• α0 ∈ RK : initial weights. α0[i] is the weight

of staying at state si at time t = 0.
• α∞ ∈ RK : final weights. α∞[i] is the weight

of staying at state si after reading all the inputs.
An FA can be seen as a WFA with 0/1 weights.

T [σ, i, j] is 1 if si can transit to sj in response
to σ and 0 otherwise. α0[i] = 1{si ∈ S0} and
α∞[i] = 1{si ∈ S∞}, where 1() is the indicator
function and S0 denote the set of start states2.

For sequence x, the score of WFA A accepting
x can be calculated using the forward (Baum and
Petrie, 1966) and Viterbi (Viterbi, 1967) algorithms.
Let path p = 〈u1, · · · , uN+1〉 be a sequence of
indexes of the states that we visit when consuming
x. The score B(A,p) of path p can be computed
by:

α0[u1] ·

(
N∏
i=1

T [xi, ui, ui+1]

)
·α∞[uN+1] (1)

Let π(x) be the set of all paths that start from
start state s0 and reach a final state si ∈ S∞ after
consuming sequence x. The forward algorithm
computes the sum of path scores.

Bforward(A,x) =
∑

p∈π(x)

B(A, p)

= αT0 ·

(
N∏
i=1

T [xi]

)
·α∞

(2)

The Viterbi algorithm computes the maximum of
path scores.

BViterbi(A,x) = max
p∈π(x)

B(A,p) (3)

It can be computed by replacing matrix multipli-
cation in Eqa.2 with the max-plus operator. For
an FA A, the forward score is exactly the number
of paths in π(x) while the Viterbi score indicates
whether π(x) is non-empty.

2Normally, we define that an FA has only one start state,
but any FA with multiple start states can be converted into
an FA with one start state by adding ε-transitions from a new
start state to all the original start states.

3 Method

We show step-by-step how we can convert REs to
a novel type of recurrent neural networks called
FA-RNNs.

3.1 From REs to Recurrent Neural Networks
RE to FA As mentioned in Sec.2.3, we can con-
vert an RE into an m-DFA. In order to obtain a
concise FA with better interpretability and faster
computation speed, we treat the wildcard ‘$’ as a
special word in the vocabulary and run the algo-
rithms mentioned in Sec.2.3 to obtain a “pseudo”
m-DFA A.

FA as RNN As discussed in Sec.2.4, the FA A
can be seen as a WFA with 0/1 weights which is
parameterized by Θ = 〈α0,T ,α∞〉.

The computation of the WFA forward score
(Eqa.2) can be rewritten into a recurrent form. Let
ht ∈ RK be the forward score vector after consum-
ing t words in x. ht[i] can be interpreted as the
number of paths starting from s0 and reaching si
at step t.

h0 = αT0

ht = ht−1 · T [xt], 1 ≤ t ≤ N
Bforward(A,x) = hN ·α∞

(4)

The computation of the WFA Viterbi score can be
formulated in a similar way. Therefore, we can
view a WFA as a form of recurrent neural networks
(RNN) parameterized by Θ.

3.2 Decomposing the Parameter Tensor
Despite the equivalence to FAs and hence better
interpretability, the RNNs proposed in Sec.3.1 has
much more parameters than a traditional RNN
because of the tensor T ∈ RV×K×K . To re-
duce the parameter number, we propose to apply
tensor rank decomposition (explained in the Ap-
pendix.A) and decompose T into three matrices
ER ∈ RV×r,D1 ∈ RK×r,D2 ∈ RK×r, where r
is a hyper-parameter. Note that if r is smaller than
the rank of T , then the decomposition is approxi-
mate. We empirically find that, for a 100-state FA
converted from RE, we can obtain a small decom-
position error (≤ 1%) if r ≥ 100.

Now the RNN is parameterized by ΘD =
〈α0,α∞,ER,D1,D2〉. ER has a dimension as-
sociated with vocabulary size V and can be viewed
as a word embedding matrix containing RE infor-
mation for each word. Let vt ∈ Rr be the embed-
ding of word xt contained in ER. The recurrent



3196

update in Eqa.4 becomes:

a = (ht−1 ·D1) ◦ vt
ht = a ·DT

2

(5)

where ◦ denotes element-wise product. Eqa.5 pro-
duces the same result as Eqa.4 with sufficiently
large r.

Note that the size of ht is determined by the state
number K of the m-DFA converted from RE. In
some cases, K may be too small, resulting in lim-
ited representational power of the RNN. A simple
method to solve this problem is to concatenateD1

andD2 with aK ′×r zero matrix, hence increasing
the hidden state size byK ′. Subsequent training (to
be introduced later) would update D1 and D2 so
that these added dimensions can be utilized. This
is equivalent to adding K ′ isolated states in the
FA and relying on training to establish transitions
between the old and new states.

3.3 Integrating Pretrained Word Embedding

Pretrained word embeddings have been found very
useful in bringing external lexical knowledge into
neural networks. Let Ew ∈ RV×D be the word
embedding matrix and ut ∈ RD be the word em-
bedding of xt in Ew. We introduce another matrix
G ∈ RD×r that can transform the D-dimensional
word embedding ut into r-dimension, which can
then replace vt in the recurrent update of Eqa.5. We
initializeG by settingG = E†wER, where E†w is
the pseudo-inverse of Ew. In this way, we approxi-
mate vt with utG and hence the initialized RNN
still tries to mimic the FA. After training, however,
the RNN will be able to utilize the additional infor-
mation contained in pretrained word embeddings
and hence may outperform the original FA.

In practice, we find it beneficial to interpolate
the two r-dimension embeddings vt and utG with
a hyper-parameter β ∈ [0, 1]. When β is 1, we only
use RE information. When β gets closer to 0, we
integrate more external lexical information into the
model. The recurrent update formula becomes:

zt = βvt + (1− β)utG

a = (ht−1 ·D1) ◦ zt
ht = a ·DT

2

(6)

We name this new form of RNNs as FA-RNNs, i.e.,
recurrent neural networks built from finite-state
automata.

3.4 Extensions of FA-RNN

Gated Extension (FA-GRU) Inspired by the
Gated Recurrent Unit (Chung et al., 2014), we sac-
rifice some interpretability and add an update gate
ft and a reset gate rt into the FA-RNN. The update
gate determines how much information from the
past shall be retained. The reset gate determines
whether to reset the previous score vector to h0,
The recurrent update is as follows.

zt = βvt + (1− β)utG

ft = σ(Wfzt +Ufht−1 + bf )

rt = σ(Wrzt +Urht−1 + br)

ĥt−1 = (1− rt) ◦ h0 + rt ◦ ht−1

a = (ĥt−1 ·D1) ◦ zt
ĥt = a ·DT

2

ht = (1− ft) ◦ ht−1 + ft ◦ ĥt

(7)

σ is the sigmoid activation function andWf ,Wr,
Uf , Ur are additional parameters for gates. Note
that when ft and rt is close to 1, the FA-GRU de-
generates to the FA-RNN. Therefore, we initialize
bf , br to a large value and Wf ,Wr,Uf ,Ur ran-
domly using Xavier initialization (Glorot and Ben-
gio, 2010) to ensure that the initialized FA-GRU
is approximately equivalent to the FA-RNN and
hence the original REs.

Bidirectional Extension (BiFA-RNN) Our net-
works can be easily extended to their bidirectional
variants. For any RE, we can reverse it by sim-
ply reversing its word order (e.g., “free $* ( phone
| phones ) $*” can be reversed to “$* (phone |
phones) $* free”) and then convert the reversed
RE into WFA

←−
A and the corresponding FA-RNN.

Score vector
←−
hN can be computed by applying

Eqa.6 or Eqa.7 on the reversed input sentence←−x .
Then we take the average of

←−
hN and the left-to-

right score vector
−→
hN to obtain the final score vec-

tor hN = (
−→
hN +

←−
hN )/2.

3.5 Aggregation Layer for Text Classification

As introduced in Sec.2.2, an RE system for text
classification contains multiple REs that are aggre-
gated to form a class label prediction. Here we
describe how to convert such an RE system to an
FA-RNN system for text classification (the bottom
half of Figure.1).

For each RE ri in the RE system, we convert it
into a WFA Ai with Ki states, start weights α0,i,
and final weights α∞,i. We can view these WFAs
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Logic Soft Logic

¬A 1− a
A ∨B min(1, a+ b)
A ∧B max(0, a+ b− 1)

Table 2: Soft logic. A,B are proposition symbols with
soft truth values a, b.

as a single WFA A with a total number of K =∑
iKi states and multiple start states. We then

convert this WFA to an FA-RNN. After we run this
FA-RNN on sentence x, the last state vector hN
contains the matching information of all the REs.

To predict a class label from hN , we create a
soft aggregation layer. First, we extract the forward
or Viterbi score of each RE from hN . For forward
scoring, we follow Eqa.4 and have:

Bforward(Ai,x) = hN · ᾱ∞,i (8)

where ᾱ∞,i expandsα∞,i by filling zeros for states
not belonging to Ai. For Viterbi scoring, we re-
place matrix multiplication with max-plus. The
computed score for Ai can be seen as a soft match-
ing result of RE ri. Second, we rewrite the logical
RE aggregation rules introduced in Sec.2.2 to soft
logic expressions (Kimmig et al., 2012; Li and
Srikumar, 2019) (Table 2). Instead of predicting
a single label, the soft aggregation layer outputs
the label logits l ∈ Rk. When all the elements in
hN are close to either 0 or 1, the output of the soft
aggregation layer is approximately equivalent to
that of the RE aggregation layer of Sec.2.2.

Since the logical RE aggregation rules can be
expressed in the conjunctive normal form, we can
implement the corresponding soft aggregation layer
with a two-layer MLP with ReLU-like activation
functions. This is similar to the MLP layer com-
monly used at the end of traditional neural net-
works to map the hidden representation to label
logits. In practice, we find it sometimes beneficial
to not use any activation function in the MLP.

3.6 Training with Labeled Data

So far we have introduced how to initialize an FA-
RNN system that is approximately equivalent to an
RE classification system. When there are labeled
data, the FA-RNN can also be trained to improve its
performance. We simply use the output logits l to
compute the cross-entropy loss on the training data
and use a gradient-based method such as Adam
(Kingma and Ba, 2014) to optimize it.

#Train #Dev #Test |L| |R| K %Acc

ATIS 3982 996 893 26 27 107 87.0
$ * flights | flight | ( ( go | get | fly ) from $ * to $
* ) $ * → FLIGHT

QC 4965 500 500 6 68 94 64.4
$ * what $ ? does $+ ( stand? for ) $* →
ABBREVIATION

SMS 4502 500 500 2 36 52 93.2
$* free $ * ( phone | phones ) $* → SPAM

Table 3: Dataset statistics and example REs. L is the
label set. R is the RE set. K is the state number of
the converted WFA. %Acc is the classification accuracy
of the RE system. We provide an example RE and its
targeting label for each dataset.

ATIS QC SMS
RE system 87.01 64.40 93.20
FA-RNN 86.53 61.95 93.00
FA-GRU 86.81 62.90 93.20
BiFA-RNN 88.10 62.90 93.00
BiFA-GRU 88.63 62.90 93.20
BiGRU+i 1.34 18.75 11.90
BiGRU+o 30.74 27.50 30.40
BiGRU+io 38.69 25.70 73.25
BiGRU+pr 9.94 17.70 53.00
BiGRU+kd 9.94 17.70 53.00
BiGRU+i+u 86.42 64.85 92.75
BiGRU+o+u 83.03 64.95 93.05
BiGRU+io+u 86.14 64.75 92.70
BiGRU+pr+u 85.67 64.60 93.5
BiGRU+kd+u 87.37 63.70 93.55

Table 4: Accuracy of zero-shot classification. The RE
system and baselines trained on RE-labeled data are in-
cluded for reference.

Note that we typically fix ER during training
because we find that updating ER is not helpful.
Therefore, the number of trainable parameters in
an FA-RNN is similar to (usually smaller than) that
of an RNN. We compare the number of parameters
of different models in Appendix.C.

4 Experiments

We use the forward score version of FA-RNNs by
default in our experiments. We use GloVe (Pen-
nington et al., 2014) as the word embedding and
keep it fixed for our methods and all the baselines.
We tune the learning rate, number of additional
isolated states K ′, and interpolation coefficient β
for our methods on the development set. We pro-
vide more details of hyper-parameter tuning for
FA-RNNs and all the baselines in Appendix.D.
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4.1 Datasets
We evaluate the performance of our methods on
three text classification datasets that have been used
in previous work of integrating REs and neural net-
works: ATIS (Hemphill et al., 1990), Question
Classification (QC) (Li and Roth, 2002) and SMS
(Alberto et al., 2015). ATIS is a popular dataset
consisting of queries about airline information and
services. QC contains questions that can be classi-
fied into general categories like LOCATION, EN-
TITY, etc. SMS is a spam-classification dataset.
We write REs for ATIS and use a modified ver-
sion of REs from Awasthi et al. (2020) for QC and
SMS. We show dataset statistics and RE examples
in Table 3.

4.2 Baselines
Basic Networks We compare FA-RNN with tra-
ditional recurrent neural networks including RNN
(Elman, 1990), GRU (Chung et al., 2014), LSTM
(Hochreiter and Schmidhuber, 1997), and their bidi-
rectional variants. We also experiment with a 4-
layer CNN (Kim, 2014) and a 4-layer DAN (Iyyer
et al., 2015), which are also frequently used in text
classification. We feed the hidden representation
produced by these models into an MLP to obtain
the label logits and use the cross-entropy loss as
the objective function. We tune the learning rates
and the number of hidden states in [50, 100, 150,
200] on the development set for each dataset.

RE-enhanced Basic Networks We also com-
pare our method with the basic neural networks
enhanced by existing methods of combining rules
and neural networks. Luo et al. (2018) propose
three ways to utilize RE matching results in a neu-
ral model: 1) use the results as additional input
features; 2) use the results to guide attention; 3)
use the results to directly tune the output logits. As
our basic networks do not involve attention, we
enhance them using 1), 3) or both, denoted as +i,
+o and +io respectively. Another method of utiliz-
ing rules is the knowledge distillation framework
(Hinton et al., 2015). It treats the RE system as
the teacher and its label logits as the soft targets,
and distills this knowledge into the basic networks.
We denote this method as +kd. Hu et al. (2016)
combines knowledge distillation with posterior reg-
ularization by iteratively projecting the student net-
work into the rule-regularized space. We denote
this method as +pr. Finally, in the zero-shot setting,
we also enhance these baselines by training them

Figure 2: Precision and recall with different amounts
of training data on SMS.

using unlabeled data tagged by regular expressions.
We denote this enhancement by +u.

4.3 Zero-Shot Classification

We compare our methods with the RE system and
RE-enhanced BiGRU in the zero-shot scenario, in
which no training data (including the development
set) is available. All the methods use or are ini-
tialized by exactly the same set of REs. For the
+u enhancement, we use the full training data with
their labels removed as unlabeled data. We show
the results in Table 4.

The results show that our methods are compara-
ble to the RE system. The small differences in ac-
curacy between the RE system and our methods are
caused by approximation errors in decomposing the
parameter tensor and integrating word embedding,
as well as the introduction of gates in FA-GRUs.
Our methods have much better performance than
RE-enhanced BiGRUs, because RE-enhanced Bi-
GRUs without training perform random guesses,
except that in the cases of +o and +io, RE match-
ing results directly influence the outputs and hence
improve the predictions. Baselines with the +u
enhancement can also match the accuracy of the
RE system, but unlike our methods, they require
training on sufficient RE-labeled data.

We also report the results of the other baselines
in Appendix.E. Without any training, the basic net-
works not enhanced by RE just perform random
guesses. The other RE-enhanced basic networks
have similar behaviors to RE-enhanced BiGRUs.

4.4 Low-Resource and Full Training

We compare all the methods trained on 1%, 10%,
and 100% of the training data. We use the orig-
inal development set for the 10% and 100% ex-
periments; but for the 1% experiment, we sam-
ple a smaller development set containing the same
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ATIS (26-class) QC (6-class) SMS (2-class)
1% 10% 100% 1% 10% 100% 1% 10% 100%

FA-RNN 90.43 90.79 96.52 67.75 79.6 91.3 93.1 96.75 98.8
FA-GRU 88.94 90.85 96.61 66.2 80.7 91.85 94.25 96.8 99.2
BiFA-RNN 89.31 90.85 96.72 57.65 81.5 91.55 91.7 96.7 99
BiFA-GRU 90.62 90.26 96.64 64.15 82.8 92.4 93.9 96.75 98.8
CNN 71.61 86.09 94.74 50.9 74.9 89.25 89.85 95.9 98.8
DAN 71.02 83.68 90.4 47.25 65.4 77.8 89.9 93.7 98.6
RNN 70.91 75.17 91.55 22.4 67.9 85 85.1 89.85 97.75
LSTM 69.37 78.14 95.72 40.45 75.75 90 86.2 95.75 97.85
GRU 70.72 88.52 96.3 42.35 79.75 91.2 86.15 95.55 98.05
BiRNN 70.72 79.98 93.39 49.35 75.95 87.35 86.75 94.9 97.8
BiLSTM 70.77 87.12 96.25 55.95 76.75 90.95 92.15 95.8 97.7
BiGRU 70.69 88.35 96.75 62.7 80.05 91.5 89.6 95.95 98.4
BiGRU +i 82.84 90.01 96.56 66.3 80.25 92 90.95 96.75 98.55
BiGRU +o 80.21 89.22 96.33 60.15 80.2 91.7 90.6 95.95 98.4
BiGRU +io 82.61 89.95 95.46 65.05 79.65 90.7 93.85 96.75 98.25
BiGRU +pr 72.4 88.89 96.5 61.6 80.45 91.85 90.9 96.05 98.45
BiGRU +kd 73.38 88.86 96.75 62.65 80.3 91.25 87.65 96 98.55

Table 5: Classification accuracy with different amounts of training data.

FA-RNN ATIS QC SMS

-F 96.52 91.30 98.80
-V 95.66 88.20 97.85
-F-O 94.51 87.80 99.20
-F-Rand 92.16 80.60 95.40
-V-Rand 91.26 78.60 97.00
-F-RandEw 94.17 84.40 97.00
-TrainER 96.41 89.20 99.00

Table 6: Ablation Study. -F de-
notes the default method using for-
ward scoring. -V denotes Viterbi
scoring. -O denotes the undecom-
posed version described in Sec.3.1. -
Rand denotes random initialization. -
RandEw denotes using random word
embedding. -TrainER denotes train-
ing ER.

amount of data as 1% of the training data to simu-
late the low-resource setting. Table 5 shows the re-
sults. Because of space limit, for RE-enhanced net-
works, we only report the results of RE-enhanced
BiGRUs, which perform the best among all the RE-
enhanced networks. The complete results of all the
methods with standard deviations can be found in
Appendix.E.

From the results we can see that our methods out-
perform all the other methods in the low-resource
settings, especially on 1% training data. With 100%
training data, overall our methods are much better
than RNN, DAN and CNN, and are either slightly
better than or comparable to BiLSTM, BiGRU, and
RE-enhanced BiGRUs. RE-enhanced BiGRUs are
indeed better than non-enhanced BiGRU in general,
and +pr and +kd seem to be more data-hungry than
+i, +o and +io.

SMS is a binary classification task of spam detec-
tion, so we regard [spam] as the positive label and
calculate the precisions and recalls of FA-RNN and
two baselines GRU and GRU+io given different
amounts of training data (Fig.2). With no training
data, FA-RNN is almost equivalent to REs and has
high precision but moderate recall; but with just 3%
data, its recall is greatly improved and its precision
drops only moderately; and with additional data,
its precision and recall are both improved. For the
baselines, the precision and recall of GRU always
increase with more data, while the changes of the
precision and recall of GRU+io seem less stable.

Figure 3: Performance of FA-RNN with different β.

5 Analysis

Impact of β β from Eqa.6 controls the influence
of pretrained word embedding. Fig.3 shows how β
impacts the performance of FA-RNN on the zero-
shot and fully-trained scenarios. It can be seen that
using pretrained word embedding does not help
in the zero-shot scenario but can be helpful in the
fully-trained scenario. One possible explanation
is that word similarities encoded in the pretrained
word embedding may not be compatible with a clas-
sification task, but training with data could adapt
the model (in particular, by updating G) to better
utilize the information contained in the pretrained
word embedding.

Ablation Study Table 6 shows the results of vari-
ants of FA-RNN when trained on the full datasets.
From the results we can conclude that: 1) forward
scoring outperforms Viterbi scoring; 2) tensor de-
composition described in Sec.3.2 results in not only
fewer parameters but also better overall perfor-
mance; 3) RE initialization is helpful because it
is much better than random initialization; 4) inte-
grating pretrained word embedding is beneficial
because the performance drops by a large margin
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if using random word embedding; 5) training ER
does not result in better performance on average,
possibly because it introduces too many trainable
parameters.

6 Interpretability

We regard the approximate equivalence between
RE/WFA and our RE-initialized model as indica-
tion of good interpretability based on the following
two reasons: 1) for people who are familiar with
REs and automata, our model is interpretable once
converted back into a WFA; 2) for non-experts who
are unfamiliar with automata and REs, we may run
a RE/WFA of a specific classification label on an
input sentence and show which part of the sentence
contributes to the (best) matching of the RE/WFA
with the sentence, which can be easily understood
by non-experts.

Note that not only can an FA-RNN be easily
converted back into a RE/WFA at initialization,
but the conversion can also be done after training.
We can use the trained parameters of the FA-RNN
ΘRE =

〈
ÊR, D̂1, D̂2, Ĝ

〉
and word embedding

matrix Ew to reconstruct the WFA tensor T .

ÊwR = β · ÊR + (1− β) ·EwĜ
T̂(1) = (D̂2 � D̂1)Ê

T
wR

(9)

where T̂(1) denotes the mode-1 unfolding of the
reconstructed tensor T̂ and � denotes the Khatri-
Rao product. Further, we can use a thresholding
function f(x) = 1{x ≥ γ} to convert the weights
into {0, 1} to recover an FA, where γ is a fixed
scalar. Similarly, we can round the weights in the
soft aggregation layer to reconstruct the logical
aggregation layer. In this way, we can convert a
trained FA-RNN back into an RE system.

In our experiments, we find that although the
reconstructed RE systems underperform the corre-
sponding trained FA-RNNs because of threshold-
ing and rounding during reconstruction, they often
outperform the original REs. The reconstructed RE
systems achieve 73.6% accuracy for QC (+9.2%
compared with the original REs) and 87.45% for
ATIS (+0.45% compared with the original REs).
For SMS, the reconstructed REs underperform the
original ones (−1.2%) probably because the orig-
inal REs are already good enough. We show an
example in Fig.4, in which our model can be seen
to learn interesting new patterns such as ‘jet’ and
‘737’. We show another example in Appendix.F.

Figure 4: Part of an original RE and a reconstructed RE
corresponding to label [aircraft]. On the right, ‘$787’
means 787 words can activate the transition. Similar for
‘$796’. They are stricter than wildcard ‘$’ that allows
all possible words in the vocabulary.

Good interpretability of our models opens the
possibility of fine-grained manipulation of the
model, e.g., adding new REs without retraining
the model. To inject a new set of REs, we con-
vert them to a new FA-RNN with parameters
Θnew = 〈ER,D1,D2,G〉 and merge it into the
original trained FA-RNN with parameters ΘRE by
concatenating the parameter matrices:〈

[ÊR ER],

[
D̂1 0
0 D1

]
,

[
D̂2 0
0 D2

]
, [Ĝ G]

〉
(10)

To add new logical aggregation rules, we can up-
date the aggregation layer parameters similarly by
concatenation. To disable an RE in an FA-RNN, we
reconstruct the WFA, remove all the states of the
RE from the WFA except those that can be reached
from states of other REs, and finally convert the
WFA back to an FA-RNN.

7 Related Work

Neural Networks Enhanced by Rules Hu et al.
(2016); Li and Rush (2020) use rules to constrain
neural networks by knowledge distillation and pos-
terior regularization. Awasthi et al. (2020) inject
rule knowledge into neural networks using multi-
task learning. Lin et al. (2020) train a trigger match-
ing network using additional annotation and use the
output of trigger matching results as the attention
of a sequence labeler. Rocktäschel et al. (2015);
Xu et al. (2018); Hsu et al. (2018) use parsed rule
results to regularize neural network predictions by
additional loss terms. Li and Srikumar (2019); Luo
et al. (2018) inject declarative knowledge in the
form of parsed RE results or first-order expressions
into neural networks by hacking the prediction log-
its or the attention scores. Hu et al. (2016); Hsu
et al. (2018) use rules as additional input features.
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All these previous methods use matching results
or truth values of rules to enhance existing neural
models. In contrast, we directly turn REs into a
novel type of trainable networks.

Relating Neural Networks and WFA Schwartz
et al. (2018) propose a type of neural networks for
learning soft surface patterns (a subset of REs),
which is inspired by WFAs but cannot be converted
from WFAs or surface patterns. In contrast, our
FA-RNN can be initialized from REs and converted
back to REs. Peng et al. (2018); Dodge et al. (2019)
formulate the update of each hidden dimension of
various RNN architectures as a small WFA (2-4
states). Weiss et al. (2018); Merrill (2019) provide
theoretical analysis of various neural networks and
their accepting languages. Our work differs from
these more theoretical studies in that we aim for a
practical text classification approach. Omlin et al.
(1998); Giles et al. (1999) show the equivalence
between WFA and second-order RNN. The main
differences between our model and theirs include
the following. First, compared with the undecom-
posed version of our FA-RNN, their RNN model
involves nonlinear activation functions which com-
plicate the model. Second, our FA-RNN further
decomposes the tensor parameter, integrate word
embeddings, and propose the gated and bidirec-
tional extensions. Third, while their work is mostly
theoretical, we empirically show the usefulness of
our model in text classification.

8 Conclusion and Future Work

We propose a type of recurrent neural networks
called FA-RNN. It can be initialized from REs
and can also learn from data, hence applicable to
various scenarios including zero-shot, cold-start,
low-resource and rich-resource scenarios. It is
also interpretable and can be converted back into
REs. Our experiments on text classification show
that it outperforms previous neural approaches in
both zero-shot and low-resource scenarios and is
very competitive in rich-resource scenarios. In the
future, we plan to apply FA-RNN to other tasks
and explore other variants of FA-RNN. We release
our data, RE rules and code at https://github.com/
jeffchy/RE2RNN.
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A Tensor Rank Decomposition (CPD)

A 3-way tensor T ∈ Rd1×d2×d3 can be approxi-
mated using r rank-1 tensors.

T ≈ T̂ =
r∑
i=1

ai ⊗ bi ⊗ ci

T̂(1) = (C �B)AT

A = [a1 · · ·ar] ,A ∈ Rd1×r,
B = [b1 · · · br] ,B ∈ Rd2×r,
C = [c1 · · · cr] ,C ∈ Rd3×r,

(11)

T̂(1) denotes the mode-1 unfolding of tensor T̂ . �
denotes the Khatri-Rao product while ⊗ denotes
the outer product. When the rank of T is less than
or equal to r, then the decomposition can be made
exact.

B Tricks for CPD

Speeding up CPD Decomposing the WFA ten-
sor T V×K×K is hard when the vocabulary size V
is large. However, if we neglect the wildcard ‘$’,
other words appear in RE usually form a small sub-
set Σ′ of the whole vocabulary. Denote V1 the size
of Σ′, we can use a wildcard matrixW ∈ RK×K
and a much smaller tensor T V1×K×K1 to represent
T . W [i, j] = 1 when the WFA transits from si
to sj in respond to ‘$’, otherwize 0. Similarly,
T1[σ, i, j] = 1 when the WFA transits from si to
sj in respond to Σ′σ, otherwize 0. By this construc-
tion, if Σσ1 = Σ′σ2 , T [σ1] = W + T1[σ2].

Because Σ′ is small, it is much easier to decom-
pose T1 to get E′R ∈ RV1×r,D′1 ∈ RK×r,D′2 ∈
RK×r. After obtaining these matrices, we pad the
E′R back into a matrix E′′R sized V × r with 0s,

Model Parameters

FA-RNN 2Kr +Dr
FA-GRU 2(Kr +KK +K) + 2Kr +Dr
RNN DH +HH
GRU 3(DH +HH +H)
LSTM 4(DH +HH +H)

Table 7: Formulas of parameter numbers.

such that E′′R[σ] = 0 if Σσ 6∈ Σ′, and E′′R[σ] =
E′R[σ1] if Σσ = Σ′σ1 ∈ Σ′.

Let vt ∈ Rr be the embedding of word xt con-
tained inE′′R, the recurrent update of FA-RNN now
becomes:

a = (ht−1 ·D1) ◦ vt
ht = a ·DT

2 + ht−1W
(12)

We do not train the wildcard matrixW by default.
The new recurrent update will get exactly same
result as the one without this trick.

Normalizing ER,D1 and D2 We find normal-
izing ER,D1 andD2 to ensure they have similar
average Frobenius norm results in better perfor-
mance of our methods. The average Frobenius
norm is the Frobenius norm divided by the number
of matrix elements. Denote a, b and c the average
Frobenius norms for ER,D1 andD2 respectively,
and y = (abc)1/3. We can normalize ER,D1 and
D2 by multiplying them with the factors y/a, y/b
and y/c respectively. The tensor reconstructed by
the normalized matrices is the same as the tensor
reconstructed by the original ones.

C Number of Parameters

We show calculation of model parameters of our
FA-RNN and traditional recurrent neural networks
in Table 7. K is the number of WFA states, r is the
tensor decomposition rank, D is the word embed-
ding dimension, and H is the hidden dimension in
recurrent neural networks. In most cases, K, r are
smaller than or comparable to H .

Table 8 shows the numbers of trainable parame-
ters. The model sizes are tuned and selected using
the development set. The parameters associated
with the aggregation layer or the MLP layer are
also included. The result shows that our methods
usually have fewer trainable model parameters than
baselines.

https://doi.org/10.18653/v1/D18-1224
https://doi.org/10.18653/v1/D18-1224
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ATIS QC SMS

FA-RNN 56100 57600 30900
FA-GRU 102312 113060 61500
BiFA-RNN 94200 121200 52524
BiFA-GRU 204624 244240 104236
GRU 185226 113406 112802
BiGRU 232826 181206 225602
CNN 283126 281106 451052

Table 8: Numbers of model parameters after tuning on
different datasets.

D Hyper-parameters

We report the ranges of each hyper-parameters. For
all methods and baselines, we select learning rates
(lr) from [0.01, 0.005, 0.001, 0.0005, 0.0001], For
FA-RNN and its variants, we select ranks r from
[150, 200], additional hidden states from [0, 30],
and β from [0.3, 0.5, 0.7, 1.0]. For traditional neu-
ral networks, we select the hidden dimensions from
[50, 100, 150, 200]. For +i, +o, +io, we select the
RE tag dimension from [20, 50], for +pr, +kd, we
select the α from [0.3, 0.5, 0.7], it is used for bal-
ancing between imitating the teacher and predict-
ing the true hard labels. We select the best hyper-
parameters for each methods based on the averaged
development set accuracy.

E Full Experimental Results

Table 9, 10, 11 show the full experimental results
with standard deviations. We run each model un-
der each setting for four times with different ran-
dom seeds. The standard deviations are large on
low-resource scenarios because we also randomly
choose the training data.

F Additional Interpretability Example

We present a more complicated example of origi-
nal and reconstructed REs from the ATIS dataset
in Fig.5. The trained RE contains a more sophisti-
cated pattern with more transitions and a slightly
different structure.

Figure 5: An untrained and trained RE correspond-
ing to the label [ground_fare], which covers questions
about ground service costs in airports.
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ATIS-0% ATIS-1% ATIS-10% ATIS-100%
acc std acc std acc std acc std

FA-RNN-F 86.53 0.06 90.43 0.46 90.79 0.19 96.52 0.28
BiFA-RNN-F 88.10 2.75 89.31 1.53 90.85 0.45 96.72 0.26
FA-GRU-F 86.81 0.14 88.94 0.94 90.85 0.54 96.61 0.31
BiFA-GRU-F 88.63 1.90 90.62 0.06 90.26 0.64 96.64 0.09
RNN+i 0.50 0.61 85.02 1.16 87.71 0.87 93.39 0.13
RNN+o 56.27 36.02 81.72 5.75 79.84 4.93 92.08 0.84
RNN+io 6.77 2.73 82.31 2.56 88.63 0.82 93.20 0.19
RNN+pr 1.60 1.48 70.41 0.73 77.02 0.92 92.25 0.58
RNN+kd 1.60 1.48 70.91 0.53 75.42 0.32 91.66 1.23
RNN 1.60 1.48 70.91 0.53 75.17 0.38 91.55 0.82
LSTM+i 1.62 2.37 84.80 2.12 88.72 1.56 96.33 0.23
LSTM+o 28.02 34.90 75.00 6.78 76.20 6.64 96.14 0.35
LSTM+io 9.29 5.75 84.71 1.33 89.19 2.12 96.53 0.55
LSTM+pr 0.53 0.66 70.77 0.00 78.16 8.58 95.94 0.33
LSTM+kd 1.40 0.72 69.37 2.80 78.86 9.42 96.02 0.37
LSTM 1.40 0.72 69.37 2.80 78.14 8.58 95.72 0.57
GRU+i 17.78 30.79 84.07 2.44 89.95 0.52 96.42 0.24
GRU+o 60.61 37.57 78.19 1.95 89.28 1.18 96.75 0.18
GRU+io 55.46 33.67 82.81 3.37 89.98 0.88 96.47 0.06
GRU+pr 0.87 0.51 70.66 0.16 89.03 1.97 96.47 0.21
GRU+kd 0.87 0.51 70.74 0.06 89.03 2.01 96.19 0.51
GRU 0.87 0.51 70.72 0.11 88.52 1.65 96.30 0.48
CNN+i 1.79 2.99 75.53 5.52 89.67 0.48 95.44 0.51
CNN+o 29.23 33.14 76.79 3.31 86.00 1.58 95.16 0.76
CNN+io 28.02 30.76 76.37 3.46 89.64 0.53 95.30 0.33
CNN+pr 0.87 0.69 72.93 1.09 86.11 1.21 94.79 0.45
CNN+kd 0.87 0.69 72.84 1.09 86.39 1.24 94.85 0.32
CNN 0.87 0.69 71.61 0.64 86.09 0.70 94.74 0.64
DAN+i 3.14 1.53 82.00 3.02 89.25 1.12 93.20 0.28
DAN+o 42.75 36.87 73.07 12.02 81.35 3.47 91.94 0.35
DAN+io 23.57 31.48 82.03 2.97 89.17 1.11 92.83 0.35
DAN+pr 0.36 0.45 68.48 3.57 83.65 1.72 90.51 0.82
DAN+kd 0.36 0.45 72.17 2.65 83.87 2.24 90.76 0.21
DAN 0.36 0.45 71.02 3.10 83.68 1.99 90.40 0.70
BiRNN+i 0.20 0.17 75.78 1.97 86.00 0.91 94.06 0.53
BiRNN+o 25.78 36.00 78.67 6.48 81.16 3.31 92.81 0.52
BiRNN+io 55.63 30.62 75.11 2.97 87.60 1.40 94.23 0.41
BiRNN+pr 14.73 18.39 70.49 0.56 83.17 1.03 92.97 0.51
BiRNN+kd 14.73 18.39 69.82 1.90 82.42 1.37 93.37 0.55
BiRNN 14.73 18.39 70.72 0.11 79.98 0.23 93.39 0.40
BiLSTM+i 1.26 1.40 84.66 1.94 89.73 1.32 96.25 0.35
BiLSTM+o 42.55 37.90 76.18 8.87 85.55 1.72 95.97 0.29
BiLSTM+io 10.92 1.91 83.40 3.87 89.11 1.32 96.72 0.19
BiLSTM+pr 0.73 0.79 70.94 0.34 87.88 1.75 96.58 0.35
BiLSTM+kd 0.73 0.79 71.84 2.13 87.49 1.95 96.25 0.53
BiLSTM 0.73 0.79 70.77 0.00 87.12 1.41 96.25 0.67
BiGRU+i 1.34 1.30 82.84 1.41 90.01 1.51 96.56 0.57
BiGRU+o 30.74 35.07 80.21 4.01 89.22 1.35 96.33 0.25
BiGRU+io 38.69 37.49 82.61 3.02 89.95 1.53 95.46 0.34
BiGRU+pr 9.94 18.54 72.40 1.39 88.89 2.26 96.50 0.19
BiGRU+kd 9.94 18.54 73.38 1.27 88.86 2.23 96.75 0.51
BiGRU 9.94 18.54 70.69 0.17 88.35 1.58 96.75 0.33

Table 9: Full results on ATIS dataset.
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QC-0% QC-1% QC-10% QC-100%
acc std acc std acc std acc std

FA-RNN-F 61.95 0.19 67.75 1.12 79.60 2.20 91.30 0.82
BiFA-RNN-F 62.90 0.62 57.65 6.71 81.50 2.38 91.55 1.50
FA-GRU-F 62.90 1.67 66.20 2.43 80.70 2.62 91.85 1.20
BiFA-GRU-F 63.75 1.71 64.15 1.76 82.80 1.91 92.40 0.52
RNN+i 17.25 6.19 61.80 1.60 73.30 1.87 87.40 2.28
RNN+o 37.45 10.46 43.80 6.65 68.30 3.92 87.40 2.18
RNN+io 26.55 2.41 60.80 3.41 72.95 3.02 88.00 0.59
RNN+pr 11.65 7.11 26.20 10.58 66.85 2.67 88.10 0.48
RNN+kd 11.65 7.11 28.80 14.00 67.00 3.88 87.15 0.89
RNN 11.65 7.11 22.40 10.93 67.90 3.66 85.00 2.21
LSTM+i 28.40 21.66 63.95 5.21 78.85 1.67 89.90 1.41
LSTM+o 33.90 7.33 48.60 6.44 76.55 2.46 90.30 0.96
LSTM+io 34.60 16.17 63.35 4.93 76.95 0.97 89.55 0.50
LSTM+pr 20.35 4.99 36.80 16.04 76.85 2.46 89.80 0.33
LSTM+kd 20.35 4.99 36.45 6.13 76.45 1.56 89.45 1.50
LSTM 20.35 4.99 40.45 4.40 75.75 2.36 90.00 0.40
GRU+i 18.65 13.55 65.20 1.12 77.45 1.81 90.55 1.00
GRU+o 41.90 19.06 40.40 6.16 79.45 2.44 90.45 1.10
GRU+io 30.15 15.72 69.35 1.65 79.65 1.84 90.70 0.68
GRU+pr 15.30 10.82 40.75 3.72 78.90 1.29 91.60 0.49
GRU+kd 15.30 10.82 41.05 4.29 79.60 2.62 90.95 0.70
GRU 15.30 10.82 42.35 1.15 79.75 1.72 91.20 1.38
CNN+i 17.25 4.73 56.35 2.03 79.20 1.23 89.55 0.75
CNN+o 44.55 6.68 56.20 10.02 75.30 3.24 90.35 1.20
CNN+io 30.15 10.31 59.50 8.79 77.80 3.63 89.55 0.38
CNN+pr 11.65 6.63 52.00 2.73 75.05 3.10 90.80 0.65
CNN+kd 11.65 6.63 50.40 3.30 73.30 3.70 89.65 1.02
CNN 15.00 4.92 50.90 4.26 74.90 3.89 89.25 0.57
DAN+i 17.20 10.03 60.10 7.60 76.15 0.53 82.20 1.77
DAN+o 31.50 8.42 43.15 5.21 66.65 2.33 81.85 0.60
DAN+io 28.05 12.42 61.90 10.79 76.70 1.65 81.80 0.71
DAN+pr 16.75 10.80 46.70 5.24 66.90 2.05 77.95 1.09
DAN+kd 16.75 10.80 49.00 4.99 67.10 1.43 77.45 0.96
DAN 16.75 10.80 47.25 4.70 65.40 2.63 77.80 1.23
BiRNN+i 19.75 7.70 56.70 2.93 75.65 1.89 88.10 1.60
BiRNN+o 29.85 23.67 51.10 9.58 73.30 3.71 87.25 0.93
BiRNN+io 34.65 10.96 58.70 5.57 75.35 2.21 87.25 0.91
BiRNN+pr 18.85 6.45 47.85 6.08 75.55 2.57 88.00 1.39
BiRNN+kd 18.85 6.45 50.75 2.82 74.95 2.97 86.25 1.02
BiRNN 18.85 6.45 49.35 7.24 75.95 3.18 87.35 1.12
BiLSTM+i 13.85 3.19 64.75 3.37 77.95 0.57 91.35 0.57
BiLSTM+o 41.40 8.17 53.75 12.84 75.45 1.60 91.65 0.34
BiLSTM+io 28.00 10.54 64.70 2.05 76.35 1.85 89.85 2.95
BiLSTM+pr 18.60 6.30 59.00 2.27 80.10 2.89 91.45 0.57
BiLSTM+kd 18.60 6.30 58.95 3.85 76.45 1.56 91.25 1.89
BiLSTM 18.60 6.30 55.95 2.67 76.75 2.70 90.95 0.81
BiGRU+i 18.75 9.86 66.30 3.96 80.25 0.85 92.00 0.63
BiGRU+o 27.50 17.40 60.15 2.18 80.20 0.78 91.70 0.77
BiGRU+io 25.70 13.07 65.05 1.22 79.65 1.84 90.70 0.68
BiGRU+pr 17.70 7.85 61.60 4.06 80.45 2.01 91.85 0.66
BiGRU+kd 17.70 7.85 62.65 3.18 80.30 2.56 91.25 0.91
BiGRU 17.70 7.85 62.70 0.95 80.05 1.65 91.50 1.57

Table 10: Full results on QC dataset.
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SMS-0% SMS-1% SMS-10% SMS-100%
acc std acc std acc std acc std

FA-RNN-F 93.00 0.00 93.10 3.19 96.75 0.82 98.80 0.19
BiFA-RNN-F 93.00 0.00 91.70 1.06 96.70 1.16 99.00 0.20
FA-GRU-F 93.20 0.00 94.25 0.90 96.80 0.43 99.20 0.26
BiFA-GRU-F 93.20 0.00 93.90 1.23 96.75 1.10 98.80 0.10
RNN+i 30.35 41.51 87.15 3.83 95.80 0.59 98.00 0.23
RNN+o 48.10 47.78 87.45 3.81 95.60 0.37 97.55 0.44
RNN+io 30.05 42.21 87.00 4.41 89.85 3.87 97.85 0.62
RNN+pr 67.95 35.70 85.40 0.99 95.80 0.82 98.10 0.53
RNN+kd 67.95 35.70 84.45 2.76 96.00 1.10 98.20 0.37
RNN 67.95 35.70 85.10 1.52 89.85 3.87 97.75 0.25
LSTM+i 50.00 46.23 93.85 1.30 96.60 1.07 98.50 0.12
LSTM+o 48.35 48.05 87.95 2.70 96.25 0.72 97.90 0.38
LSTM+io 88.25 3.30 93.50 0.77 96.70 0.81 98.35 0.25
LSTM+pr 49.75 41.97 86.00 0.82 96.10 1.00 98.35 0.10
LSTM+kd 49.75 41.97 86.95 2.11 96.45 0.55 98.45 0.10
LSTM 49.75 41.97 86.20 0.28 95.75 0.34 97.85 0.34
GRU+i 87.55 3.18 93.55 0.57 96.55 0.62 98.15 0.47
GRU+o 89.85 3.75 94.00 1.12 96.25 0.72 97.75 0.70
GRU+io 13.45 0.10 93.10 0.66 96.13 0.49 98.40 0.43
GRU+pr 68.05 36.30 89.80 3.49 96.25 0.30 98.40 0.28
GRU+kd 68.05 36.30 89.45 3.32 95.70 0.50 98.40 0.33
GRU 68.05 36.30 86.15 0.34 95.55 0.50 98.05 0.50
CNN+i 38.75 33.34 91.90 3.55 96.80 0.23 98.70 0.42
CNN+o 53.85 45.45 90.80 2.81 96.45 0.34 98.70 0.26
CNN+io 50.00 46.23 93.70 0.53 96.65 0.41 98.55 0.30
CNN+pr 49.70 35.94 85.75 2.07 96.00 0.33 98.35 0.50
CNN+kd 49.70 35.94 83.75 2.68 96.50 0.48 98.35 0.10
CNN 49.70 35.94 89.85 0.44 95.90 0.26 98.80 0.23
DAN+i 28.35 38.95 91.70 3.06 95.65 1.64 98.40 0.28
DAN+o 69.95 37.83 88.30 2.07 93.55 4.64 98.35 0.34
DAN+io 51.65 48.05 90.40 3.25 95.80 1.75 98.45 0.19
DAN+pr 50.00 42.26 88.50 2.20 91.80 2.72 98.65 0.30
DAN+kd 50.00 42.26 89.05 2.92 91.40 5.34 98.25 0.66
DAN 50.00 42.26 89.90 3.99 93.70 4.49 98.60 0.28
BiRNN+i 33.10 32.88 87.30 4.22 96.40 0.33 98.15 0.25
BiRNN+o 29.15 38.39 86.40 0.28 95.15 0.44 97.55 0.89
BiRNN+io 48.90 47.42 88.70 3.12 95.95 0.47 98.00 0.43
BiRNN+pr 65.70 35.02 84.95 2.90 95.20 0.28 98.30 0.35
BiRNN+kd 65.70 35.02 86.10 1.00 95.40 0.57 98.10 0.12
BiRNN 65.70 35.02 86.75 0.75 94.90 0.20 97.80 0.28
BiLSTM+i 61.55 35.24 93.60 0.98 96.75 0.25 98.30 0.38
BiLSTM+o 51.65 44.25 90.70 3.18 95.70 0.42 97.90 0.74
BiLSTM+io 71.60 43.20 92.75 1.86 96.70 0.53 98.35 0.34
BiLSTM+pr 44.40 33.39 87.10 1.99 95.65 0.34 98.35 0.10
BiLSTM+kd 44.40 33.39 86.50 5.01 96.05 0.74 98.50 0.38
BiLSTM 44.40 33.39 92.15 2.32 95.80 0.52 97.70 0.26
BiGRU+i 11.90 1.72 90.95 3.29 96.75 0.10 98.55 0.19
BiGRU+o 30.40 41.83 90.60 4.63 95.95 0.55 98.40 0.16
BiGRU+io 73.25 39.90 93.85 1.73 96.75 0.50 98.25 0.57
BiGRU+pr 53.00 30.96 90.90 2.95 96.05 0.87 98.45 0.19
BiGRU+kd 53.00 30.96 87.65 0.50 96.00 0.67 98.55 0.38
BiGRU 53.00 30.96 89.60 2.42 95.95 0.62 98.40 0.59

Table 11: Full results on SMS dataset.


