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Abstract

The growth of domain-specific applications
of semantic models, boosted by the re-
cent achievements of unsupervised embedding
learning algorithms, demands domain-specific
evaluation datasets. In many cases, content-
based recommenders being a prime exam-
ple, these models are required to rank words
or texts according to their semantic related-
ness to a given concept, with particular fo-
cus on top ranks. In this work, we give a
threefold contribution to address these require-
ments: (i) we define a protocol for the con-
struction, based on adaptive pairwise compar-
isons, of a relatedness-based evaluation dataset
tailored on the available resources and opti-
mized to be particularly accurate in top-rank
evaluation; (ii) we define appropriate metrics,
extensions of well-known ranking correlation
coefficients, to evaluate a semantic model via
the aforementioned dataset by taking into ac-
count the greater significance of top ranks. Fi-
nally, (iii) we define a stochastic transitivity
model to simulate semantic-driven pairwise
comparisons, which confirms the effectiveness
of the proposed dataset construction protocol.

1 Introduction

In recent years, we have been witnessing a growth
of Natural Language Processing (NLP) applica-
tions in a wide range of specific domains, such as
recruiting (INDA; Qin et al., 2018), law (Sugath-
adasa et al., 2017), oil and gas (Nooralahzadeh
et al., 2018), social media analysis (ALRashdi
and O’Keefe, 2019), online education (Dessı̀
et al., 2019), and biomedical (Patel et al., 2020).
Embedding-based models have been playing a cru-
cial role in this specialization, as they allow the ap-
plication of the same learning algorithm to a variety
of different corpora of unlabeled texts, obtaining
domain-specific models (Bengio et al., 2003; Bo-
janowski et al., 2017; Devlin et al., 2018; Mikolov

et al., 2013a, 2017, 2013b; Pennington et al., 2014).
The evaluation and validation of a domain-

specialized model requires manually-annotated
domain-specific datasets (Bakarov, 2018; Lastra-
Dı́az et al., 2019; Taieb et al., 2019). However, the
construction of such datasets is a very resource-
consuming process, and particular care is needed
to ensure their ability to evaluate the desired fea-
tures (Bakarov, 2018; Taieb et al., 2019; Wang
et al., 2019). In particular, it is fundamental to
carefully consider the so-called downstream task
(i.e., the final purpose of the model), because the
appropriate evaluation metric depends on this task
(Bakarov, 2018; Blanco et al., 2013; Halpin et al.,
2010; Rogers et al., 2018; Wang et al., 2019).

Semantic similarity and relatedness are related
but distinct notions in linguistics, the first being
associated with concepts which share taxonomic
properties and being maximized by synonyms;
on the other hand, semantically related concepts
can share any kind of semantic relation, including
antonym (Cai et al., 2010; Harispe et al., 2015).
These notions underlie the downstream tasks of
countless NLP applications, including information
retrieval (Akmal et al., 2014; Chen et al., 2017;
Gurevych et al., 2007; Hliaoutakis et al., 2006;
Ji et al., 2017; Lopez-Gazpio et al., 2017; Srihari
et al., 2000; Uddin et al., 2013), content-based rec-
ommendation (De Gemmis et al., 2008, 2015; Lops
et al., 2011), semantic matching (Giunchiglia et al.,
2004; Li and Xu, 2014; Wan et al., 2016), ontol-
ogy learning and knowledge management (Aouicha
et al., 2016a; Georgiev and Georgiev, 2018; Jiang
et al., 2014; Sánchez and Moreno, 2008), and word
sense disambiguation (Aouicha et al., 2016b; Pat-
wardhan et al., 2003).

In view of the widespread of these applications,
we propose a methodology to construct appropriate
domain-specific datasets and metrics to assess the
accuracy of relatedness and similarity estimations.
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In particular, due to its suitability for non-expert
human annotation, we mainly focus on semantic
relatedness; however, the proposed protocol can be
easily extended to semantic similarity.

A standard approach to evaluate a relatedness-
based model is the comparison of the semantic
ranking it produces with the corresponding rank-
ing determined from human annotations. How-
ever, the relevance of rank mismatches may depend
on the involved positions; in particular, top ranks
are considered more important in many contexts,
two prominent examples being content-based rec-
ommenders (De Gemmis et al., 2008, 2015; Lops
et al., 2011; Mladenic, 1999) and semantic match-
ing (Giunchiglia et al., 2004; Li and Xu, 2014;
Wan et al., 2016). The greater significance of top
ranks compared with low ranks is actually a pretty
common phenomenon, as it can be argued from
the attempts to overweight the former in the con-
text of ranking correlation (Blest, 2000; Pinto da
Costa and Soares, 2005; Dancelli et al., 2013; Iman
and Conover, 1987; Maturi and Abdelfattah, 2008;
Shieh, 1998; Vigna, 2015; Webber et al., 2010).

Our contribution is framed within the require-
ment to create domain-specific datasets to evaluate
semantic relatedness measure with particular focus
on top ranks and is threefold. (i) In Section 2, we
define a protocol for the construction, based on
adaptive pairwise comparisons, of a relatedness-
based evaluation dataset tailored on the available
resources and optimized to be particularly accu-
rate in top-rank evaluation. (ii) In Section 3, we
define appropriate metrics to evaluate a semantic
model via the aforementioned dataset by taking
into account the greater significance of top ranks;
the proposed metrics are extensions of well-known
ranking correlation measures and they can be used
to compare rankings, independently from their ori-
gin, whenever top ranks are particularly important.
Finally, (iii) in Section 4.1, we define a stochas-
tic model to simulate semantic-driven pairwise
comparisons, whose predictions (described in Sec-
tion 4.2) confirm the effectiveness of the proposed
dataset construction protocol; more in detail, we
adapt a stochastic transitivity model, originally de-
fined in the context of comparative judgment, in
order to make it suitable for either similarity-driven
or relatedness-driven comparisons.

2 Dataset Construction

In this section, we describe and justify a method-
ology to construct a dataset for the evaluation
of a domain-specific relatedness-based model.
Relatedness-based evaluation – known as intrin-
sic evaluation in the context of embedding-based
models – requires the construction of a dataset of
human annotations, which may be collected via
two different approaches. The former relies on a
small group of linguistic experts to create a gold
standard dataset, which is reliable but very expen-
sive and, due to the subjectivity of relatedness and
to the limited number of annotations, highly sus-
ceptible to bias and lack of statistical significance
(Blanco et al., 2013; Faruqui et al., 2016). The lat-
ter relies on a large group of non-experts, typically
associated with a crowdsourcing service (e.g., Ama-
zon MTurk, ProlificAcademic, SocialSci, Crowd-
Flower, ClickWorker, CrowdSource), it is typically
more affordable, and it has been proven to be re-
peatable and reliable (Blanco et al., 2013).

In the next sections we describe and justify a
protocol to construct a dataset based on semantic
relatedness between pairs of tokens1 collected via
a crowdsourcing approach. To simplify the reading
of the paper, Figure 1 shows the main steps for the
practical construction of a dataset within the pro-
posed approach, while Table 1 reports a summary
of the most frequently used symbols.

2.1 Token Choice

The first step in the dataset construction is the
choice of the tokens among which we want to
estimate the semantic relatedness. These tokens
must be carefully chosen to represent the semantic
areas typically involved in the downstream tasks
(Bakarov, 2018; Schnabel et al., 2015). More-
over, it is well-known that models based on high-
dimensional embeddings tend to incorrectly iden-
tify as a semantic nearest neighbor to almost any
concept one of a few common tokens called hubs
(Dinu et al., 2014; Feldbauer et al., 2018; Francois
et al., 2007; Radovanović et al., 2010a,b). In order
to detect this undesirable feature, which goes under
the name of hubness problem, an evaluation dataset
must contain a relevant amount of rare2 tokens

1Hereafter, we refer as token to a word or a sequence of
words that should be considered together, as they identify a
single concept (e.g., machine learning).

2A token can be considered rare within a particular domain
if its frequency in a corpus of domain-specific texts is, e.g.,
lower than 10% of the average token frequency in the corpus.
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Figure 1: Main steps for the practical construction of a
dataset within the proposed approach.

(Bakarov, 2018; Blanco et al., 2013). Henceforth,
we consider as a concrete example a content-based
recommender system in the recruitment domain
(INDA); in this case, the designated tokens can
be chosen among hard/soft skills, job titles, and
other tokens found in resumes and job descriptions,
including a relevant fraction of rare tokens.

Another potential issue of using relatedness to
evaluate semantic models, is associated to lexical
ambiguity, i.e., to the lack of one-to-one corre-
spondence between tokens and meanings (Bakarov,
2018; Faruqui et al., 2016; Wang et al., 2019). To
mitigate this problem, we suggest identifying a
number of relevant semantic areas within the do-
main of interest and subdivide the tokens accord-
ingly. For instance, Sales & Marketing, Computer-
related, Workforce, and Work & Welfare are exam-
ples of semantic areas within the recruiting domain.

2.2 Token Pairing

The random sampling of pairs in the whole vo-
cabulary is known to produce a large amount of
unrelated pairs (Taieb et al., 2019), in contrast with
the desired focus on the most related pairs. A stan-
dard approach to overcome this problem is pair
selection based on either known semantic relations

Table 1: Most commonly used symbols.

Dataset Construction
Ntok Number of tokens
Nitems Number of items (i.e., pairs of tokens)
Nvoters Number of voters
Ncomp Number of pairwise comparisons
nb Number of ballots
α Fraction of selected items
i, j Indices specifying the item

M
Number of times an item is presented
to the voters in each ballot

k Index specifying the ballot
N

(k)
items Number of items in ballot k

x
(k)
i

Borda score (i.e., win ratio)
for item i in ballot k

y
(k)
i Rescaled score for item i in ballot k

Evaluation Metrics

ai (bi)
Rank of item i according to
the first (second) ranking

ρw Weighted version of Spearman’s ρ
τw Weighted version of Kendall’s τ
wai (wbi ) Weight associated to ai (bi)
n0 Offset in weight calculation

Stochastic Transitivity Model
zi Underlying similarity of item i
v Index specifying the voter
o

(v)
i Opinion of voter v about item i

η
(v)
i

Gaussian-distributed random
variable characterizing voter v

σ∗v Nonconformity level of voter v
εv Probability of oversight for voter v

or the frequency of tokens’ co-occurrence within a
corpus of texts. While the former information may
be a priori unknown within the domain of interest,
the latter may produce a bias in favor of distribu-
tional methods that compute relatedness based on
similar knowledge sources (Taieb et al., 2019).

We suggest, therefore, separate token pairing in
each of the semantic areas identified as described
in Section 2.1: in this case, the relatedness distribu-
tion is substantially shifted towards larger values
compared with random sampling in the whole vo-
cabulary. This shift is shown in Figure 3 – based
on a word embedding created with the word2vec
algorithm (Mikolov et al., 2013a,b) trained on a
corpus of resumes – where the relatedness distribu-
tion of pairs of distinct tokens selected within the
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same semantic area3 (red plus) is compared with
that of pairs randomly generated in the whole vo-
cabulary (purple diamonds). The generation of all
pairs of distinct tokens produces Ntok(Ntok−1)/2
pairs per semantic area, Ntok being the number of
tokens. Although the pairs can be reduced via ran-
dom sampling, an accurate evaluation requires a
large number of pairs.

2.3 Vote Collection

Once we have defined the pairs of tokens, which
will be referred to as items hereafter, we want to
rank them, with particular emphasis on top ranks,
according to the opinions of a large numberNvoters

of non experts. Due to the large number of items
involved, the complete ranking of all items would
be an unfeasible task for a human and it is conve-
nient to reformulate it in terms of pairwise compar-
isons (Fürnkranz and Hüllermeier, 2010; Heckel
et al., 2019, 2018; Jamieson and Nowak, 2011;
Negahban et al., 2017; Park et al., 2015; Wau-
thier et al., 2013). Moreover, the complete explo-
ration of the Nitems(Nitems− 1)/2 pairs of distinct
items would be extremely expensive in terms of
votes; luckily enough, it has been proven to be non-
necessary in many studies (Jamieson and Nowak,
2011; Negahban et al., 2017; Park et al., 2015; Wau-
thier et al., 2013).

Louviere and Woodworth (1991) (see also Kir-
itchenko and Mohammad (2017)) proposed a faster
alternative to pairwise comparisons, known as best-
worst scaling. In this case n-tuples (typically,
n = 4), rather than pairs, are presented to the voter,
who is required to identify the best and the worst
items in each tuple, according to the relatedness of
the corresponding tokens. This approach’s draw-
backs are a reduction, for n > 3, in the control on
which pairs are actually checked and an increase
in the complexity of each vote, which is particu-
larly unwanted in crowdsourcing vote collections.
For this reason, we rely on the standard pairwise
comparison: we generate Ncomp pairs of items (as
described in Sections 2.4 and 2.5), each one to be
presented to one voter, who is requested to identify
the item formed by the most similar tokens.

3More in detail, 990 pairs of distinct tokens (associated
with 45 tokens) have been considered within the semantic area
Sales & Marketing.

2.4 Uniform Item Selection
In our setting, each item i is presented to the voters
a total number of times Mi, and we define a score

xi =
ni
Mi

, (1)

where ni represents the total number of times item i
was the winner4 in the vote collection; note that xi
corresponds to an empirical approximation of the
average probability5 – known as Borda score in the
context of social choice theory – that item i beats a
randomly chosen item j 6= i, where the accuracy
of the approximation increases as Mi increases
(Borda, 1784; Heckel et al., 2019).

In the absence of a priori knowledge on the ex-
pected scores, a reasonable approach for the data
collection consists of presenting each item the same
number Mi of times to the voters. In this scenario,
we randomly generate Ncomp pairs of items, with
the constraint that Mi = 2Ncomp/Nitems ∀i. The
only way to increase Mi – which is a proxy of the
accuracy of the xi score defined in Equation 1 – is,
therefore, to increase the total number of compar-
isons Ncomp.

2.5 Adaptive Item Selection
Crompvoets et al. (2019), Heckel et al. (2019),
Heckel et al. (2018), Jamieson and Nowak (2011),
and Negahban et al. (2017) proposed so-called
adaptive approaches to increase of the efficiency of
pairwise comparisons by identifying, before each
comparison, the optimal pair of items to be com-
pared based on the votes already collected, on the
task to be solved (typically, finding the global rank-
ing or a ranking-induced partition), and on assump-
tions on the vote distribution.

The application of an adaptive approach in our
context requires two additional ingredients which,
to the best of our knowledge, are still missing in
the literature: (i) in order to avoid overfitting on
the opinion of the fastest voters and to allow si-
multaneous voting, the choice of the pairs to be
presented must occur in a few events, as each of
these events causes a discontinuity in the vote col-
lection (namely, this choice requires to suspend the
vote collection when the numbers of comparisons
reach the desired distribution among the voters);
(ii) the goal is a selective increase in the precision
(proxied by Mi) of top ranks (with no need of a

4Ties can be accounted for by defining ni = nw
i + nt

i/2,
where nw

i (nt
i) represents the number of wins (ties) for item i.

5The average is intended over all voters.
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priori knowledge on the semantic relatedness of
the tokens), rather than a general improvement in
the global ranking. In Section 3 we define an ap-
propriate metric to quantify top-rank accuracy.

The key idea is to subdivide the voting procedure
in nb subsequent ballots in which pairwise com-
parisons, based on a list of pairs determined before
the beginning of the ballot, are presented to the vot-
ers. During the first ballot, the pairs are randomly
drawn from all items, with the constraint that each
item appears M times6, while in each subsequent
ballot k, the pairs are drawn from the N (k)

items top-
rank items selected according to the results of the
previous ballots, with analogous constraint. More
in detail, we define

N
(k)
items = round(αN

(k−1)
items ) ∼ αk−1Nitems, (2)

where α represents the fraction of items selected
at each ballot. Since each item contained in ballot
k appears M times within the pairs of such ballot,
the total number of comparisons can be written as

Ncomp =

nb∑
k=1

MN
(k)
items

2
∼ 1− αnb

2(1− α)
MNitems.

(3)
Thus, each item i which survives up to the last

ballot, is presented to the voters a number of times

Mtop = nbM ∼ (1− α)nbMunif , (4)

where Munif = 2Ncomp/Nitems is the number of
comparisons per item in the case of uniform item se-
lection with the same total number of comparisons;
the last approximation holds whenever αnb � 1,
i.e., when the fraction of items which survive up to
the last ballot is small. According to Equation 4,
the score precision for top-rank items can be in-
creased by decreasing the fraction α of selected
items or by increasing the number nb of ballots; in
Section 2.7 we discuss bounds on these values.

2.6 Score Calculation
At each ballot k and for each item i contained in
k, we can evaluate a score x(k)

i defined as in Equa-
tion 1. Nonetheless, since the pool of competing
items is narrowed around top ranks at each ballot,
the winning chances of a given item i decrease ac-
cordingly. For this reason, the expected value of
x

(k)
i is smaller than the expected value of x(k−1)

i ,

6We recommend an even value for M ; otherwise, if both
M and Nitems are odd, one item should appear M + 1 times.

0.0 0.2 0.4 0.6 0.8 1.0
x

(2)
i

0.0

0.2

0.4

0.6

0.8

1.0

ȳ
(1

)
i

Figure 2: The coordinates of this scatterplot represent
the scores x(2)i and ȳ(1)i = x

(1)
i , for each item i present

in the second ballot; the data are obtained with the
model described in Section 4.1 with exponential under-
lying similarity, Nitems = 990, α = 0.5, M = 20,
Nvoters = 100, σ∗

v = 0.1, εv = 0.01. The blue line
represents the interpolation described in the text.

and this discrepancy must be taken into account in
order to average scores from different ballots.

We define therefore a rescaled score y
(k)
i =

f
(k)
resc(x

(k)
i ), where fresc is the identity function for

k = 1, while it is obtained as a linear interpolation
between {x(k)

j } and {ȳ(k−1)
j } for k > 1, where

ȳ
(k)
i is defined as the average of all rescaled scores

up to ballot k, i.e.,

ȳ
(k)
i =

1

k

k∑
k′=1

y
(k′)
i . (5)

We enforce the f (k)
resc(1) = 1 constraint in the linear

interpolation, obtaining7, for k > 1, y
(k)
i = 1− b̂(k) + b̂(k)x

(k)
i

b̂(k) =
∑

j [1−x(k)j ][1−ȳ(k−1)
j ]∑

j [1−x(k)j ]2

. (6)

Figure 2 shows an example of the interpola-
tion on data simulated via the stochastic model
described in Section 4.1. Note that Equation 5 pro-
vides a sequence of approximations of the Borda
scores with accuracy increasing with k; top ranks
are expected to survive up to the last ballot, and
therefore to be highly accurate.

2.7 Choice of Parameter Values
We provide here heuristics to identify ranges of
values for the parameters of the adaptive approach.

7Since the winning chances of a given item j decrease at
each ballot, on average, x(k)

j ≤ ȳ
(k−1)
j . Heuristically, we

expect that, on average, [1− x
(k)
j ][1− ȳ

(k−1)
j ] ≤ [1− x

(k)
j ]2,

which implies b̂(k) ≤ 1, which in turns ensures y(k)
i ≤ 1.
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Number nb of Ballots. We need nb ≥ 2 for
the adaptive approach to be meaningful, while, to
limit the discontinuities in the vote collection, a
reasonable upper bound is nb . 10.

Fraction α of Selected Items. As the pur-
pose of the adaptive approach is to focus votes
on top rank items, a reasonable request is to
have no more than 10% of items surviving up
to the last ballot, which gives an upper bound
α . (0.1)1/(nb−1). On the other hand, at least
two items must be present in the last ballot; ac-
cording to Equation 2, this implies a lower bound
α & (2/Nitems)

1/(nb−1).
Number Ncomp of Comparisons. To achieve

the desired precision (namely, the statistical sig-
nificance of the averages) on top-rank scores, a
reasonable request is Mtop & 100; using Equa-
tion 2 in the αnb � 1 limit, this implies Ncomp &
50Nitems/[(1−α)nb]. On the other hand, the only
upper bound on Ncomp is the cost of the voting,
which can be estimated from Equation 10.

Number M of Comparisons per Ballot. M
can be computed from Equation 3 once the other
parameters have been fixed. Note the existence of
two competing phenomena: (i) decreasing M (i.e.,
increasing α) we increase the fluctuations in the xi
scores defined in Equation 1; (ii) for given xi fluc-
tuations, decreasing α we increase the probability
of top ranks’ premature loss due to stricter selec-
tion. A rigorous derivation of the optimal values of
M and α as a trade-off between these phenomena
is beyond the scope of this section, as the bounds
discussed above provide heuristic ranges.

3 Evaluation Metrics

Although the approximations of the Borda scores
described in Sections 2.4 and 2.5 can be thought as
estimates of the semantic relatedness, we rely on
rankings rather than scores to avoid inconsistency
issues that frequently emerge in score comparisons
(Ammar and Shah, 2011; Negahban et al., 2017).

Kendall (1948) proposed the quite general form
for a ranking correlation coefficient

Γ =

∑
i,j aijbij√∑
ij a

2
ij

∑
ij b

2
ij

, (7)

where aij (resp., bij) is a matrix that depends on
the first (second) ranking to be compared, with in-
dices i, j running over all items. This definition
contains Spearman’s ρ (Spearman, 1961) as a par-
ticular case with aij = aj − ai and bij = bj − bi,

while Kendall’s τ (Kendall, 1938; Kruskal, 1958)
is obtained with aij = sign(aj − ai) and bij =
sign(bj − bi), where {ai} and {bi} are the rank-
ings to be compared.

In order to take into account the larger im-
portance of top ranks in our context, we de-
fine weighted versions of ρ and τ , with increas-
ing weight at the increasing of the rank posi-
tion. Namely, we define (i) aij =

√
wiwj (aj −

ai), bij =
√
wiwj (bj − bi) and (ii) aij =√

wiwj sign(aj − ai), bij =
√
wiwj sign(bj − bi),

where wi is the normalized weight associated to
the i-th position in the rankings. These coefficients
can be rewritten respectively as

ρw =
∑

i wi(ai−ā)(bi−b̄)
σaσb

τw =
∑

ij wiwj sign(aj−ai) sign(bj−bi)
Z({wi})

, (8)

where ā =
∑

iwiai, σ
2
a =

∑
iwi(a

2
i − ā2), b̄ =∑

iwibi, σ
2
b =

∑
iwi(b

2
i − b̄2), while Z({wi})

is a normalization factor, which corresponds to
1−

∑
iw

2
i in the absence of ties; these metrics have

been emerging, albeit some notation differences,
as extensions of the ρ and τ coefficients to take
into account the larger importance of top ranks
(Pinto da Costa and Soares, 2005; Dancelli et al.,
2013; Vigna, 2015).

Different weighting schemes have been pro-
posed in the literature (Dancelli et al., 2013; Vigna,
2015); here we adopt the additive scheme

wi =
wai + wbi∑
j(w

a
j + wbj)

, (9)

with wai = f(ai) and wbi = f(bi), where f(n) is
a monotonically decreasing function, in view of
its ability in discriminating different rankings even
when they only differ by the exchange of a top rank
and a low rank (Dancelli et al., 2013).

A common choice is f(n) = 1/n (Dancelli
et al., 2013; Vigna, 2015); however, in the large
Nitems limit, it causes the divergence of the de-
nominator in Equation 9 and makes thus any wi
negligible. This phenomenon is responsible for
the decreased sensitivity on top ranks, observed
by Dancelli et al. (2013), in case of long rank-
ings. For this reason, we prefer to use f(n;n0) =
1/(n + n0)2, where the offset n0 has been intro-
duced to control the weight fraction associated
to the first rank in the large Nitems limit, i.e.,
R(n0) = f(1;n0)/

∑∞
n=1 f(n;n0), which can be

expressed as R(n0) = 1/[(n0 + 1)2 ψ(1)(n0 + 1)],
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where ψ(1)(x) is the first derivative of the digamma
function. With this choice, both ρw and τw defined
in Equation 8 represent a family of correlation co-
efficients, depending on the value of n0, whose
choice depends on the particular task (namely, on
the relative importance of the first rank). The value
n0 = 0 causes an extremely high sensitivity on
the first rank (R(0) ∼ 0.61), which may be ex-
cessive; hereafter, we focus therefore on the value
n0 = 2, which appears to be a reasonable trade-off
(R(2) ∼ 0.28) that allows focusing on the first rank
while avoiding neglecting other ranks.

The metrics ρw and τw are suitable to compare
rankings, whenever top ranks are particularly im-
portant; in particular, they can be used to evaluate
a semantic model using a dataset produced as de-
scribed in this paper.

4 Evaluation of the Data-Collection
Framework

The collection of human annotations to construct
a domain-specific dataset is a resource-consuming
process, even within the proposed optimized data
collection approach, whose person-hours cost can
be estimated as

C ∼ t̄compNcomp, (10)

where t̄comp is the average time needed for a sin-
gle comparison. For this reason, in Section 4.1,
we define a stochastic model for semantic pairwise
comparisons, which can be used to simulate the
voting before the collection of human annotations,
e.g., for checking or tuning the parameters of the
data collection approach. This stochastic model
will be used in Section 4.2 to compare the effective-
ness of the adaptive and the uniform approaches,
using the metrics defined in Section 3.

4.1 Semantic Pairwise Comparisons
We want to model Nvoters voters to whom are pro-
posed Ncomp pairwise comparisons and who are
asked to identify the item containing the most se-
mantically related tokens. The model will be used
to reconstruct an approximate ranking of the items.

For the sake of mathematical simplicity, we
firstly focus on similarity-driven comparisons,
where the similarity z takes value in the symmet-
ric interval [−1, 1], where z = 1, 0, and −1 cor-
respond respectively to synonyms, unrelated to-
kens, and antonyms. The model will eventually
be adapted to semantic relatedness by using the

Figure 3: We represent the three underlying similarity
distributions described in Section 4.1.1 and the two re-
latedness distributions described in Section 2.2; relat-
edness is quantified by | cos θ|, where θ is the angle
between the corresponding vectors in the embedding.

fact that, since antonyms correspond to semanti-
cally related tokens (Cai et al., 2010; Harispe et al.,
2015), the absolute value |z| is a reasonable proxy
for semantic relatedness.

4.1.1 Similarity-Driven Comparisons.
A convenient way to model similarity-driven pair-
wise comparisons assumes the existence of an un-
derlying (unknown) similarity distribution {zi},
which determines the theoretical ranks of the items,
which in turn can be compared with the ranks esti-
mated via the model. We consider here three exam-
ples:(i) an exponential zi = 2 exp(−i/Nitems)− 1,
(ii) a power law zi = 2/(1 +

√
i/Nitems) − 1,

and (iii) the distribution of the cosine similarity8

between pairs of tokens in the word embedding
described in Section 2.2; these distributions are
represented in Figure 3.

A fundamental aspect to be considered in mod-
elling similarity-driven pairwise comparisons is
the task’s subjectivity, as many potential linguis-
tic, psychological, and social factors could intro-
duce biases (Bakarov, 2018; Faruqui et al., 2016;
Gladkova and Drozd, 2016). A possible approach
to account for this problem is via a stochastic
transitivity model, firstly introduced in the con-
text of comparative judgment of physical stimuli
by Thurstone (1927) (see also Cattelan, 2012; En-
nis, 2016); this model describes the opinion o(v)

i

of voter v about item i as a stochastic function

8Despite a certain ambiguity observed by Faruqui et al.
(2016), cosine similarity is typically considered a proxy of
semantic similarity (Auguste et al., 2017; Banjade et al., 2015).
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o
(v)
i = zi + σvη

(v)
i , where zi is the underlying

similarity, η(v)
i is a Gaussian-distributed random

variable with zero mean and unit variance, while
σv represents the nonconformity amplitude, i.e., the
discrepancy between the voter’s opinion and the
underlying similarity.9

Here we define a modified version of the Thursto-
nian model, with a stochastic amplitude σv depend-
ing on the underlying similarity, so that

o
(v)
i = F (zi + σv(zi) η

(v)
i ), (11)

where F (x) = max(−1,min(1, x)) has been in-
troduced to enforce the constraint −1 ≤ o(v)

i ≤ 1,
analogous to the one discussed above for z. In
the absence of zi dependence in the nonconfor-
mity amplitude, the probability Pout(zi) to have
zi + σvηi outside the interval [−1, 1] would tend
to 1/2 as zi approaches one of the boundaries of
the interval, causing, due to the F constraint, the
collapse of a relevant fraction of opinion oi to ei-
ther −1 or 1. This degeneracy can be avoided
with σv(zi) proportional to 1− zi and 1 + zi as zi
approaches 1 and −1 respectively. Here we con-
sider the simplest form with these features, i.e.,
σv(zi) = σ∗v (1 − z2

i ), which makes particularly
sense in our context, where each item i represents
a pair of tokens, and the closest the similarity is to
zi = 1 (zi = −1), the higher is the relation (the op-
position) between the tokens in the corresponding
pair, and the stronger is expected to be the agree-
ment in the voters’ opinions on their similarity.

In order to increase the accuracy of the model,
we introduce another source of randomness that
represents the distraction level of the voter, i.e., its
tendency – observed, e.g., by Bakarov (2018) and
Bruni et al. (2014) – to unintentionally vote for
the item perceived as lower rank. This tendency
is accounted for by assuming that the result of a
pairwise comparison presented to voter v is actually
the item with the highest perceived score o(v)

i with
probability 1 − εv (with εv � 1), while the other
item is voted (oversight) with probability εv.

The proposed model depends on the underlying
similarity distribution10, on the number of voters,
on the random variables η(v)

i , and on the voter-
distinctive parameters σ∗v and εv, whose distribu-

9Contrary to the original formulation, no covariance terms
are present here, as the voters are supposed to be non-
interacting. Moreover, in the original formulation, voters
and items are respectively referred to as judges and stimuli.

10However, as shown in Table 2, the dependence is mild.

tion could be experimentally determined by ana-
lyzing human voting. In the absence of such anal-
ysis, it seems reasonable to uniformly draw σ∗v
and εv from ranges covering one order of mag-
nitude to encompass human variability; heuristic
upper bounds are εv . 0.05 and σ∗v . 0.2, as
oversights are supposed to be rare, and the prob-
ability Pout(0) that two completely unrelated to-
kens (zi = 0) are deliberately considered as maxi-
mally related (o(v)

i = ±1) should be extremely low:
the aforementioned bound corresponds indeed to
Pout(0) . 0.001%.

4.1.2 Relatedness-Driven Comparisons.
As discussed in Section 4.1, we consider the ab-
solute value of similarity as a proxy of related-
ness. The model defined in Section 4.1.1 is thus
extended to relatedness-driven comparisons by (i)
including an absolute value in Equation 11, so that
o

(v)
i = |F (zi + σ∗v(zi) η

(v)
i )| and (ii) defining the

theoretical rank of item i according to |zi|.

4.2 Results

We estimated the accuracy of a data collection ap-
proach by comparing, via the metrics defined in
Section 3, the ranking that it produces with the
underlying theoretical ranks. We considered the
semantic area described in Section 2.2, containing
990 items, and we simulated a relatedness-driven
data collection based on (i) the adaptive approach
described in Section 2.5, with Ncomp = 39000,
M = 20, α = 0.5, nb = 7 and (ii) the uniform
approach described in Section 2.4, with the same
total number of comparisons. The voting was sim-
ulated with the stochastic model described in Sec-
tion 4.1, with Nvoters = 100 and based on all three
discussed distributions for the underlying similar-
ity; for each voter v, the nonconformity level σ∗v
and the distraction level εv were randomly chosen
in the intervals [0.02, 0.2] and [0.005, 0.05] respec-
tively, while each η(v)

i was randomly drawn from a
normal distribution with zero mean and unit vari-
ance. Each simulation was repeated 50 times (by
resampling all voters’ parameters σ∗v , εv, and η(v)

i

at each simulation) in order to obtain statistically
significant results.

The code for our experiments is
available at https://github.com/

intervieweb-datascience/adaptive-comp

and was run on a local machine equipped with
an Intel Core i7-7700HQ (2.80GHz x8), with

https://github.com/intervieweb-datascience/adaptive-comp
https://github.com/intervieweb-datascience/adaptive-comp
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Table 2: Mean± standard deviation (unbiased estimation over 50 simulations of relatedness-driven comparisons, as
described in text) for ρw and τw metrics, defined in Equation 8, and for Spearman’s ρ and Kendall’s τ coefficients.

ρw τw ρ τ

Exponential
Uniform .778± .058 −0.11± .20 .8097± .0088 .6265± .0091
Adaptive .9452± .0028 .66± .17 .8015± .0087 .6330± .0098

Power Law
Uniform .800± .062 −0.11± .20 .9713± .0013 .8491± .0035
Adaptive .9800± .0014 .63± .18 .9632± .0019 .8406± .0040

Embedding
Uniform .741± .058 −0.11± .21 .7229± .0078 .5463± .0072
Adaptive .9146± .0042 .73± .12 .7258± .0093 .5611± .0097

average runtimes of 30.9 s and 33.2 s respectively
for the adaptive and the uniform approaches. The
results of the simulations are presented in Table 2,
which contains, as measures of the accuracy of the
proposed approaches, the ρw and τw coefficients
defined in Equation 8 and discussed in Section 3;
in order to check the overall rank accuracy, we also
report the standard Spearman’s ρ and Kendall’s τ
coefficients. For each coefficient, we report the
average value and the unbiased estimator of the
standard deviation over the 50 simulations. The
adaptive approach, compared with the uniform
approach, determines a relevant increase in both
ρw and τw for any of the underlying similarity
distributions considered, with no relevant changes
in the overall rank precision measured by ρ and
τ . Moreover, the results suggest that the proposed
stochastic model is robust for changes in the
underlying similarity distribution.

Figure 4 displays the scores x(k)
i calculated in

the first 5 ballots and the final approximation ȳi,
obtained in a simulation based on the adaptive ap-
proach with exponential underlying similarity and
the parameters described above; the figure clearly
shows that, as desired, the ȳi precision is substan-
tially larger for top ranks.

5 Conclusion & Future Work

In this paper, we provided a protocol for the con-
struction – based on adaptive pairwise compar-
isons and tailored on the available resources – of a
dataset, which can be used to test or validate any
relatedness-based domain-specific semantic model
and which is optimized to be particularly accurate
in top-rank evaluation. Moreover, we defined the
metrics ρw and τw, extensions of well-known rank-
ing correlation coefficients, to evaluate a semantic
model via the aforementioned dataset by taking
into account the greater significance of top ranks.
Finally, we defined a stochastic transitivity model

Figure 4: The scores x(k)i calculated in the first 5 ballots
and the final approximation ȳi are displayed as func-
tions of the theoretical ranks. All values are obtained
in the simulation described in the text.

to simulate semantic-driven pairwise comparisons,
which allows tuning the parameters of the data col-
lection approach and which confirmed a significant
increase in the performance metrics ρw and τw of
the proposed adaptive approach compared with the
uniform approach (see Table 2).

As future work, we plan to collect human an-
notations (i) to test the proposed data collection
approach on real data and (ii) to assess the valid-
ity and estimate the parameters of the proposed
stochastic transitivity model. Additional future
investigations may include a deeper analysis of
the mathematical and statistical properties of the
weighted coefficients ρw, τw, as well as a rigorous
derivation of the optimal values for the parameters
of the data collection approach.
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