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Abstract
Models for reading comprehension (RC) com-
monly restrict their output space to the set
of all single contiguous spans from the in-
put, in order to alleviate the learning problem
and avoid the need for a model that generates
text explicitly. However, forcing an answer to
be a single span can be restrictive, and some
recent datasets also include multi-span ques-
tions, i.e., questions whose answer is a set of
non-contiguous spans in the text. Naturally,
models that return single spans cannot answer
these questions. In this work, we propose a
simple architecture for answering multi-span
questions by casting the task as a sequence
tagging problem, namely, predicting for each
input token whether it should be part of the
output or not. Our model substantially im-
proves performance on span extraction ques-
tions from DROP and QUOREF by 9.9 and 5.5
EM points respectively.

1 Introduction

The task of reading comprehension (RC), where
given a question and context, one provides an an-
swer, has gained immense attention recently. In
most datasets and models (Rajpurkar et al., 2016;
Trischler et al., 2016; Seo et al., 2017; Yu et al.,
2018; Kwiatkowski et al., 2019), RC is set up as
an extractive task, where the answer is constrained
to be a single span from the input. This makes
learning easier, since the model does not need to
generate text abstractively, while still being expres-
sive enough to capture a large set of questions.

However, for some questions, while the answer
is indeed extractive, i.e., contained in the input, it
is not a single span. For example, in Figure 1 the
answer includes two people who appear as non-
contiguous spans in the context. Existing models
(Seo et al., 2017; Dua et al., 2019) are by design
unable to provide the correct answer to such multi-
span questions.

B I

B I                                                                       

B I  I

Question: “Who was able to receive over 50% of the vote?”

Answer: {“Barack Obama”, “George W. Bush”}

Passage: “… In 2012, Barack Obama narrowly won with 48.4% … 

… In 2008, Barack Obama won the county with 50.5% … 

Republican George W. Bush carried Clallam twice, defeating John 

Kerry by 51.3% to 46.3% in …”

Figure 1: A multi-span question from DROP, and a
BIO tagging for it (O tags omitted). The first occur-
rence of Barack Obama does not answer the question.

While most work has largely ignored this issue,
recent work has taken initial steps towards handling
multi-span questions. Hu et al. (2019) proposed to
predict the number of output spans for each ques-
tion, and used a non-differentiable inference proce-
dure to find them in the text, leading to a complex
training procedure. Andor et al. (2019) proposed
a Merge operation that merges spans, but is con-
strained to at most 2 spans. Chen et al. (2020)
proposed a non-differentiable symbolic approach
which outputs programs that compose single-span
extractions.

In this work, we propose a simple and fully
differentiable architecture for handling multi-span
questions that evades the aforementioned shortcom-
ings, and outperforms prior work. Similar to Yao
et al. (2013), who used a linear model over tree-
based features, we cast question answering as a
sequence tagging task, predicting for each token
whether it is part of the answer. At test time, we de-
code the answer with standard decoding methods,
such as Viterbi.

We show the efficacy of our approach on span-
extraction questions from both the DROP (Dua
et al., 2019) and QUOREF (Dasigi et al., 2019)
datasets. Replacing the single-span architecture
with our multi-span approach improves perfor-
mance by 7.8 and 5.5 EM points respectively. Com-
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bining the single-span and multi-span architec-
tures further improves performance by 2.1 EM on
DROP, surpassing results by other span-extraction
methods on both datasets.

2 Background: Single-span Model

Setup Given a training set of question-context-
answer triplets (qi, ci, ai)Ni=1, our goal is to learn a
function that maps a question-context pair (q, c) to
an answer a. We briefly review the standard single-
span architecture for RC (Devlin et al., 2019),
which we build upon.

First, we encode the question and context with a
pre-trained language model, such as BERT (De-
vlin et al., 2019): h = Encoder([q, c]), where
h = (h1, . . . ,hm) is a sequence of contextual-
ized representations for all input tokens. Then, two
parameterized functions (feed-forward networks),
fstart (hi) and fend (hi), are used to compute a
score for each token, corresponding to whether
that token is the start or the end of the answer. Last,
the start and end probability for each token i is
computed as follows:
pstart
i = softmax (fstart(h1), . . . , fstart(hm))i ,

pend
i = softmax (fend(h1), . . . , fend(hm))i ,

where both pstart,pend ∈ Rm×1. Training is done
by minimizing cross entropy of the start and end
indices of the gold span, and at test time the answer
span is extracted by finding the indices (s, e):

(s, e) = argmax
s≤e

pstart
s pend

e .

3 Multi-span Model

3.1 Span Extraction as Sequence Tagging

Extracting a variable number of spans from an in-
put text is standard in many natural language pro-
cessing tasks, such as Named Entity Recognition
(NER) and is commonly cast as a sequence tagging
problem (Ramshaw and Marcus, 1995). Here we
apply this approach to multi-span questions.

Our model uses the same contextualized repre-
sentations h, but rather than predicting start and
end probabilities, it outputs a probability distribu-
tion over a set of tags for each token. We experi-
ment with two tagging schemes. First, the well-
known BIO tagging (Sang, 2000; Huang et al.,
2015), in which B denotes the first token of an
output span, I denotes subsequent tokens in a span,
and O denotes tokens that are not part of an output
span. In addition, we experiment with a simpler IO

tagging scheme, where words are tagged as either
part of the answer (I) or not (O). Formally, given
a tagging scheme with |S| tags (|S| = 3 for BIO
and |S| = 2 for IO), for each of the m tokens, the
probability for the tag of the i-th token is

pi = softmax(f(hi)) (1)
where p ∈ Rm×|S|, and f is a parameterized func-
tion with |S| outputs.

3.2 Training

Assume each answer a is a set of strings, where
each string corresponds to a span in the input. We
would like to train our model to predict the correct
output for this set of spans. When the answer spans
appear only once in the input, this is simple, since
the ground-truth tagging is immediately available.
However, there are many cases where a given an-
swer span appears multiple times in the input. We
next explain how to address this.

To illustrate, consider the following simple ex-
ample (assume a BIO scheme). Given the input
“X Y Z Y Z” and the correct multi-span answer
{“X”, “Z”}, there are three possible gold taggings:
B O B O B, B O B O O, and B O O O B. Thus, the ground-
truth BIO cannot be determined unambiguously in
this case. Figure 1 illustrates this issue with a real
example from DROP.1

To tackle the above issue, we enumerate over
the set of all possibly-correct taggings, T , where
given a multi-span answer a, a possibly-correct
tagging is one in which all gold answer spans are
tagged as such at least once.2 We train our mod-
els by maximizing the marginal probability of all
possibly-correct taggings:

log p(T | h) = log
∑
T∈T

(
m∏
i=1

pi[Ti]

)
,

where pi[Ti] (see Eq. (1)) is the probability the
model assigns to token i having the tag Ti. The
loss is minimized when p gives probability 1.0 to
one of the possibly-correct taggings in T .

3.3 Decoding Spans from a Tagging

At test time, given predicted tag probabilities p, we
would like to find the most likely tagging T̂ . Let V

1In QUOREF, the indices of the gold answer spans are
explicitly given, so a single gold tagging can be defined.

2While |T | can grow exponentially with the number of
spans in an answer, in practice |T | is at most 1000 for 99.66%
of the examples of DROP, and so we can enumerate over T
directly in these cases. In the other 0.34%, we take a single
tagging that marks all occurrences of the answer spans.
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be the set of all valid taggings. We wish to find:

T̂ = argmax
T∈V

m∏
i=1

pi[Ti].

For BIO tags, the set V comprises all taggings that
don’t include an I after an O, and the maximization
problem can be solved in linear time using Viterbi
decoding (Viterbi, 1967) as in Yao et al. (2013);
Mehta et al. (2018). For IO tags, all taggings are
valid, and maximization is done by predicting the
tag with highest probability in each token inde-
pendently. Because answer spans are (practically)
never adjacent in RC, an IO-tagging produces a set
of spans by choosing all maximal spans that are
contiguously tagged with I.

4 “Multi-Head” Models

Some RC datasets contain questions where the out-
put is not necessarily a span. For example, in
DROP, the answer to some questions is a num-
ber that is not in the text, but can be computed by
performing arithmetic operations. To handle such
cases, many models (Dua et al., 2019; Hu et al.,
2019) employ a multi-head architecture. In these
models, each head z is a small module that takes
the contextualized representations h as input and
computes a probability distribution over answers
pz(a | q, c) = pz(a | h). For example, in Hu
et al. (2019), there are two heads that output spans,
and three heads that output numbers. To determine
which head to use for each question, an additional
module is trained: phead(z | q, c) = phead(z | h).
Thus, the model probability for an answer is:

p(a | q, c) =
∑
z

phead(z | q, c) · pz(a | q, c).

With this architecture, we can seamlessly inte-
grate our multi-span approach into existing RC
models. Specifically, a model can include both a
single-span head and a multi-span head, dynam-
ically deciding which span extraction method to
utilize based on the input.

5 Empirical Evaluation

Experimental setup As an encoder, we use the
Hugging Face implementation of RoBERTaLARGE

(Wolf et al., 2019; Liu et al., 2019), which produces
the representations h. For DROP, we add the arith-
metic and count heads from Dua et al. (2019) to
handle non-span questions. Full details of the ex-
perimental setup are in Appendix A.

5.1 Results

Table 1 shows development set results on the span-
extraction questions of DROP (Dua et al., 2019)
and QUOREF (Dasigi et al., 2019). We compare the
previous best-performing multi-span models to a
combination of our multi-span architecture (TASE:
TAg-based Span Extraction) with the traditional
single-span extraction (SSE), as well as to each
separately.

Comparison to previous models For a fair com-
parison with prior work on DROP, we also train
our model initialized with BERTLARGE, as all
prior work used it as an encoder. On DROP,
TASEBIO+SSE (BERTLARGE) outperforms all prior
models that handle multi-span questions, improv-
ing by at least 3.2 EM points. On multi-span ques-
tions, we dramatically improve performance over
BERT-CALC and MTMSN, while obtaining simi-
lar performance to NeRd. On QUOREF, compared
to CorefRoBERTaLARGE (Ye et al., 2020) which uses
the same method as MTMSN for multi-span ex-
traction, we achieve a substantial improvement of
over 20 EM on multi-span questions and an im-
provement of 4.5 EM and 3.2 F1 on the full de-
velopment set, where the best results are achieved
when using solely our multi-span architecture with
IO-tagging.

Comparing span extraction architectures Ta-
ble 1 also shows that in both DROP and QUOREF,
replacing the single-span extraction architecture
with our multi-span extraction results in dramatic
improvement in multi-span question performance,
while single-span question performance is either
maintained or improved. Furthermore, although
combining both architectures tends to yield the best
overall performance,3 the improvement over using
only our multi-span architecture is not substantial,
suggesting that the multi-span architecture may be
used by itself as a general span extraction method.

Effects of tagging scheme Overall, the results
are quite similar for the BIO and IO schemes. The
slight advantage of IO could perhaps be explained
by the fact that the model no longer requires dis-
tinguishing between B and I, in the presence of
powerful contextualized representations.

3As single-span questions outnumber multi-span questions
in DROP and QUOREF 1:7 and 1:10 respectively, the overall
span performance (“All Spans”) gives a much larger weight to
single-span performance.
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Model
DROP QUOREF

All Spans Multi-Span Single-Span All Spans Multi-Span Single-Span
EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

BERT-CALC 69.1 78.9 6.2 47.0 79.8 84.3 - - - - - -
MTMSN 69.7 79.9 25.1 62.8 77.5 82.8 - - - - - -
NeRd 73.2 81.3 51.3 77.6 76.2 81.8 - - - - - -
CorefRoBERTaLARGE - - - - - - 74.9 81.7 38.8 65.9 78.7 83.3
TASEBIO + SSE (BERTLARGE) 76.4 83.9 53.6 76.9 80.2 85.1 75.8 81.1 52.5 76.7 78.2 81.6
TASEBIO + SSE 79.7 87.1 56.3 79.9 83.6 88.3 79.0 84.2 59.7 80.0 80.9 84.6
TASEIO + SSE 80.5 87.8 58.5 80.7 84.2 89.0 79.4 84.8 57.9 79.2 81.6 85.4
TASEBIO 77.9 85.5 56.6 79.3 81.5 86.6 78.9 84.6 56.6 77.5 81.2 85.3
TASEIO 78.4 86.8 56.8 79.8 82.1 88.0 79.4 84.9 59.3 80.0 81.4 85.4
SSE 70.6 80.2 0.0 37.6 81.5 86.7 73.9 80.7 0.0 37.4 81.4 85.0
TASEBIO, NOMARG. 76.2 85.0 54.7 79.0 79.8 86.1 - - - - - -

Table 1: Development set results on DROP and QUOREF questions whose answer is a span (or list of spans).
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Figure 2: DROP Performance of TASEBIO by number
of spans in the gold answer. Labels at the bottom indi-
cate the average number of predicted spans. Circles at
the top are the number of examples. These same trends
are observed in QUOREF as well.

Effect of marginalization To check whether
marginalizing over all possibly-correct taggings
is beneficial, we ran TASEBIO in a setup where only
a single tagging is considered, namely where all
occurrences of a gold answer span are tagged. Ta-
ble 1 shows that this indeed leads to a moderate
drop of up to 2 points in performance.

Test set results We ran TASEIO on the QUOREF

test set. Our model obtains 79.7 EM and 86.1 F1,
an improvement of 3.9 EM points and 3.3 F1 points
over the state-of-the-art CorefRoBERTaLARGE. On
DROP, our TASEIO+SSE model achieves 80.4 EM
and 83.6 F1 on the entire test set (including non-
span questions).

We note that the top 10 models on the DROP
leaderboard (as of September 15, 2020) have all
incorporated our multi-span head using our code
base which has been public for a while.

5.2 Analysis

Figure 2 shows that in both DROP and QUOREF

the performance of TASEBIO decreases only moder-

ately as the number of gold spans increases. This
shows relative robustness to the number of answer
spans. In addition, we can see that our architecture
is quite accurate in predicting the correct number
of spans, with a tendency for under-estimation.

We analyzed the performance of the phead mod-
ule in TASEBIO+SSE. A non-multi-span head is se-
lected erroneously for 3.7% and 7.2% of the multi-
span questions in DROP and QUOREF respectively.
The multi-span head is selected for 1.2% and 1.5%
of the single-span questions in DROP and QUOREF

respectively. However, this is reasonable as the
multi-span head is capable of answering single-
span questions as well, and indeed it returned a
single span in 45% of these cases on both datasets.

We manually analyzed errors of TASEBIO+SSE
on DROP, and detected 3 main failure cases: (1)
questions where the answer is a span, but requires
some numerical computation internally, (2) ques-
tions where the number of output spans is explicitly
mentioned in the question but is not followed by the
model, and (3) questions where a single contiguous
span is unnecessarily split into two shorter spans.
An example for each case is given in Appendix B.

6 Conclusion

In this work, we cast the task of answering
multi-span questions as a sequence tagging prob-
lem, and present a simple corresponding multi-
span architecture. We show that replacing the
standard single-span architecture with our multi-
span architecture dramatically improves results
on multi-span questions, without harming per-
formance on single-span questions, leading to
state-of-the-art results on QUOREF. In addition,
integrating our multi-span architecture into ex-
isting models further improves performance on
DROP, as is evident from the leading models on
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DROP’s leaderboard. Our code can be downloaded
from https://github.com/eladsegal/tag-based-multi-
span-extraction.
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Appendix for “A Simple and Effective
Model for Answering Multi-span
Questions”

A Experimental Setup

We experiment with model variations that use either
SSE, TASE, or their combination as a multi-head
model. For DROP, we additionally use arithmetic
and count heads based on (Dua et al., 2019; Kin-
ley and Lin, 2019). Our model is implemented
with PyTorch (Paszke et al., 2019) and AllenNLP
(Gardner et al., 2017). For f in Eq. (1) we use a 2-
layer feed-forward network with ReLU activations
and |S| outputs. We use the Hugging Face im-
plementation of RoBERTaLARGE (Wolf et al., 2019;
Liu et al., 2019) as the encoder in our model. 5%
of DROP and 30% of QUOREF are inputs with
over 512 tokens. Due to RoBERTaLARGE’s limita-
tion of 512 positional embeddings, we truncate
inputs by removing over-flowing tokens from the
passage, both at train and test time. We discard
3.87% of the training examples of DROP and
5.05% of the training example of QUOREF, which
are cases when the answer cannot be outputted
by the model (due to a dataset error, or trunca-
tion of the correct answer span). For training, the
BertAdam4 optimizer is used with default parame-
ters and learning rates of either 5× 10−6 or 10−5.
Hyperparameter search was not performed. We
train on a single NVIDIA Titan XP with a batch
size of 2 and gradient accumulation of 6, result-
ing in an effective batch size of 12, for 20 epochs
with an early-stopping patience of 10. The average
runtime per epoch is 3.5 hours. Evaluation was
performed with the official evaluation scripts of

4https://github.com/
huggingface/transformers/blob/
694e2117f33d752ae89542e70b84533c52cb9142/
README.md#optimizers

DROP and QUOREF. Our full implementation can
be found at https://github.com/eladsegal/tag-based-
multi-span-extraction.

B Failure Cases Examples

Table 2 contains example failure cases of
TASEBIO+SSE on DROP.
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Question Excerpt from Context Gold Answer Prediction

Which two nationalities have the
same number of immigrants in
Bahrain?

Indians, 125,000 Bangladeshis, 45,000
Pakistanis, 45,000 Filipinos, and 8,000
Indonesians

{“Filipinos”,
“Pakistanis”}

{“Filipinos”,
“Pakistanis”,
“Indonesians”}

What event happened first, Spain
losing all territories it had gained
since 1909, or the Spanish retaking
their major fort at Monte Arruit?

August 1921, Spain lost all the territo-
ries it had gained since 1909 [...] By
January 1922 the Spanish had retaken
their major fort at Monte Arruit

{“Spain lost all
the territories it
had gained since
1909”}

{“August 1921, Spain
lost all the”, “territo-
ries it had gained since
1909”}

Table 2: Example failure cases of TASEBIO+SSE on DROP. The first answer exhibits a lack of numeric reasoning
and ignores the expected number of spans stated in the question. The second splits a correct span into two spans.


