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Abstract

One approach to matching texts from asym-
metrical domains is projecting the input se-
quences into a common semantic space as fea-
ture vectors upon which the matching function
can be readily defined and learned. In real-
world matching practices, it is often observed
that with the training goes on, the feature vec-
tors projected from different domains tend to
be indistinguishable. The phenomenon, how-
ever, is often overlooked in existing matching
models. As a result, the feature vectors are
constructed without any regularization, which
inevitably increases the difficulty of learning
the downstream matching functions. In this pa-
per, we propose a novel match method tailored
for text matching in asymmetrical domains,
called WD-Match. In WD-Match, a Wasser-
stein distance-based regularizer is defined to
regularize the features vectors projected from
different domains. As a result, the method en-
forces the feature projection function to gener-
ate vectors such that those correspond to dif-
ferent domains cannot be easily discriminated.
The training process of WD-Match amounts
to a game that minimizes the matching loss
regularized by the Wasserstein distance. WD-
Match can be used to improve different text
matching methods, by using the method as its
underlying matching model. Four popular text
matching methods have been exploited in the
paper. Experimental results based on four pub-
licly available benchmarks showed that WD-
Match consistently outperformed the underly-
ing methods and the baselines.

1 Introduction

Asymmetrical text matching, which predicts the
relationship (e.g., category, similarity) of two text
sequences from different domains, is a fundamen-
tal problem in both information retrieval (IR) and
natural language processing (NLP). For example,

* Corresponding author

in natural language inference (NLI), text matching
has been used to determine whether a hypothe-
sis is entailment, contradiction, or neutral given
a premise (Bowman et al., 2015). In question an-
swering (QA), text matching has been used to de-
termine whether a answer can answer the given
question (Wang et al., 2007; Yang et al., 2015). In
IR, text matching has been widely used to measure
the relevance of a document to a query (Li and Xu,
2014; Xu et al., 2020).

One approach to asymmetrical text matching is
projecting the text sequences from different do-
mains into a common latent space as feature vec-
tors. Since these feature vectors have identical
dimensions and in the same space, matching func-
tions can be readily defined and learned. This
type of approach includes a number of popular
methods, such as DSSM (Huang et al., 2013), De-
cAtt (Parikh et al., 2016), CAFE (Tay et al., 2018a),
and RE2 (Yang et al., 2019). In real-world match-
ing practices, it is often observed that learning of
the matching models is a process of moving the
projected feature vectors together in the semantic
space. For example, Figure 1 shows the distribution
of the feature vectors generated by RE2. During
the training of RE2 (Yang et al., 2019) on SciTail
dataset (Khot et al., 2018), it is observed that at
the early stage of the training, the feature vectors
corresponding to different domains are often sepa-
rately distributed (according to the visualization by
tNSE (Maaten and Hinton, 2008)) ( Figure 1(a)).
With the training went on, these separated feature
vectors gradually moved closer and finally mixed
together ( Figure 1(b) and (c)).

The phenomenon can be explained as follows.
Given two text sequences from two asymmetri-
cal domains (e.g., NLI), the first sequence (e.g.,
premise) and the second sequence (e.g., hypoth-
esis) are heterogeneous and there exists a lexical
gap that needs to be bridged between them (Tay
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Figure 1: t-SNE visualization of the projected feature vectors, based on the RE2 models trained on SciTail dataset.
Subfigure (a), (b), and (c) respectively illustrates the vector distributions at epochs 1, 10, and 20. The blue ‘X’ and
red ‘Y’ correspond to the premise and the hypothesis respectively.

et al., 2018c), similar to that of learning cross-
modal matching model (Wang et al., 2017a). Ex-
isting studies (Wang et al., 2017a; Kamath et al.,
2019) have shown that it is essentially critical that
the projection network should generate domain- or
modal-invariant features. That is, the global dis-
tributions of feature vectors should be similar in a
common subspace such that their origins cannot be
discriminated. The phenomenon is not unique but
recurs in the experiments based on other matching
models and other datasets.

Existing text matching models, however, are still
lack of constraints or regularizations to ensure that
the projected vectors are well distributed for match-
ing. One natural question is, can we design a
mechanism that can explicitly guide the mix of
the feature vectors and better distribute them. To
answer the question, this paper presents a novel
learning to match method in which the Wasserstein
distance (between the two distributions respectively
corresponding to the two asymmetrical domains)
is introduced as a regularizer, called WD-Match.
WD-Match consists of three components: (1) a fea-
ture projection component which jointly projects
each pair of text sequences into a latent semantic
space, as a pair of feature vectors; (2) a regular-
izer component which estimates the Wasserstein
distance with a feed-forward neural network on the
basis of the projected features; (3) a matching com-
ponent which conducts the matching, also on the
same set of projected features.

The training of WD-Match amounts to repeat-
edly interplays between two branches under the ad-
versarial learning framework: a regularizer branch
that learns a neural network for estimating the up-
per bound on the dual form Wasserstein distance,

and a matching branch that minimizes a Wasser-
stein distance regularized matching loss. In this
way, the minimization of the loss function leads to a
learning method not only to minimize the matching
loss, but also to well distribute the feature vectors
in the semantic space for better matching.

To summarize, this paper makes the following
main contributions:

* We highlight the critical importance of the
global distribution of the projected feature vec-
tors in matching texts between asymmetrical
domains, which has not yet been seriously
studied in existing models.

* We propose a new learning to match method
under the adversarial framework, in which the
text matching model is learned by minimizing
a Wasserstein distance-regularized matching
loss.

* We conducted empirical studies on four large
scale benchmarks, and demonstrated that WD-
Match achieved better performance than the
baselines and the underlying models. Exten-
sive analysis showed the effects of Wasser-
stein distance-based regularizer in terms of
guiding the distributions of feature vectors
and improving the matching accuracy.

The source code of WD-Match is available at
https://github.com/RUC-WSM/WD-Match

2 Related Work

In this section, we first review the sequence repre-
sentation used in text matching, then introduce the
Wasserstein distance and its applications.
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2.1 Sequence Representation in Text Matching

Sequence representation lies in the core of text
matching (Xu et al., 2020). Early works inspired
by Siamese architecture assign respective neural
networks to encode two input sequences into high-
level representations. For example, DSSM (Huang
et al., 2013) is one of the classic representation-
based matching approaches to text matching which
uses feed-forward neural networks to project a text
sequence. CDSSM (Shen et al., 2014), ARC-I (Hu
et al., 2014) and CNTN (Qiu and Huang, 2015)
change sequence encoder to a convolutional neural
network which shares parameters in a fixed size
sliding window. To further capture the long-term
dependence of a text sequence, a group of recur-
rent neural network based methods were proposed,
including RNN-LSTM (Palangi et al., 2016) and
MV-LSTM (Wan et al., 2015).

Recently, with the help of attention mecha-
nism (Parikh et al., 2016), the sequence representa-
tion is obtained by aligning the sequence itself and
the other sequence in the input pairs. For example,
CSRAN (Tay et al., 2018b) performs multi-level
attention refinement with dense connections among
multiple levels. DRCN (Kim et al., 2019) stacks
encoding layers and attention layers, then concate-
nates all previously aligned results. RE2 (Yang
et al., 2019) introduces a consecutive architecture
based on augmented residual connection between
convolutional layers and attention layers. These
models yield strong performance on several bench-
marks.

2.2 Wasserstein Distance

Wasserstein distance (Chen et al., 2018) is a met-
ric based on the theory of optimal transport. It
gives a natural measure of the distance between
two probability distributions.

Wasserstein distance has been successfully
used in the Generative Adversarial Networks
(GAN) (Goodfellow et al., 2014) framework of
deep learning. Arjovsky et al. (2017) propose
WGAN which uses the Wasserstein-1 metric as
a way to improve the original framework of GAN,
to alleviate the vanishing gradient and the mode col-
lapse issues in the original GAN. The Wasserstein
distance has also been explored to learn the domain-
invariant features in domain adaptation tasks. For
example, Chen et al. (2018) propose to minimize
the Wasserstein distance between the feature dis-
tributions of the source and the target domains,

yielding better performance and smoother training
than the standard training method with a Gradient
Reversal Layer (Ganin et al., 2016). Shen et al.
(2017b) propose to learn domain-invariant features
with the guidance of Wasserstein distance.

Inspired by its success in variant applications,
this paper introduces Wasserstien distance to text
matching in asymmetrical domains, as a regularizer
to improve the sequence representations.

3  Our Approach: WD-Match

In this section, we describe our proposed method
WD-Match.

3.1 Model Architecture

Suppose that we are given a collection of N in-
stances of sequence-sequence-label triples: D =
{(XZ-,Y;,ZZ-)}?LI where X; € X, Y; € ), and
z; € Z respectively denote the first sequence, the
second sequence, and the label indicating the re-
lationship of X; and Y;. As shown in Figure 2,
WD-Match consists of three components:

The feature projection component: Given a
sequence pair (X,Y), it is first processed by the
feature projection component F/,

", hY] = F(X,Y),

where the feature projection function F outputs a
pair of K -dimensional feature vectors h*, hY in
the semantic space. We suppose that F' is a neural
network with a set of parameters 6 and all the
parameters in 6 are sharing for X and Y.

The matching component: The output vectors
from the feature projection component are then fed
to the matching component M,

z = M([h*,h"]),

M outputs the predicted label z. We suppose that
M is a neural network with a set of parameters ;.

The regularizer component: Given two sets of
the projected feature vectors h* and hY’, the reg-
ularizer component estimates the Wasserstein dis-
tance between Pif and IP’?, we denote ]P’if and IP’?
are two distributions defined over the two groups
of feature vectors h* and hY respectively.

Py 2P (hX|[hX,hY] =FX,Y)AN(XY) ~ X x 3’) )

Py 2P (hY|[hX,hY} =F(X,Y)AN(X,Y) ~ X x y) ,
M
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Figure 2: WD-Match architecture. Note that the multiple parallel arrow lines to the regularizer component G
means that G takes a set of feature vectors (based on a batch of sequence pairs), rather than one feature vector, as

its inputs.

where ‘~’ means that the pairs (X,Y) are sam-
pled from the joint space X' x ). Specifically, the
Wasserstein distance between two probabilistic dis-
tributions IP’%( and IP’? is defined as:

inf

W (P%,PL) =
7. Fr) V€T (B Py

| / IX Y [dy(X,Y),

where J (P, PY.) denotes all joint distributions, ~
stands for (X, Y") that have marginal distributions
IP’%S and IP’%. It can be shown that W has the dual
form (Villani, 2003):

W (P, PL)

sup Epfg [G(hx)] - E]P’},’ [G(hy)L
|Gl <1
(2)

where ‘|G|, < 1’ denotes that the ‘sup’ is taken
over the set of all 1-Lipschitz! function G; and
function G : RX — R maps each K -dimensional
feature vector in the semantic space to a real num-
ber. In this paper, G is set as a two-layer feed-
forward neural network with a set of parameters
O clipped to [—c,c|, where ¢ > 0 is a hyper-
parameter.

Please note that different configurations of the
feature projection component F', matching compo-
nent M, and matching loss £, leads to different
matching models. Therefore, WD-Match can im-
prove a matching model by setting the matching
method as its underlying model.

'G is 1-Lipschitz < |G(h) — G(h')| < |h — }’| for all
hand h’/

3.2 Adversarial Training

To learn the model parameters {65, 05s, 0}, WD-
Match sets up two training goals: minimizing the
Wasserstein distance between ]P’if and PY., and min-
imizing the loss in prediction in terms of the mis-
takenly predicted matching labels. The training
process can be implemented under the adversar-
ial learning framework and amounts to repeatedly
interplays between two learning branches: the reg-
ularizer branch and the matching branch.

In the regularizer branch, the objective term in
the dual form Wasserstein distance (Equation (2))
is approximately written as:

Oc(0r,0c) = Y [G(b*) - G(h)],
(X,Y)

where [hX, hY] = F(X,Y) are the projected fea-
ture vectors for (X, Y"). Maximizing O¢g w.r.t. the
parameters 6 can achieve an approximation of the
Wasserstein distance between Pfé and IP’}C in the
semantic space defined by F":

Lya(0F) = max Oc(0r, 0c). 3)
To make G a Lipschitz function (up to a con-
stant) and following the practices in (Arjovsky
et al., 2017), all of the parameters in 65 are al-
ways clipped to a fixed range [—c, ¢]. In practice,
the sequence pairs for training G are randomly sam-
pled from the training set D. Note that L4 still
takes 0 as parameters because it is calculated on
the basis of features generated by F'.
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The matching branch simultaneously updates the
matching network M and feature projection net-
work F' by seeking the minimization of the Wasser-
stein distance-regularized matching loss:

min £7“eg = Em(eFa GM) + A 'de(eF), (4)

0F,0n

where A € [0, 1] is a trade-off coefficient to balance
the matching loss and regularizer, and £,,,(0r, 0r)
is defined as

£m(HFa@M) = Z Em(M(F(X7Y))7Z)7

(X,Y,2)E€D

where ¢, (-,-) is the matching loss function de-
fined over each sequence-sequence-label triple in
the training data. It can be, for example, the cross-
entropy loss that measure the goodness of the pre-
dicted label z = M (F(X,Y)) by the matching
network, compared to the ground truth label z.

Algorithm 1 shows the general procedure of
WD-Match. WD-Match takes training set D =
(X:, Y, z) Z]\i , and a number of hyper-parameters
as inputs, and outputs the learned parameters 0
and 65,. WD-Match run multiple rounds until con-
vergence, and at each round it estimates the Wasser-
stein distance of the projected features and then
update the projection component [’ and match-
ing component M. At each round, WD-Match
alternatively maintains two branches. The regular-
izer branch updates the parameters 6, with the
0r fixed?. It contains a sub-iteration in which the
parameters are optimized in an iterative manner:
First, objective Og is constructed based on the sam-
pled sequence pairs (line 4 - line 6); Then 0 is
updated with gradient ascent (line 7); Finally, each
parameter in 6 is clipped to [—c, c] for satisfying
the 1-Lipschitz constraint (line 8). The matching
branch updates 6 and 6, with 6 fixed. It first
samples another mini-batch data from the training
data and estimates the regularized loss L4, using
the fixed GG (line 11 - line 13). Then, the gradients
of the parameters is estimated and used to update
the parameters (line 14).

4 Experiments

We conducted experiments to test the performances
of WD-Match, and analyzed the results.

2Note that the regularizer does not depend on M, given F.

Algorithm 1 The WD-Match algorithm.

Require: Training set D = {(X;,Y;,z)} Y ;
mini-batch sizes n; and ns; adversarial train-
ing step k; trade-off coefficient A; learning
rates 11 and 7)9; clipping threshold ¢
repeat
> Regularizer branch
fort =0to k do
Sample a mini-batch {(X;,Y;, z;)},
from D
WX h¥] «+ F(X;,Y;),Vi=1,--- ,n
O = Y1, [G(hY) — G(hY)]
0 + 0c +m Ve, Oc {Eq. (3)}
ClipWeights (0, —c, ¢)
end for
10: > Matching branch
11:  Sample a mini-batch {(X;, Y5, z;) }"2; from

hwn e

R e AN

D
122 W 0]+ F(X,Y),Yi=1,--- ,n
130 Lreg = Y2 Um(M(F(X,)Y)),2;) +

MG (M) = Gh))]]

14: {QF,QM} — {QF,QM} — N2 Vop.,0um ﬁreg
{Eq. 4}

15: until convergence

16: return {6, 0,/}

Table 1: Statistics of four dataset used in our experi-
ment, |C| denotes the number of classes and R denotes
a ranking formulation.

Dataset Task |C| Pairs
SNLI premise-hypothesis 3 570k
SciTail ~ premise-hypothesis 2 27k
TrecQA  question-answer R 56k
WikiQA question-answer R 20k

4.1 Datasets and Metrics

We use four large scale publicly matching bench-
marks: SNLI (Stanford Natural Langauge Infer-
ence) (Bowman et al., 2015), SciTail (Khot et al.,
2018), TrecQA (Wang et al., 2007), WikiQA
(Yang et al., 2015). Table 1 provides a summary of
the datasets used in our experiments.

SNLI 3 is a benchmark for natural language in-
ference. In SNLI, each data record is a premise-
hypothesis-label triple. The premise and hypoth-
esis are two sentences and the label could be “en-

tailment”, “neutral”, “contradiction”, or “-”. In our

*https://nlp.stanford.edu/projects/
snli
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experiments, following the practices in (Bowman
et al., 2015), the data with label “-” are ignored.
We follow the original dataset partition. Accuracy
is used as the evaluation metric for this dataset.

SciTail # is an entailment dataset based on
multiple-choice science exams and web sentences.
Each record is a premise-hypothesis-label triple.
The label is “entailment” or “neutral”, because sci-
entific factors cannot contradict. We follow the
original dataset partition. Accuracy are used as the
evaluation metric for this dataset.

TrecQA ° is a answer sentence selection dataset
designed for the open-domain question answering
setting. We use the raw version TrecQA, questions
with no answers or with only positive/negative an-
swers are included. The raw version has 82 ques-
tions in the development set and 100 questions in
the test set. Mean average precision (MAP) and
mean reciprocal rank (MRR) are used as the evalu-
ation metrics for this task.

WikiQA © is a retrieval-based question answer-
ing dataset based on Wikipedia. We follow the
data split of original paper. This dataset consists of
20.4k training pairs, 2.7k development pairs, and
6.2k testing pairs. We use MAP and MRR as the
evaluation metrics for this task.

4.2 Experimental Setup

In WD-Match, different configurations of the fea-
ture projection component F' and matching com-
ponent M lead to different matching models. In
the experiments, RE2 (Yang et al., 2019), De-
cATT (Parikh et al., 2016), CAFE (Tay et al.,
2018a) and BERT (Devlin et al., 2018) were set
as the underlying models, achieving new models
respectively denoted as “WD-Match (RE2)”, “WD-
Match (DecAtt)”, “WD-Match (CAFE)”, and “WD-
Match (BERT)”.

Specifically, in WD-Match(RE2), F' is a stacked
blocks which consist of multiple convolution layers
and multiple attention layers, and M is an MLP; in
WD-Match(DecAtt), F' is an attention layer and a
aggregation layer, M is an MLP. Please note that
we did not implement the Intra-Sentence Attention
in our experiments; in WD-Match(CAFE), F'is a
highway encoder with a alignment layer and a fac-
torization layer and M is another highway network.

4http://data.allenai.org/scitail/
Shttps://github.com/castorini/
NCE-CNN-Torch/tree/master/data/TrecQA

*https://www.microsoft.com/en-us/
download/details.aspx?id=52419

Please note that we remove the character embed-
ding and position embedding in our experiments; in
WD-Match(BERT), F is a pre-trained BERT-base’
model, M is an MLP. Please note that for easing of
combining with WD-Match, BERT was only used
to extract the sentence features separately in our
experiments. The G module for four models are
identical: a non-linear projection layer and a linear
projection layer.

For all models, the parameters of F' and M were
directly set as its original settings. In the train-
ing, all models were trained using the Adam opti-
mizer with learning rate 72 tuned amongst {0.0001,
0.0005, 0.001}. Batch size ny was tuned amongst
{256, 512, 1024}. The trade-off coefficient \ was
tuned from [0.0001, 0.01]. Clipping threshold was
tuned from [0.1, 0.5]. Word embeddings were ini-
tialized with GloVe (Pennington et al., 2014) and
fixed during training. We implemented WD-Match
models in Tensorflow.

4.3 Experimental Results

Table 2 reports the results of WD-Match and the
popular baselines on the SNLI test set. The base-
lines results are reported from their original papers.
From the results, we found that WD-Match (RE2)
outperformed all of the baselines, including the un-
derlying model RE2. The results indicate the effec-
tiveness of WD-Match and its Wasserstein distance-
based regularizer in the asymmetric matching tasks
of natural language inference. We further tested
the performances of WD-Match (DecAtt) and WD-
Match(BERT) which used DecAtt and BERT as
the underlying matching models, respectively, to
show whehter WD-Match can improve a match-
ing method by using the method as its underlying
model. From the results shown in Table 2, we can
see that on SNLI, WD-Match (DecAtt) ourperform
DecAtt in terms of accuracy. Similarly, WD-Match
(BERT) improved BERT about 0.4 points in terms
of accuracy.

Table 3 reports the results of WD-Match and
the baselines on the SciTail test set. The base-
lines results are reported from the original papers.
We found that WD-Match (RE2) outperformed all
of the baselines. The result further confirm WD-
match’s effectiveness in the asymmetric matching
task of scientific entailment. We also tested the
performances of WD-Match (DecAtt) and WD-

"https://github.com/google-research/
bert
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Table 2: Performance comparison on SNLI test set.

Table 4: Performance comparison on WikiQA test set.

Models Acc.(%) #Params Models MAP(%) MRR(%)
BiMPM (Wang et al., 2017b) 86.9 1.6M KVMN (Miller et al., 2016)  70.69  72.65
ESIM (Chen et al., 2016) 88.0 4.3M BiMPM (Wang et al., 2017b) 71.80  73.10
DIIN (Gong et al., 2017) 88.0 4.4M IWAN (Shen et al., 2017a) 73.30  75.00
MwAN (Tan et al., 2018) 88.3 14M CA (Wang and Jiang, 2016)  74.33 75.45
HIM (Chen et al., 2016) 88.6 7. ™M HCRN (Tay et al., 2018¢) 7430  75.60
SAN (Liu et al., 2018) 88.6 3.5M RE2 (Yang et al., 2019) 7496  76.58
CSRAN (Tay et al., 2018b) 88.7 13.9M WD-Match (RE2) 7531  76.89
DRCN (Kim et al., 2019) 88.9 6.7M DecAtt (Parikh et al., 2016)  64.03 65.92
RE2 (Yang et al., 2019) 89.0 2.8M WD-Match (DecAtt) 65.16 67.24
WD-Match (RE2) 89.1 2.9M CAFE (Tay et al., 2018a) 64.19  65.65
DecAtt (Parikh et al., 2016)  82.5 0.26M WD-Match (CAFE) 66.36 67.59
WD-Match (DecAtt) 82.6 0.30M

BERT (Devlin et al., 2018) 83.7 0.11B Table 5: Performance comparison on TrecQA test set.
WD-Match (BERT) 84.1 0.11B

Table 3: Performance comparison on SciTail test set

Models Acc.(%)
ESIM (Chen et al., 2016) 70.6
DGEM (Khot et al., 2018) 77.3
HCRN (Tay et al., 2018¢) 80.0
CSRAN (Tay et al., 2018b) 86.7
RE2 (Yang et al., 2019) 86.6
WD-Match (RE2) 87.0
BERT (Devlin et al., 2018) 79.2
WD-Match (BERT) 81.9
DecAtt (Parikh et al., 2016) 81.7
WD-Match (DecAtt) 82.9

Match(BERT) on Scitail dataset. From the results
shown in Table 3, we can see that WD-Match (De-
cAtt) improved DecAtt 1.2 points in terms of ac-
curacy. Similarly, WD-Match (BERT) improved
BERT about 2.7 points in terms of accuracy. The re-
sults verified that WD-Match’s ability in improving
its underlying model.

Table 4 reports the results of WD-Match and the
baselines on the WikiQA test set. The baselines
result are reported from the original papers. Follow-
ing RE2, point-wise binary classification loss rather
than pairwise ranking loss was used to train the
model. The best hyperparameters including early
stopping were tuned on WikiQA development set.
From the results we can see that WD-Match (RE2)
obtained a better result in terms of MAP and MRR
on WikiQA. To further verify the effectiveness of
WD-Match on QA task, we incorporated DecAtt
and CAFE (Tay et al., 2018a) into WD-Match, then

Model MAP(%) MRR(%)
DecAtt (Parikh et al., 2016) 70.62  76.88
WD-Match (DecAtt) 7230 7691
CAFE (Tay et al., 2018a) 65.00 71.86
WD-Match (CAFE) 67.49  73.05

compare their performance to the respective under-
lying models on WikiQA and TrecQA datasets. Ta-
ble 4 and Table 5 report the experimental results on
WikiQA test set and TrecQA test set respectively.
Similarly, WD-Match outperformed its underlying
model on both datasets.

We list the number of parameters of different
text matching models in Table 2. Compared to the
underlying model, the additional parameters of
WD-Match come from the regularizer component
GG. We can see that the parameters of the regular-
izer component G are far less than the underlying
model. G module is implemented as a two-layer
MLP (the number of neurons in the second layer is
set as one). Therefore, the additional computing
cost comes from the training of the two-layer
MLP, which is of O(T « N x K % 1), where T
is the number of training iterations, N number
of training examples, K number of neurons in
the first layer of MLP (without considering the
compute cost of the activation function). We can
see that the additional computing overhead is much
lower than that of the underlying methods which
usually learn much more complex neural networks
for the feature projection and the matching.

Summarizing the results above and the results
reported in Section 4.3, we can conclude that WD-
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Figure 3: t-SNE visualization of the projected feature
vectors, based on the RE2 and WD-Match (RE2) mod-
els trained on SciTail dataset. This figure illustrates the
vector distributions after 5 training steps. The orange
‘X" and green ‘Y correspond to P% and P). of RE2,
The dark blue ‘X" and red Y correspond to P% and
PY. of WD-Match (RE2), respectively.

Match is a general while strong framework that can
improve different matching models by using them
as its underlying matching model.

4.4 Visualization of the Distributions of
Feature Vectors

Figure 1(a) shows that there exists a gap between
two feature vectors, due to the heterogenous na-
ture of the texts from two asymmetrical domains.
We conducted experiments to analyze how the fea-
ture vectors (i.e., h* and hY) generated by WD-
Match distributed in the common semantic space,
using WD-Match(RE2) as an example. Specifi-
cally, we trained a RE2 model and a WD-Match
(RE2) model based on SciTail dataset. Note that
in this experiment, the adversarial training step &
is set as 5, that is, WD-Match (RE2) repeats regu-
larizer branch for 5 times before matching branch.
We recorded all of the training feature vectors (i.e.,
h¥ and hY) and illustrated them in the Figure 3 by
t-SNE . The orange ‘X’ and green ‘Y’ correspond
to PX and PX. of RE2, The dark blue ‘X" and red
‘Y” correspond to Pfé and IF’? of WD-Match (RE2),
respectively. As we can see from Figure 3, the
feature vectors from RE2 are separately distributed
while the feature vectors from WD-Match (RE2)
are indistinguishable. It demonstrates that com-
pared to the underlying model RE2, WD-Match
(RE2) distributes the feature vectors in semantic
space better and faster.
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Figure 4: Accuracy curves and Wasserstein distance
difference curve w.r.t. training epochs for RE2 and
WD-Match (RE2).

4.5 Convergence and Effects of Wasserstein
Distance-based Regularizer

We conducted experiments to test how the Wasser-
stein distance-based regularizer guides the training
of matching models.

Specifically, we tested the WD-Match (RE2) and
RE2 models generated at each training epochs. The
accuracy curve on the basis of development set of
SNLI was illustrated in Figure 4 (denoted as “WD-
Match (RE2)-Accuracy” and “RE2-Accuracy”).
Comparing these two training curves, we can see
that WD-Match (RE2) outperformed RE2 when the
training closing to converge (after about 15 epochs).
We can conclude that WD-Match (RE2) obtained
higher accuracy than RE2.

To investigate how the Wasserstein distance
guides the training of matching models, we
recorded the estimated Wasserstein distances at
all of the training epochs of RE2 and WD-Match
(RE2) based on the converged G network. The
curve “WD-Diff”” shows the differences between
the Wasserstein distances by RE2 and that of by
WD-Match (RE2) at each of the training epoch (i.e.,
L,q4(0F) of RE2 minus L£,,4(0F) of WD-Match
(RE2)). From the curve we can see that at the
beginning of the training (i.e., epoch 1 to 5), the
“WD-Diff” was near to zero. With the training
went on (i.e., epoch 5 to 30), the Wasserstein dis-
tance by WD-Math(RE2) became smaller than that
of by RE2 (the WD-Diff curve is above the zero
line), which means that WD-Match (RE2)’s feature
projection module F' was guided to move feature
vectors together more thoroughly and faster, which
are more suitable for matching. The results indicate
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WD-Match achieved its design goal of guiding the
distributions of the projected feature vectors.

It is interesting to note that, comparing all of
the three curves in Figure 4, we found the WD-
Diff curve is close to zero at the beginning of the
training, and the accuracy curves of WD-Match
(RE2)-Accuracy and RE2-Accuracy are similar at
the beginning. With the training went on (after
epoch 10), the Wasserstein distance differences
became larger. At the same time, the accuracy gaps
(between WD-Match (RE2)-Accuracy and RE2-
Accuracy) also become larger. The results clearly
reflect the effects of Wasserstein distance-based
regularizer: minimizing the regularizer leads to
better distribution of feature vectors in terms of
matching.

5 Conclusion and Future Work

In this paper, we proposed a novel Wasserstein
distance-based regularizer to improve the sequence
representations, for text matching in asymmetrical
domains. The method, called WD-Match, amounts
to adversarial interplay of two branches: estimat-
ing the Wasserstein distance given the projected
features, and minimizing the Wasserstein distance
regularized matching loss. We show that the reg-
ularizer helps WD-Match to well distribute the
generated feature vectors in the semantic space,
and therefore more suitable for matching. Exper-
imental results on four benchmarks showed that
WD-Match can outperform the baselines including
its underlying models. Empirical analysis showed
the effectiveness of the Wasserstein distance-based
regularizer in text matching.

In the future, we plan to study different regular-
izers in the asymmetrical text matching task, for
further exploring their effectiveness in bridging the
gap between asymmetrical domains.
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