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Abstract

Few/Zero-shot learning is a big challenge of
many classifications tasks, where a classifier
is required to recognise instances of classes
that have very few or even no training sam-
ples. It becomes more difficult in multi-
label classification, where each instance is la-
belled with more than one class. In this pa-
per, we present a simple multi-graph aggrega-
tion model that fuses knowledge from multi-
ple label graphs encoding different semantic
label relationships in order to study how the
aggregated knowledge can benefit multi-label
zero/few-shot document classification. The
model utilises three kinds of semantic informa-
tion, i.e., the pre-trained word embeddings, la-
bel description, and pre-defined label relations.
Experimental results derived on two large clin-
ical datasets (i.e., MIMIC-II and MIMIC-III )
and the EU legislation dataset show that meth-
ods equipped with the multi-graph knowledge
aggregation achieve significant performance
improvement across almost all the measures
on few/zero-shot labels.

1 Introduction

Multi-label learning is a fundamental and practical
problem in computer vision and natural language
processing. Many tasks, such as automated medical
coding (Yan et al., 2010; Rios and Kavuluru, 2018;
Du et al., 2019), recommender systems (Halder
et al., 2018), image classification (Chen et al., 2019;
Wang et al., 2020), law study (Parikh et al., 2019;
Chalkidis et al., 2019), and stance detection (Fer-
reira and Vlachos, 2019) can be formulated as a
multi-label learning problem. Different from multi-
class classification, an instance in multi-label learn-
ing is often associated with more than one class
label, which makes the task even more challenging
due to the combinatorial nature of the label space.
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i.e., the number of possible label combinations is
exponential with the total number of labels.

In real-world applications, there are often insuf-
ficient or even unavailable training data of ever
emerging classes (Vinyals et al., 2016; Xian et al.,
2019). For instance, more than half of the Interna-
tional Classification of Diseases (ICD) codes are
not associated with a discharge summary in the
MIMIC-III dataset (Johnson et al., 2016; Rios and
Kavuluru, 2018). As a solution, zero-shot learning
(Xian et al., 2019; Wang et al., 2019) aims to gen-
eralize classifiers to unseen classes by leveraging
various label semantics. Those classifiers are re-
quired to recognise instances of classes that have
never been seen in the training set, which becomes
more difficult in multi-label learning.

Moreover, the number of classes can reach hun-
dreds of thousands. The ICD-9-CM taxonomy
contains 17K diagnosis/procedure codes1, where
the majority occurs less than 10 times in MIMIC-
III; the EU legislation corpus (EURLEX57X)
(Chalkidis et al., 2019) contains about 7K labels,
70%of which have been assigned to less than 10
documents. The power-law distribution of labels
(Liu et al., 2017; Xie et al., 2019; Song et al., 2019)
leads to the few-shot learning challenge, where
each label has a few training instances.

Classes come naturally with structures, which
capture different relationships between individual
classes. For example, codes in the ICD-9-CM tax-
onomy are organised in a rooted tree with edges
representing is-a relationships between parents and
children (Perotte et al., 2014). We can compute a
code similarity graph using the code description
and a code co-occurrence graph using the anno-
tated discharge summaries in MIMIC-II/III. These
two graphs can capture label relationships that are
missing in the taxonomy. For example, the sim-

1https://www.cdc.gov/nchs/icd/icd9cm.htm
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ilarity graph can reveal the relationship between
“hypertensive chronic kidney disease” and “acute
kidney failure”; the co-occurrence graph can give
us information about that “coronary atherosclero-
sis of native coronary artery” frequently co-occurs
with “coronary arteriography using two catheters”.
It has been shown that ignoring this structured in-
formation and assuming all classes to be mutually
exclusive are insufficient (Zhao et al., 2018; Gaure
and Rai, 2017; Kavuluru et al., 2015).

In this paper, we present a simple but effective
multi-graph knowledge aggregation model that can
transform and fuse the structural information from
multiple label graphs while utilising three kinds of
semantics: the pre-trained word embeddings, label
description, and the label relations. To demonstrate
its efficacy, we adapt the model as a sub-module
to several existing neural architectures (Rios and
Kavuluru, 2018; Chalkidis et al., 2019) for multi-
label few/zero-shot learning. However, this model
can work as a self-contained module and be flexi-
bly adapted to most existing multi-label learning
models (Xie et al., 2019; Li and Yu, 2020) that use
GCNs to leverage the label structures. Experiments
on three real-world datasets show that neural clas-
sifiers equipped with our multi-graph knowledge
aggregation model can significantly improve the
few/zero-shot classification performance.

2 Related Work

Leveraging structural label information via GCNs
(Kipf and Welling, 2017) has become a promis-
ing approach of tackling the few/zero-shot prob-
lem, attracting increasing attention in recent years.
Wang et al. (2018); Kampffmeyer et al. (2019),
and Chen et al. (2017) have used GCNs to learn
visual classifiers for multi-class image classifica-
tion. These ideas can be generalised to multi-label
learning (Lee et al., 2018; Chen et al., 2019; Do
et al., 2019; Wang et al., 2020; You et al., 2020).
However, none of these methods can be directly
adapted to multi-label few/zero-shot text classifi-
cation. Using the label-wise attention mechanism
(Mullenbach et al., 2018; Xiao et al., 2019), Rios
and Kavuluru (2018) introduced an attention-based
CNN to convert each document into a feature ma-
trix, each row of which is a label-specific document
feature vector. The multi-label document classifiers
were learned from a GCN over the label hierarchy.
While considering only the efficiency of the doc-
ument encoder, Chalkidis et al. (2019); Li and Yu

(2020); Xie et al. (2019) further proposed to replace
the simple CNN with BIGRU, multi-filter residual
CNN and densely-connected CNN respectively. In
contrast, our work focuses on the learning of the
classifiers from multiple label graphs. Existing
work on multiple graphs learning often proposed to
either fuse multiple graphs before fed into a GCN
(Khan and Blumenstock, 2019; Wang et al., 2020)
or consider the multi-dimensionality of graphs (Ma
et al., 2019; Wu et al., 2019) for only note classifi-
cation/link prediction.

3 Learning with Knowledge Aggregation

Problem Formulation Let CS and CU be disjoint
sets of seen and unseen labels. CS is further divided
into frequent labels CRS and few-shot labels CFS
such that CS = CRS ∪ CFS . Given a training set
{(x1,y1), . . . , (xN ,yN )}, where xi indicates the
i-th document and yi ⊂ CS is the subset of labels
assigned to xi, the goal is to predict ŷi for each test
document in generalised zero-shot settings (Xian
et al., 2019), where ŷi is a subset of CS ∪ CU . Note
that: i) every label has a description; ii) the label
relationships encoded in graphs can be computed
from various resources; iii) documents associated
with any label from CU are excluded from training.

Document Encoder with Label-wise Atten-
tion According to the characteristic of different
datasets, different document encoders φ can be
used to generate the document representation, i.e.,
Fi = φ(xi). For a corpus, like EURLEX57X,
where the average document length is in hundreds,
one can consider Bi-GRU/LSTM, HAN (Yang
et al., 2016), BERT (Devlin et al., 2019), etc. For
a corpus, like MIMIC-II/III, where the discharge
summaries contain multiple long and heteroge-
neous medical narratives, the CNN-based encoders
have shown prominet performance, like those dis-
cussed in Section 2. The size of Fi ∈ Rn×u varies,
depending on the encoder. For BERT, n is the num-
ber of words and u is the size of the output layer
of BERT; for CNNs, n is the number of s-grams
generated by CNNs with a filter size s and u the
number of filters.

In addition, we create label embeddings vl by
TF-IDF weighted average of pre-trained word em-
beddings (Chen et al., 2017) according to the la-
bel description, and use those label embeddings
to compute the label-wise attention (Mullenbach
et al., 2018; Rios and Kavuluru, 2018) for each
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Figure 1: Multi-graph knowledge aggregation

document xi as follows:

ai,l = softmax(tanh(FiW0 + b0)vl) (1)

zi,l = aTi,lFi, (2)

where W0 ∈ Ru×d, b0 ∈ Rd. The attention is to
capture how different parts of texts are relevant to
different classes.

Knowledge Aggregation from Multi-Graphs
(KAMG) We consider the label hierarchy (Ag)
given by the class taxonomy, the semantic sim-
ilarity graph (As) computed from their descrip-
tions, and the label co-occurrence graph (Ac) ex-
tracted for CS from the training data, although our
method can be generated to more label graphs. Let
A ∈ R|CS |×|CS | be any of the three label graphs,
V ∈ RL×d be the label embedding matrix, a two-
layer GCN is applied to each graph as follows:

H1 = σ(D−1/2AD−1/2VW1) (3)

H2 = σ(D−1/2AD−1/2H1W2) (4)

where Di,i =
∑

j Ai,j is a degree matrix of A,
W1 ∈ Rd×q and W2 ∈ Rq×p are two weight
matrices, H1 and H2 indicate the hidden states and
outputs respectively, σ is the non-linear activation
function, a rectified linear unit (ReLU) in our case.

Different from Rios and Kavuluru (2018); Xie
et al. (2019), we feed a two-layer GCN to each of
the three graphs and generate three sets of label em-
beddings: H2

g, H2
s and H2

c , which are supposed to
capture different semantic relations between labels.
A linear layer is then used to fuse the three types
of label embeddings:

ṽl = f([h2
g,l,h

2
s,l,h

2
c,l],W3) (5)

where W3 ∈ R3p×q̃, and ṽl ∈ Rq̃. We acknowl-
edge that it is also worth trying the techniques used
in multi-model learning (Kiela et al., 2018), which
is subject to future work. Figure 1 visualises the
multi-graph knowledge aggregation process.

We concatenate both vl with ṽl to form the fi-
nal text classifiers as v̄l = [vl, ṽl], v̄l ∈ Rd+q̃.
The label-wise document embeddings (zi,l) are pro-

jected onto the same space as v̄l via a simple non-
linear transformation as

z̄i,l = ReLU(W4zi,l + b4) (6)

where W4 ∈ R(d+q̃)×u and b4 ∈ R(d+q̃). The pre-
diction for each label l is generated with ŷi,l =
sigmoid(z̄Ti,lv̄l). The model is optimised via a
multi-label binary cross-entropy loss. Although we
used three label graphs (label hierarchy, similarity
and co-occurrence) to demonstrate the advantage
of aggregating knowledge from multi-graphs, the
model itself is general enough to be applied to other
datasets where there exist multiple label graphs.

Zero-Shot Classification For zero-shot pre-
diction, we extend A ∈ R|CS |×|CS | to Ã ∈
R(|CS |+|CU |)×(|CS |+|CU |), so that the new graph can
encode the relationship between unseen and seen
classes. All labels will be optimized simultane-
ously during the training stage as in (Rios and
Kavuluru, 2018). Note that Ac counts only the
co-occurrence of seen classes.

4 Experiments

In this section, several experiments were conducted
to evaluate the efficacy of KAMG in classifying
discharge summaries and legislative documents.
We compared our methods with several state-of-the-
art multi-label classifiers in a few/zero-shot setting,
and studied how KAMG behaves by varying label
graphs in a set of ablation experiments.

Datasets We used two benchmark medical
datasets (MIMIC II and III) and the EU legisla-
tion dataset (EURLEX57K) to evaluate our method
in the few/zero-shot settings. Statistics of these
datasets are shown in Table 1. Following Rios and
Kavuluru (2018); Chalkidis et al. (2019), we split
the datasets in such a way that 1) zero-shot labels
(i.e., unseen) do not have any instances in train-
ing; 2) few-shot labels (i.e., less frequent labels)
were defined as those whose frequencies in the
training set are less than or equal to 5 for MIMIC-
II and MIMI-III and 50 for EURLEX57K. The
200-dimensional word embeddings pre-trained on
PubMed and MIMIC-III (Zhang et al., 2019; Chen
et al., 2019) were used for MIMIC-II/III, and 200-
dimensional word embeddings pre-trained on law
corpra provided by Chalkidis et al. (2019) were
used for EURLEX57k.

Experiment settings and metrics For MIMIC-
II/III, we used the NeuralClassifier (Liu et al., 2019)
as a base framework to implement our methods.
We used 200 filters with kernel size 10 to setup
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Docs # Labels
Dataset #Train #Dev #Test Avg # tokens Avg # labels Voc Size Frequent Few Zero

MIMIC-II 17,593 1,955 2,200 1,350 9 55,237 1,844 2,745 361
MIMIC-III 47,718 1,631 3,372 1,931 15 104,656 4,204 4,115 203

EURLEX57K 45,000 6,000 6,000 727 5 169,439 746 3,362 163

Table 1: Dataset statistics

Frequent Few Zero Overall
R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10

M
IM

IC
-I

I

CNN (Kim, 2014) 0.346 0.465 0.032 0.018 - - 0.335 0.460
RCNN (Lai et al., 2015) 0.386 0.505 0.081 0.047 - - 0.373 0.498
CAML (Mullenbach et al., 2018) 0.386 0.508 0.078 0.043 0.021 0.012 0.371 0.501
DR-CAML (Mullenbach et al., 2018) 0.383 0.502 0.075 0.044 0.028 0.016 0.368 0.495
ZACNN (Rios and Kavuluru, 2018) 0.445 0.562 0.180 0.114 0.362 0.225 0.424 0.551
ZAGCNN (Rios and Kavuluru, 2018) 0.471 0.591 0.219 0.139 0.382 0.231 0.452 0.583
ACNN-KAMG 0.471 0.591 0.259 0.166 0.462 0.296 0.451 0.582

M
IM

IC
-I

II

CNN (Kim, 2014) 0.366 0.632 0.074 0.044 - - 0.361 0.631
RCNN (Lai et al., 2015) 0.376 0.648 0.118 0.070 - - 0.370 0.646
CAML (Mullenbach et al., 2018) 0.422 0.711 0.104 0.073 0.067 0.029 0.415 0.709
DR-CAML (Mullenbach et al., 2018) 0.416 0.699 0.105 0.064 0.038 0.018 0.409 0.697
ZACNN (Rios and Kavuluru, 2018) 0.405 0.684 0.207 0.104 0.457 0.222 0.372 0.654
ZAGCNN (Rios and Kavuluru, 2018) 0.427 0.713 0.258 0.130 0.512 0.253 0.394 0.685
ACNN-KAMG 0.434 0.724 0.295 0.195 0.553 0.358 0.427 0.722

Table 2: Multi-label classification results on MIMIC-II and MIMIC-III. Bold figures indicate the best results for
each score.

Frequent Few Zero Overall
R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5 R@5 nDCG@5

BIGRU-LWAN (Chalkidis et al., 2019) 0.755 0.819 0.661 0.618 0.029 0.019 0.692 0.796
ZERO-CNN-LWAN (Chalkidis et al., 2019) 0.683 0.745 0.494 0.454 0.321 0.264 0.617 0.717
ZERO-BIGRU-LWAN (Chalkidis et al., 2019) 0.716 0.780 0.560 0.510 0.438 0.345 0.648 0.752
AGRU-KAMG 0.731 0.795 0.563 0.518 0.528 0.414 0.661 0.766

Table 3: Multi-label classification results on EURLEX57K. Bold figures indicate the best results for each score
among the three models designed specifically for zero-shot learning. Italics indicate the best results overall.

the CNNs by following Rios and Kavuluru (2018)
and the GCNs’ hidden layer size was set to 200.
For EURLEX57K, we leveraged Chalkidis et al.
(2019)’s code, and used the one-layer BiGRU with
hidden dimension 100 as reported in their paper.
The size of the GCNs’ hidden states was set to 200.
Moreover, the dropout rate was set to 0.2, 0.1 for
MIMIC-II/III and EURLEX57K respectively and
applied after the embedding layer. Adam optimizer
(i.e., learning rate: 0.001 for CNN and 0.0003 for
BIGRU) was used to train all the models. All ex-
periments were run with one NVIDIA GPU V100.

We report a variety of ranking metrics, includ-
ing Recall@K and nDCG@K. We argue that the
ranking metrics are more preferable for few/zero-
shot label without introducing significant bias to-
wards frequent labels; they are more inline with
the human annotation process, like the ICD coding,
where clinicians often review a limited number of
candidate codes. K was set to 10 for MiMIC-II/III
and 5 for URLEX57K.

Results on MIMIC-II/III We compared
KAMG, which uses all three label graphs (Hg,
Hs and Hc), with the following baselines: CNN,
RCNN (the best model in Liu et al. (2019)), CAML,
DR-CAML, ZACNN and ZAGCNN. Table-2
shows the performance of all those models. KAMG

outperforms the other models in all the metrics
across almost all the settings on both datasets
with a notable margin, due to our multi-graph
knowledge aggregation model. Specifically, while
classifying zero-shot labels, ACNN-KAMG out-
performs ZAGCNN, which uses only the label
hierarchy (i.e., Hg), by 8% in R@10 and 6.5%
in nDCG@10 on MIMIC-II and 4.1% in R@10
and 10.5% in nDCG@10 on MIMIC-III. Similarly,
ACNN-KAMG gains 4% in R@10 and 2.7% in
nDCG@10 on MIMIC-II and 3.7% in R@10 and
6.5% in nDCG@10 on MIMIC-III over ZAGCNN
on few-shot labels.

Results on EURLEX57K We further compared
AGRU-KAMG with with BIGRU-LAWN, ZERO-
CNN-LAWN, and ZERO-BIGRU-LAWN, which
are the best performing models using label-wise
attention on few/zero-shot labels in (Chalkidis
et al., 2019). We implemented AGRU-KAMG by
directly modifying ZERO-BIGRU-LAWN’s pub-
lished code. Results in Table 3 show AGRU-
KAMG performs significantly better than ZERO-
BIGRU-LAWN on zero-shot labels by gaining
9.0% improvement in R@5 and 6.9% in nDCG@5,
and comparably with ZERO-BIGRU-LAWN on
few-shot labels. BIGRU-LAWN exhibits strong
performance on frequent/few-shot labels, which
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Frequent Few Zero Overall
R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10

M
IM

IC
-I

I ACNN-KAMG (Hg,Hs) 0.477 0.597 0.274 0.180 0.451 0.301 0.457 0.588
ACNN-KAMG (Hg+s) 0.470 0.587 0.235 0.151 0.418 0.273 0.450 0.578
ACNN-KAMG (Hg,Hc) 0.476 0.596 0.277 0.177 0.454 0.282 0.456 0.586
ACNN-KAMG (Hg+c) 0.467 0.586 0.236 0.152 0.417 0.267 0.448 0.577

M
IM

IC
-I

II ACNN-KAMG (Hg,Hs) 0.435 0.725 0.293 0.193 0.530 0.346 0.428 0.723
ACNN-KAMG (Hg+s) 0.426 0.712 0.256 0.130 0.540 0.273 0.393 0.684
ACNN-KAMG (Hg,Hc) 0.432 0.721 0.284 0.192 0.560 0.370 0.425 0.720
ACNN-KAMG (Hg+c) 0.422 0.707 0.245 0.123 0.521 0.265 0.392 0.680

Table 4: The comparison of the knowledge fusion before and after GCN on MIMIC-II and MIMIC-III. Bold figures
indicate the best results for each score

MIMIC-II MIMIC-III
Few Zero Few Zero

R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10 R@10 nDCG@10
ACNN-KAMG (Hg) 0.219 0.139 0.382 0.231 0.258 0.130 0.512 0.253
ACNN-KAMG (Hs) 0.245 0.157 0.437 0.272 0.258 0.130 0.524 0.258
ACNN-KAMG (Hc) 0.248 0.157 0.424 0.267 0.252 0.130 0.518 0.256
ACNN-KAMG (Hc, Hs) 0.257 0.161 0.439 0.286 0.252 0.138 0.533 0.267
ACNN-KAMG (Hg,Hs) 0.274 0.180 0.451 0.301 0.293 0.193 0.530 0.346
ACNN-KAMG (Hg,Hc) 0.277 0.177 0.454 0.282 0.284 0.192 0.560 0.370
ACNN-KAMG (Hg,Hs,Hc) 0.259 0.166 0.462 0.296 0.295 0.195 0.553 0.358

Table 5: Ablation study on MIMIC-II and MIMIC-III. We ran ACNN-KAMG with different combinations of the
three graphs in the few/zero-shot setting. Bold figures indicate the best results for each score.

Few Zero
R@5 nDCG@5 R@5 nDCG@5

AGRU-KAMG (Hg) 0.474 0.431 0.472 0.363
AGRU-KAMG (Hs) 0.508 0.464 0.484 0.382
AGRU-KAMG (Hc) 0.503 0.459 0.491 0.381
AGRU-KAMG (Hc,Hs) 0.554 0.509 0.499 0.397
AGRU-KAMG (Hg,Hs) 0.550 0.504 0.480 0.381
AGRU-KAMG (Hg,Hc) 0.554 0.507 0.517 0.422
AGRU-KAMG (Hg,Hs,Hc) 0.563 0.518 0.528 0.414

Table 6: Ablation study on EURLEX57K. We ran AGRU-KAMG with different combinations of the three graphs
in the few/zero-shot setting. Bold figures indicate the best results for each score.

is inline with Chalkidis et al. (2019)’s finding.
This could be attributed to the fine-tuning of la-
bel embeddings in the learning process. In contrast,
AGRU-KAMG has label embeddings fixed to those
computed from pretrained embedding in order to
leverage label description in the zero-shot setting.

Results on pre/post-GCN fusion Table 4
shows the performance difference between the fol-
lowing two graph fusion methods: 1) merging two
label graphs into one graph, and then feeding it
into one GCN (Ma et al., 2019; Wang et al., 2020),
and 2) our method, where two graphs were fed into
two GCNs and then fused together. The results
showed that our method performs much better than
the pre-GCN fusion method.

Results on using different combinations of la-
bel graphs We further conducted a set of ablation
experiments based on the use of different combina-
tions of label graphs to study how the performance
of KAMG varies while using different graphs in
both few and zero-shot settings. The results in Ta-
bles 5 and 6 show that i) KAMG performs better
with multiple graphs than with a single graph over-

all, which demonstrates it is beneficial to aggregate
information from multiple graphs; ii) graphs con-
tribute differently to the classification performance,
the ICD taxonomy plays an important role while
being used in conjunction with the other graphs,
and the three graphs work complementary to each
other on EURLEX57K.

5 Conclusion

We have proposed a multi-graph aggregation
method that can effectively fuse knowledge from
multiple label graphs. Experiments on MIMIC-
II/III and EURLEX57K have shown that the clas-
sifiers derived from the multi-graph aggregation
have achieved substantial performance improve-
ments particularly on few/zero-shot labels. As fu-
ture work, we will further study our method’s abil-
ity of extreme multi-label learning (Bhatia et al.,
2016) and different document encoders.
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Appendices

Tables 7, 9, 10 and 8 present a full set of ex-
periments results computed with different met-
rics, including, Recall@K, Precision@K, Recall-
Precision@K, nDCG@K. All the experiments
were run on one NVIDIA GPU V100.
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Frequent Few Zero Overall
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

M
IM

IC
-I

I

CNN 0.080 0.253 0.346 0.005 0.021 0.032 - - - 0.077 0.245 0.335
RCNN 0.086 0.277 0.386 0.015 0.048 0.081 - - - 0.083 0.267 0.372
CAML 0.082 0.278 0.386 0.014 0.043 0.078 0.004 0.014 0.021 0.079 0.267 0.371
DR-CAML 0.080 0.276 0.383 0.016 0.046 0.075 0.005 0.019 0.028 0.077 0.265 0.368
ZACNN 0.086 0.308 0.445 0.050 0.126 0.180 0.101 0.262 0.362 0.082 0.294 0.424
ZAGCNN 0.089 0.323 0.471 0.060 0.161 0.219 0.102 0.267 0.382 0.085 0.309 0.452
ACNN-KAMG(Hg) 0.089 0.319 0.467 0.066 0.172 0.235 0.141 0.302 0.402 0.085 0.305 0.448
ACNN-KAMG(Hs) 0.088 0.322 0.469 0.069 0.178 0.245 0.126 0.315 0.437 0.084 0.308 0.449
ACNN-KAMG(Hc) 0.088 0.323 0.474 0.068 0.178 0.247 0.127 0.305 0.424 0.084 0.309 0.454
ACNN-KAMG (Hg+s) 0.088 0.320 0.470 0.067 0.171 0.235 0.140 0.323 0.418 0.084 0.307 0.450
ACNN-KAMG (Hg+c) 0.088 0.319 0.467 0.068 0.177 0.236 0.136 0.308 0.416 0.084 0.306 0.448
ACNN-KAMG (Hg,Hs) 0.090 0.325 0.477 0.083 0.203 0.274 0.163 0.345 0.451 0.086 0.311 0.457
ACNN-KAMG (Hg,Hc) 0.091 0.325 0.476 0.077 0.200 0.277 0.130 0.323 0.454 0.086 0.311 0.456
ACNN-KAMG (Hc,Hs) 0.091 0.324 0.475 0.067 0.177 0.248 0.137 0.343 0.447 0.086 0.310 0.454
ACNN-KAMG (Hg,Hs,Hc) 0.089 0.322 0.471 0.072 0.188 0.259 0.145 0.342 0.462 0.085 0.309 0.451

M
IM

IC
-I

II

CNN 0.061 0.240 0.366 0.017 0.051 0.074 - - - 0.060 0.236 0.361
RCNN 0.063 0.247 0.376 0.027 0.080 0.118 - - - 0.062 0.243 0.370
CAML 0.066 0.267 0.422 0.038 0.084 0.104 0.002 0.036 0.067 0.065 0.262 0.415
DR-CAML 0.065 0.263 0.416 0.026 0.073 0.105 0.003 0.016 0.038 0.063 0.258 0.409
ZACNN 0.064 0.256 0.405 0.008 0.140 0.207 0.007 0.309 0.457 0.063 0.241 0.372
ZAGCNN 0.065 0.266 0.427 0.006 0.181 0.258 0.007 0.367 0.512 0.064 0.252 0.394
ACNN-KAMG(Hs) 0.065 0.262 0.420 0.004 0.184 0.258 0.007 0.376 0.524 0.063 0.247 0.385
ACNN-KAMG(Hc) 0.065 0.262 0.419 0.007 0.171 0.252 0.007 0.374 0.518 0.063 0.245 0.382
ACNN-KAMG (Hg+s) 0.065 0.265 0.426 0.009 0.181 0.256 0.007 0.401 0.540 0.064 0.251 0.393
ACNN-KAMG (Hg+c) 0.065 0.263 0.422 0.008 0.166 0.245 0.007 0.397 0.521 0.064 0.250 0.392
ACNN-KAMG (Hg,Hs) 0.066 0.271 0.435 0.101 0.224 0.293 0.172 0.412 0.530 0.065 0.266 0.428
ACNN-KAMG (Hg,Hc) 0.066 0.270 0.432 0.103 0.216 0.284 0.194 0.449 0.560 0.065 0.265 0.425
ACNN-KAMG (Hc,Hs) 0.066 0.268 0.423 0.052 0.192 0.280 0.021 0.386 0.566 0.065 0.263 0.414
ACNN-KAMG (Hg,Hs,Hc) 0.066 0.271 0.434 0.096 0.231 0.295 0.180 0.417 0.553 0.065 0.266 0.427

E
U

AGRU-KAMG (Hg) 0.229 0.696 0.836 0.282 0.474 0.550 0.226 0.472 0.551 0.194 0.625 0.762
AGRU-KAMG (Hc) 0.232 0.708 0.847 0.303 0.503 0.585 0.254 0.491 0.574 0.196 0.636 0.775
AGRU-KAMG (Hs) 0.231 0.707 0.847 0.305 0.508 0.586 0.258 0.484 0.593 0.197 0.636 0.776
AGRU-KAMG (Hc,Hs) 0.237 0.726 0.868 0.316 0.554 0.630 0.267 0.499 0.606 0.201 0.656 0.796
AGRU-KAMG (Hg,Hs) 0.238 0.727 0.864 0.333 0.550 0.631 0.257 0.480 0.569 0.201 0.656 0.795
AGRU-KAMG (Hg,Hc) 0.238 0.727 0.868 0.335 0.554 0.628 0.298 0.517 0.641 0.201 0.657 0.799
AGRU-KAMG (Hg,Hs,Hc) 0.238 0.731 0.869 0.342 0.563 0.643 0.268 0.528 0.635 0.201 0.661 0.801

Table 7: Recall@k results on MIMIC-II, MIMIC-III and EURLEX57K (EU) datasets

Frequent Few Zero Overall
nDCG@1 nDCG@5 nDCG@10 nDCG@1 nDCG@5 nDCG@10 nDCG@1 nDCG@5 nDCG@10 nDCG@1 nDCG@5 nDCG@10

M
IM

IC
-I

I

CNN 0.712 0.538 0.465 0.007 0.014 0.018 - - - 0.711 0.536 0.460
RCNN 0.739 0.574 0.505 0.022 0.035 0.047 - - - 0.738 0.572 0.498
CAML 0.727 0.578 0.508 0.018 0.031 0.043 0.004 0.009 0.012 0.726 0.576 0.501
DR-CAML 0.713 0.571 0.502 0.023 0.034 0.044 0.005 0.013 0.016 0.712 0.569 0.495
ZACNN 0.752 0.619 0.562 0.066 0.095 0.114 0.114 0.191 0.225 0.750 0.615 0.551
ZAGCNN 0.778 0.648 0.591 0.077 0.119 0.139 0.118 0.193 0.231 0.777 0.645 0.583
ACNN-KAMG(Hg) 0.777 0.641 0.586 0.084 0.128 0.151 0.160 0.231 0.264 0.776 0.638 0.578
ACNN-KAMG(Hs) 0.772 0.644 0.588 0.090 0.133 0.157 0.143 0.231 0.272 0.770 0.641 0.578
ACNN-KAMG(Hc) 0.772 0.645 0.591 0.088 0.133 0.157 0.141 0.227 0.267 0.770 0.642 0.581
ACNN-KAMG (Hg+s) 0.770 0.642 0.587 0.086 0.129 0.151 0.155 0.241 0.273 0.769 0.639 0.578
ACNN-KAMG (Hg+c) 0.769 0.641 0.585 0.087 0.132 0.152 0.153 0.231 0.267 0.768 0.638 0.577
ACNN-KAMG (Hg,Hs) 0.784 0.652 0.597 0.109 0.155 0.180 0.186 0.266 0.301 0.783 0.649 0.588
ACNN-KAMG (Hg,Hc) 0.785 0.650 0.596 0.100 0.150 0.177 0.146 0.238 0.282 0.784 0.647 0.586
ACNN-KAMG (Hc,Hs) 0.785 0.649 0.595 0.085 0.132 0.157 0.159 0.251 0.286 0.783 0.646 0.585
ACNN-KAMG (Hg,Hs,Hc) 0.780 0.647 0.591 0.092 0.141 0.166 0.165 0.256 0.296 0.778 0.644 0.581

M
IM

IC
-I

II

CNN 0.826 0.720 0.632 0.020 0.036 0.044 - - - 0.826 0.719 0.631
RCNN 0.845 0.739 0.648 0.034 0.057 0.070 - - - 0.845 0.738 0.646
CAML 0.884 0.788 0.711 0.045 0.066 0.073 0.007 0.019 0.029 0.884 0.787 0.709
DR-CAML 0.859 0.775 0.699 0.032 0.053 0.064 0.005 0.010 0.018 0.859 0.775 0.697
ZACNN 0.858 0.762 0.684 0.010 0.081 0.104 0.007 0.173 0.222 0.858 0.748 0.654
ZAGCNN 0.875 0.786 0.713 0.007 0.103 0.130 0.007 0.205 0.253 0.875 0.774 0.685
ACNN-KAMG(Hs) 0.872 0.778 0.703 0.005 0.105 0.130 0.007 0.210 0.258 0.872 0.765 0.673
ACNN-KAMG(Hc) 0.873 0.778 0.703 0.008 0.098 0.126 0.007 0.209 0.256 0.873 0.761 0.668
ACNN-KAMG (Hg+s) 0.874 0.784 0.712 0.009 0.105 0.130 0.007 0.227 0.272 0.873 0.773 0.683
ACNN-KAMG (Hg+c) 0.873 0.780 0.707 0.009 0.096 0.123 0.007 0.223 0.265 0.873 0.769 0.680
ACNN-KAMG (Hg,Hs) 0.885 0.797 0.725 0.118 0.169 0.193 0.190 0.307 0.346 0.885 0.797 0.723
ACNN-KAMG (Hg,Hc) 0.883 0.795 0.721 0.120 0.169 0.192 0.215 0.333 0.370 0.882 0.794 0.719
ACNN-KAMG (Hc,Hs) 0.884 0.792 0.713 0.059 0.128 0.159 0.028 0.221 0.280 0.884 0.791 0.709
ACNN-KAMG (Hg,Hs,Hc) 0.882 0.797 0.724 0.109 0.172 0.195 0.203 0.313 0.358 0.882 0.796 0.722

E
U

AGRU-KAMG (Hg) 0.857 0.760 0.805 0.415 0.431 0.460 0.247 0.363 0.388 0.862 0.729 0.760
AGRU-KAMG (Hc) 0.865 0.771 0.816 0.444 0.459 0.490 0.272 0.381 0.410 0.871 0.740 0.772
AGRU-KAMG (Hs) 0.866 0.771 0.815 0.447 0.464 0.493 0.276 0.382 0.420 0.873 0.740 0.773
AGRU-KAMG (Hc,Hs) 0.881 0.790 0.834 0.496 0.509 0.538 0.285 0.397 0.432 0.889 0.761 0.793
AGRU-KAMG (Hg,Hs) 0.882 0.791 0.834 0.489 0.504 0.534 0.267 0.381 0.409 0.888 0.761 0.793
AGRU-KAMG (Hg,Hc) 0.884 0.792 0.837 0.491 0.507 0.535 0.323 0.422 0.462 0.891 0.763 0.796
AGRU-KAMG (Hg,Hs,Hc) 0.883 0.795 0.839 0.504 0.518 0.548 0.290 0.414 0.447 0.891 0.766 0.798

Table 8: nDCG@k results on MIMIC-II, MIMIC-III and EURLEX57K (EU) datasets



2943

Frequent Few Zero Overall
P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10 P@1 P@5 P@10

M
IM

IC
-I

I

CNN 0.712 0.478 0.337 0.007 0.006 0.004 - - - 0.711 0.477 0.337
RCNN 0.739 0.513 0.369 0.022 0.014 0.012 - - - 0.738 0.512 0.369
CAML 0.727 0.522 0.378 0.018 0.012 0.011 0.004 0.003 0.003 0.726 0.521 0.377
DR-CAML 0.713 0.517 0.374 0.023 0.014 0.011 0.005 0.004 0.003 0.712 0.517 0.373
ZACNN 0.752 0.568 0.429 0.066 0.034 0.025 0.114 0.062 0.043 0.750 0.566 0.426
ZAGCNN 0.778 0.596 0.454 0.077 0.043 0.030 0.118 0.063 0.046 0.777 0.595 0.453
ACNN-KAMG(Hg) 0.777 0.588 0.450 0.084 0.046 0.032 0.160 0.070 0.048 0.776 0.587 0.450
ACNN-KAMG(Hs) 0.772 0.593 0.451 0.090 0.047 0.034 0.143 0.074 0.052 0.770 0.592 0.450
ACNN-KAMG(Hc) 0.772 0.594 0.454 0.088 0.048 0.034 0.141 0.071 0.050 0.770 0.593 0.453
ACNN-KAMG (Hg+s) 0.770 0.590 0.451 0.086 0.044 0.031 0.155 0.075 0.050 0.769 0.589 0.450
ACNN-KAMG (Hg+c) 0.769 0.590 0.450 0.087 0.046 0.032 0.153 0.071 0.049 0.768 0.589 0.449
ACNN-KAMG (Hg,Hs) 0.784 0.599 0.458 0.109 0.054 0.037 0.186 0.080 0.054 0.783 0.598 0.457
ACNN-KAMG (Hg,Hc) 0.785 0.597 0.456 0.100 0.053 0.038 0.146 0.077 0.054 0.784 0.596 0.456
ACNN-KAMG (Hc,Hs) 0.785 0.595 0.455 0.085 0.047 0.033 0.159 0.081 0.055 0.783 0.594 0.454
ACNN-KAMG (Hg,Hs,Hc) 0.780 0.595 0.453 0.092 0.051 0.035 0.165 0.081 0.056 0.778 0.594 0.452

M
IM

IC
-I

II

CNN 0.826 0.684 0.548 0.020 0.012 0.009 - - - 0.826 0.684 0.548
RCNN 0.845 0.702 0.560 0.034 0.021 0.016 - - - 0.845 0.701 0.560
CAML 0.884 0.754 0.628 0.045 0.022 0.014 0.007 0.009 0.008 0.884 0.754 0.628
DR-CAML 0.859 0.744 0.618 0.032 0.018 0.014 0.005 0.004 0.005 0.859 0.744 0.618
ZACNN 0.858 0.728 0.603 0.010 0.035 0.026 0.007 0.069 0.052 0.858 0.710 0.567
ZAGCNN 0.875 0.755 0.633 0.007 0.044 0.032 0.007 0.085 0.059 0.875 0.739 0.599
ACNN-KAMG(Hs) 0.872 0.746 0.623 0.005 0.045 0.032 0.007 0.086 0.060 0.872 0.728 0.586
ACNN-KAMG(Hc) 0.873 0.745 0.621 0.008 0.040 0.031 0.007 0.084 0.059 0.873 0.723 0.581
ACNN-KAMG (Hg+s) 0.874 0.753 0.632 0.009 0.044 0.032 0.007 0.092 0.061 0.873 0.738 0.599
ACNN-KAMG (Hg+c) 0.873 0.747 0.626 0.009 0.040 0.030 0.007 0.089 0.058 0.873 0.733 0.596
ACNN-KAMG (Hg,Hs) 0.885 0.766 0.645 0.118 0.054 0.036 0.190 0.094 0.060 0.885 0.766 0.645
ACNN-KAMG (Hg,Hc) 0.883 0.763 0.641 0.120 0.053 0.036 0.215 0.103 0.064 0.882 0.763 0.641
ACNN-KAMG (Hg,Hc) 0.884 0.759 0.629 0.059 0.046 0.034 0.028 0.088 0.064 0.884 0.758 0.627
ACNN-KAMG (Hg,Hs,Hc) 0.882 0.766 0.643 0.109 0.055 0.037 0.203 0.095 0.063 0.882 0.766 0.643

E
U

AGRU-KAMG (Hg) 0.857 0.581 0.361 0.415 0.158 0.094 0.247 0.103 0.060 0.862 0.596 0.375
AGRU-KAMG (Hc) 0.865 0.590 0.366 0.438 0.167 0.099 0.272 0.105 0.062 0.871 0.607 0.382
AGRU-KAMG (Hs) 0.866 0.588 0.366 0.447 0.168 0.099 0.276 0.105 0.064 0.873 0.625 0.382
AGRU-KAMG (Hc,Hs) 0.881 0.606 0.373 0.496 0.184 0.107 0.285 0.108 0.065 0.889 0.626 0.393
AGRU-KAMG (Hg,Hs) 0.882 0.606 0.373 0.489 0.183 0.107 0.276 0.105 0.062 0.888 0.626 0.392
AGRU-KAMG (Hg,Hc) 0.884 0.607 0.375 0.491 0.184 0.107 0.323 0.112 0.069 0.891 0.627 0.394
AGRU-KAMG (Hg,Hs,Hc) 0.883 0.610 0.376 0.504 0.188 0.110 0.290 0.115 0.068 0.891 0.630 0.396

Table 9: Precision@k results on MIMIC-II, MIMIC-III and EURLEX57K (EU) datasets

Frequent Few Zero Overall
RP@1 RP@5 RP@10 RP@1 RP@5 RP@10 RP@1 RP@5 RP@10 RP@1 RP@5 RP@10

M
IM

IC
-I

I

CNN 0.712 0.478 0.337 0.007 0.006 0.004 - - - 0.711 0.477 0.337
RCNN 0.739 0.513 0.369 0.022 0.014 0.012 - - - 0.738 0.512 0.369
CAML 0.727 0.522 0.378 0.018 0.012 0.011 0.004 0.003 0.003 0.726 0.521 0.377
DR-CAML 0.713 0.517 0.374 0.023 0.014 0.011 0.005 0.004 0.003 0.712 0.517 0.373
ZACNN 0.752 0.568 0.429 0.066 0.034 0.025 0.114 0.062 0.043 0.750 0.566 0.426
ZAGCNN 0.778 0.596 0.454 0.077 0.043 0.030 0.118 0.063 0.046 0.777 0.595 0.453
ACNN-KAMG(Hg) 0.777 0.603 0.547 0.084 0.173 0.235 0.160 0.303 0.402 0.776 0.600 0.534
ACNN-KAMG(Hs) 0.772 0.609 0.549 0.090 0.178 0.245 0.143 0.315 0.437 0.770 0.604 0.535
ACNN-KAMG(Hc) 0.772 0.610 0.554 0.088 0.178 0.247 0.141 0.305 0.424 0.770 0.606 0.539
ACNN-KAMG (Hg+s) 0.770 0.606 0.549 0.086 0.171 0.235 0.155 0.324 0.418 0.769 0.602 0.535
ACNN-KAMG (Hg+c) 0.769 0.605 0.547 0.087 0.178 0.236 0.153 0.308 0.416 0.768 0.601 0.534
ACNN-KAMG (Hg,Hs) 0.784 0.615 0.558 0.109 0.203 0.274 0.186 0.346 0.451 0.783 0.611 0.544
ACNN-KAMG (Hg,Hc) 0.785 0.613 0.556 0.100 0.200 0.277 0.146 0.324 0.454 0.784 0.609 0.542
ACNN-KAMG (Hc,Hs) 0.785 0.611 0.555 0.085 0.177 0.248 0.159 0.344 0.447 0.783 0.607 0.540
ACNN-KAMG (Hg,Hs,Hc) 0.780 0.610 0.551 0.092 0.188 0.259 0.165 0.344 0.462 0.778 0.606 0.538

M
IM

IC
-I

II

CNN 0.826 0.688 0.577 0.020 0.051 0.074 - - - 0.826 0.687 0.575
RCNN 0.845 0.706 0.591 0.034 0.080 0.118 - - - 0.845 0.705 0.588
CAML 0.884 0.759 0.662 0.045 0.084 0.104 0.007 0.036 0.067 0.884 0.758 0.659
DR-CAML 0.859 0.749 0.652 0.032 0.073 0.105 0.005 0.016 0.038 0.859 0.749 0.649
ZACNN 0.858 0.733 0.635 0.010 0.140 0.207 0.007 0.309 0.457 0.858 0.714 0.595
ZAGCNN 0.875 0.759 0.668 0.007 0.181 0.258 0.007 0.367 0.512 0.875 0.743 0.629
ACNN-KAMG(Hs) 0.872 0.750 0.657 0.005 0.184 0.258 0.007 0.376 0.524 0.872 0.732 0.615
ACNN-KAMG(Hc) 0.873 0.750 0.656 0.008 0.171 0.252 0.007 0.374 0.518 0.873 0.727 0.610
ACNN-KAMG (Hg+s) 0.874 0.757 0.667 0.009 0.181 0.256 0.007 0.401 0.540 0.873 0.741 0.628
ACNN-KAMG (Hg+c) 0.873 0.752 0.661 0.009 0.167 0.245 0.007 0.397 0.521 0.873 0.737 0.625
ACNN-KAMG (Hg,Hs) 0.885 0.771 0.680 0.118 0.224 0.293 0.190 0.412 0.530 0.885 0.770 0.677
ACNN-KAMG (Hg,Hc) 0.883 0.768 0.676 0.120 0.217 0.284 0.215 0.449 0.560 0.882 0.768 0.673
ACNN-KAMG (Hc,Hs) 0.884 0.763 0.663 0.059 0.192 0.280 0.028 0.386 0.566 0.884 0.762 0.658
ACNN-KAMG (Hg,Hs,Hc) 0.882 0.770 0.679 0.109 0.231 0.295 0.203 0.417 0.553 0.882 0.770 0.675

E
U

AGRU-KAMG (Hg) 0.857 0.743 0.836 0.415 0.475 0.550 0.247 0.472 0.551 0.862 0.692 0.762
AGRU-KAMG (Hc) 0.865 0.755 0.847 0.444 0.504 0.585 0.272 0.488 0.574 0.871 0.705 0.775
AGRU-KAMG (Hs) 0.866 0.755 0.847 0.447 0.509 0.586 0.276 0.477 0.595 0.873 0.705 0.776
AGRU-KAMG (Hc,Hs) 0.881 0.774 0.865 0.496 0.555 0.630 0.285 0.499 0.606 0.889 0.726 0.796
AGRU-KAMG (Hg,Hs) 0.882 0.778 0.858 0.489 0.551 0.631 0.276 0.480 0.569 0.888 0.734 0.795
AGRU-KAMG (Hg,Hc) 0.884 0.776 0.868 0.491 0.555 0.628 0.323 0.517 0.641 0.891 0.728 0.799
AGRU-KAMG (Hg,Hs,Hc) 0.883 0.780 0.870 0.504 0.564 0.643 0.290 0.528 0.635 0.891 0.732 0.802

Table 10: R-Precision@k results on MIMIC-II, MIMIC-III and EURLEX57K (EU) datasets


