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Abstract

A sequence-to-sequence (seq2seq) learning
with neural networks empirically shows to be
an effective framework for grammatical error
correction (GEC), which takes a sentence with
errors as input and outputs the corrected one.
However, the performance of GEC models
with the seq2seq framework heavily relies on
the size and quality of the corpus on hand. We
propose a method inspired by adversarial train-
ing to generate more meaningful and valuable
training examples by continually identifying
the weak spots of a model, and to enhance the
model by gradually adding the generated ad-
versarial examples to the training set. Exten-
sive experimental results show that such adver-
sarial training can improve both the generaliza-
tion and robustness of GEC models.

1 Introduction

The goal of Grammatical Error Correction (GEC)
is to identify and correct different kinds of errors in
the text, such as spelling, punctuation, grammatical,
and word choice errors, which has been widely
used in speech-based dialogue, web information
extraction, and text editing software.

A popular solution tackles the grammatical error
correction as a monolingual machine translation
task where ungrammatical sentences are regarded
as the source language and corrected sentences as
the target language (Ji et al., 2017; Chollampatt
and Ng, 2018a). Therefore, the GEC can be mod-
eled using some relatively mature machine trans-
lation models, such as the sequence-to-sequence
(seq2seq) paradigm (Sutskever et al., 2014).

They are many types of grammatical errors and
all of them can occur in a sentence, which makes
it impossible to construct a corpus that covers all
kinds of errors and their combinations. Deep learn-
ing so far is data-hungry and it is hard to train a
seq2seq model with good performance without suf-

Clean
His reaction should give you an
idea as to whether this matter is
or is not your business .

Direct
Noise

His reaction should give you an
as idea to whether this matter is
or so is not your business .

Back
Translation

His reaction should give you the
idea as to whether this matter is
or is not your business .

Adversarial
Example

His reaction should gave you an
idea as to whether this matter is
or is n’t their business .

Table 1: Example ungrammatical sentences generated
by different methods. The direct noise method seems
to add some meaningless noises to the original sen-
tence. Most of the grammatical errors generated by the
back translation are those produced by replacing prepo-
sitions, and inserting or deleting articles. The exam-
ple generated by our adversarial attack algorithm looks
more meaningful and valuable.

ficient data. Therefore, recent studies have turned
the focus to the methods of generating high-quality
training samples (Xie et al., 2018; Lichtarge et al.,
2019; Zhao et al., 2019). Generating pseudo train-
ing data with unlabeled corpora can be roughly
divided into direct noise and back translation (Kiy-
ono et al., 2019). The former applies text editing
operations such as substitution, deletion, insertion
and shuffle, to introduce noises into original sen-
tences, and the latter trains a clean-to-noise model
for error generation. However, the noise-corrupted
sentences are often poorly readable, which are quite
different from those made by humans. The sen-
tences generated by the back translation also usu-
ally cover a few limited types of errors only1, and
it is difficult for the back translation to generate the
errors not occurred in the training set. Although
these methods can produce many ungrammatical

1Most of the errors are generated by replacing prepositions
and inserting or deleting articles, which occur more frequently
in the GEC training set.
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examples, most of them have little contribution to
improving the performance.

We also found that the resulting models are still
quite vulnerable to adversarial examples, although
they are trained with the data augmented by their
methods. Taking a state-or-the-art system of Zhao
et al. (2019) on CoNLL-2014 (Ng et al., 2014) as
an example, we generate adversarial samples by
intentionally introducing few grammatical errors
into the original clean sentences under a white-box
setting2. The model’s performance of F0.5 drops
from 0.592 to 0.434 if just one grammatical error
is added into each sentence, to 0.317 if three errors
are added. To our knowledge, we first show in
this study that adversarial examples also exist in
grammatical error correction models.

Inspired by adversarial attack and defense in
NLP (Jia and Liang, 2017; Zhao et al., 2017; Cheng
et al., 2018), we explore the feasibility of gener-
ating more valuable pseudo data via adversarial
attack, targeting the weak spots of the models,
which can improve both the quality of pseudo data
for training the GEC models and their robustness
against adversarial attacks. We propose a simple
but efficient method for adversarial example gener-
ation: we first identify the most vulnerable tokens
with the lowest generation probabilities estimated
by a pre-trained GEC model based on the seq2seq
framework, and then we replace these tokens with
the grammatical errors people may make to con-
struct the adversarial examples.

Once the adversarial examples are obtained, they
either can be merged with the original clean data
to train a GEC model or used to pre-train a model
thanks to their coming with great numbers. The
examples generated by our method based on the
adversarial attack are more meaningful and valu-
able than those produced by recent representative
methods, such as the direct noise and the back
translation (see Table 1). Through extensive experi-
mentation, we show that such adversarial examples
can improve both generalization and robustness of
GEC models. If a model pre-trained with large-
scale adversarial examples is further fine-tuned by
adversarial training, its robustness can be improved
about 9.5% while without suffering too much loss
(less than 2.4%) on the clean data.

2In contrast to a black-box setting, an attacker can access
to the model’s architecture, parameters, and training data set
under the white-box setting.

2 Related Work

2.1 Grammatical Error Correction
The rise of machine learning methods in natu-
ral language processing (NLP) has led to a rapid
increase in data-driven GEC research. The pre-
dominant paradigm for the data-driven GEC is ar-
guably sequence-to-sequence learning with neural
networks (Yuan and Briscoe, 2016; Xie et al., 2016;
Sakaguchi et al., 2017; Schmaltz et al., 2017; Ji
et al., 2017), which is also a popular solution for
machine translation (MT).

Some task-specific techniques have been pro-
posed to tailor the seq2seq for the GEC task. Ji
et al. (2017) proposed a hybrid neural model using
word and character-level attentions to correct both
global and local errors. Zhao et al. (2019) explic-
itly applied the copy mechanism to the GEC model,
reflecting the fact that most words in sentences are
grammatically correct and should not be changed.
Diverse ensembles (Chollampatt and Ng, 2018a),
rescoring (Chollampatt and Ng, 2018b), and iter-
ative decoding (Ge et al., 2018; Lichtarge et al.,
2018) strategies also have been tried to tackle the
problem of incomplete correction.

Although the advancement of the GEC has made
an impressive improvement, the lack of training
data is still the main bottleneck. Very recently, data
augmentation techniques began to embark on the
stage (Xie et al., 2018; Zhao et al., 2019). The GEC
models that achieved the competitive performance
(Kiyono et al., 2019; Zhao et al., 2019; Lichtarge
et al., 2019; Grundkiewicz et al., 2019) were usu-
ally pre-trained on large unlabeled corpora and then
fine-tuned on the original training set.

2.2 Textual Adversarial Attack
Fooling a model by perturbing its inputs, which is
also called an adversarial attack, has become an
essential means of exploring the model vulnerabili-
ties. To go a further step, incorporating adversarial
samples in the training stage, also known as ad-
versarial training, could effectively improve the
models’ robustness. Depending on the degree of
access the target model, adversarial examples can
be constructed in two different settings: white-box
and black-box settings. An adversary can access
the model’s architecture, parameters, and input fea-
ture representations in the white-box setting while
not in the black-box one. The white-box attacks
typically yield a higher success rate because the
knowledge of target models can guide the genera-
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tion of adversarial examples. However, the black-
box attacks do not require access to target models,
making them more practicable for many real-world
attacks.

Textual adversarial attack for adversarial sam-
ples has been applied to several NLP tasks such as
text classification (Ebrahimi et al., 2017; Samanta
and Mehta, 2017; Liang et al., 2017), machine
translation (Zhao et al., 2017; Cheng et al., 2018),
reading comprehension (Jia and Liang, 2017), dia-
logue systems (Cheng et al., 2019), and dependency
parsing (Zheng et al., 2020). Text adversarial ex-
ample generation can be roughly divided into two
steps: identifying weak spots and token substitu-
tion. Many methods including random selection
(Alzantot et al., 2018), trial-and-error testing at
each possible point (Kuleshov et al., 2018), ana-
lyzing the effects on the model of masking input
text (Samanta and Mehta, 2017; Gao et al., 2018;
Jin et al., 2019), comparing attention scores (Hsieh
et al., 2019), or gradient-based methods (Ebrahimi
et al., 2017; Lei et al., 2018; Wallace et al., 2019)
have been proposed to select the vulnerable token.
The selected tokens then will be replaced with sim-
ilar ones to change the model prediction. Such
substitutes can be chosen from nearest neighbors
in embedding spaces (Alzantot et al., 2018; Jin
et al., 2019), synonyms in a prepared dictionary
(Samanta and Mehta, 2017; Ebrahimi et al., 2017),
typos (Liang et al., 2017), paraphrases (Lei et al.,
2018), or randomly selected ones (Gao et al., 2018).

3 Method

3.1 Baseline Model
We formally define the GEC task and then briefly
introduce the seq2seq baseline. As we mentioned
above, the GEC can be modeled as an MT task
by viewing an ungrammatical sentence x as the
source sentence and a corrected one y as the target
sentence. Let D = {(x,y)}n be a GEC train-
ing dataset. The seq2seq model first encode a
source sentence having N tokens into a sequence
of context-aware hidden representations hs1:N , and
then decodes the target hidden representations hti
from the representations of hs1:N . Finally, the tar-
get hidden representations can be used to produce
the generation probability p(yi|y1:i−1), also called
positional score g(yi), and to generate the output
sequence y1:i−1 through the projection matrix WH

and softmax layer as follows.

hsi = encoder(xi) (1)

hti = decoder(y1:i−1, h
s
1:N ) (2)

p(yi|y1:i−1,x) = softmax(htiW
H) (3)

g(yi) = log(p(yi|y1:i−1,x)) (4)

The negative log-likelihood of generation probabil-
ities is used as the objective function, where θ are
all the model parameters to be trained.

L(θ) = − 1

|D|
∑

(x,y)∈D

log(p(y|x)) (5)

3.2 Adversarial Example Generation

We found that adversarial examples also exist in
the GEC models and up to 100% of input examples
admit adversarial perturbations. Adversarial exam-
ples yield broader insights into the targeted models
by exposing them to such maliciously crafted ex-
amples. We try to identify the weak spots of GEC
models by a novel adversarial example generation
algorithm that replaces the tokens in a sentence
with the grammatical mistakes people may make.
Our adversarial example generation algorithm also
uses the two-step recipe: first determining the im-
portant tokens to change and then replacing them
with the grammatical mistakes that most likely oc-
cur in the contexts.

3.2.1 Identifying Weak Spots
We use the positional scores to find the vulnerable
tokens (or positions) that most likely can success-
fully cause the models to make mistakes once they
are modified. The lower the positional score of a
token is, the lower confidence the model gives its
prediction, and the more likely this prediction will
be changed. Using the positional scores also brings
another advantage that helps us reduce the bias in
the generated pseudo data where too many gram-
matical errors are caused by the misuse of function
words, such as prepositions and articles.

We found that the words having relatively lower
positional scores are lexical or open class words
such as nouns, verbs, adjectives and adverbs. Be-
sides, rare and out-of-vocabulary words are also
given low positional scores. By adding the pseudo
examples generated by making small perturbations
to those tokens, we can force a GEC model to bet-
ter explore the cases that may not be encountered
before. If the function words are used correctly,
the model usually gives higher positional scores
to them; otherwise, the model will lower its confi-
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dence in the prediction by decreasing such scores,
which is precisely what we expect.

We here formally describe how to use the posi-
tional scores to locate the weak spots of a sentence.
Like (Bahdanau et al., 2014; Ghader and Monz,
2017), we first use the attention weights αi,j of a
seq2seq-based model to obtain the soft word align-
ment between the target token yi and the source
one xj by Equation (6) and (7) below:

qi, kj = htiW
Q, hsjW

K (6)

αi,j = softmax(
qi · kj√
dk

) (7)

whereWQ andWK denote the projection matrices
required to produce the representations of a query
qi and a key kj from which an attention score can
be computed, and dk is the dimension of hsj . We
then can obtain a word alignment matrix A from
the attention weights αi,j as follows:

Ai,j(α) =

{
1 j = argmax

j′
αi,j′

0 o/w
(8)

When Ai,j = 1, we known that yi is aligned to
xj . If yi is identified as a vulnerable token, we
try to make perturbation to xj to form an attack.
The positional scores g(yi) are obtained by the
GEC model trained on the original training set. If
the token’s positional score g(yi) is less than a
given threshold ε, we take xj as a candidate to be
modified to fool the target GEC model.

Ai,j = 1, g(yi) < ε (9)

3.2.2 Word Substitution-based Perturbations
Although adversarial examples have been studied
recently for NLP tasks, previous work almost exclu-
sively focused on semantic tasks, where the attacks
aim to alter the semantic prediction of models (e.g.,
sentiment prediction or question answering) with-
out changing the meaning of original texts. Once
a vulnerable position is determined, the token at
that position is usually replaced with one of its
synonyms. However, generating adversarial exam-
ples through such synonym-based replacement is
no longer applicable to the GEC task.

Motivated by this, we propose two methods
to replace vulnerable tokens. One is to create a
correction-to-error mapping from a GEC training
set and get a suitable substitute using this mapping.
If there are multiple choices, we sample a substi-
tute from those choices according to the similarity

of their context. Another is to generate a substitute
based on a set of rules that imitates human errors.
We give a higher priority to the former than the
latter when generating the adversarial examples for
the GEC.

Context-Aware Error Generation From a par-
allel training set of GEC, we can build a correction-
to-error mapping, by which given a token, we can
obtain its candidate substitutes (with grammatical
errors) and their corresponding sentences. Assum-
ing that a token is selected to be replaced, and its
candidate substitutes are retrieved by the mapping,
we want the selected substitute can fit in well with
the token’s context and maintain both the semantic
and syntactic coherence. Therefore, we define a
function s based on the edit distance (Marzal and
Vidal, 1993) to estimate the similarity scores be-
tween two sentences. This function allows us to
estimate how well a substitute’s context sentence
c′i is similar to an original sentence ci to be inten-
tionally modified. To encourage the diversity of
generated examples, we choose to sample a substi-
tute from the candidates according to the weights
wi derived from their sentences’ similarity scores
to the original one as follows.

wi =

{
s(ci, c

′
i) s(ci, c

′
i) > λ

λ s(ci, c
′
i) ≤ λ

(10)

e ∼ (Ui)
1/wi (11)

Equation (11) describes a weighted random sam-
pling (Efraimidis and Spirakis, 2006) process in
which the weights are calculated by the function
s(ci, c

′
i) and truncated by a threshold λ. Note that

polysemous words should be carefully handled.
For example, the word “change” has two seman-
tic terms with different part-of-speech of noun and
verb, which produce different errors. Therefore, we
remove the candidates that do not have the same
part-of-speech as the original token.

Rule-based Error Generation If we cannot find
any candidate substitute, we use a set of predefined
rules to generate the substitute. Table 2 lists di-
verse word transformations for error generation
according to the tokens’ part-of-speech. To main-
tain the sentence’s semantics to the greatest extent,
we just transform the nouns to their singular and
plural counterparts instead of searching the syn-
onyms from dictionaries. For verbs, we randomly
choose their present, progressive, past, perfect, or
third-person-singular forms. Adjectives and corre-
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Type of tokens Perturbation
Noun To its singular or plural forms

Verb
Change its tense or number
(third-person-singular form)

Adjective
Adverb

To its adverb form
To its adjective form

Numerals
Remaining unchanged

Proper Nouns
Punctuation Deletion
Others <unk> or Deletion

Table 2: Rule-based word perturbations according to
the part-of-speech.

sponding adverbs will be switched into each other,
and we also allow them to be replaced by their
synonyms here to make the model select more suit-
able adjectives or adverbs. For numbers and proper
nouns, the safe strategy is keeping the word un-
changed. All of articles or determiners, preposi-
tions, conjunctions, pronouns have been mapped
by context-aware error generation strategy before,
the remaining rare words or symbols can be deleted
directly or labeled as <unk>.

Besides, when a sentence contains more than
one vulnerable point, we can choose to integrate
these errors into the sentence to obtain a sentence
with multiple grammatical errors or to generate
errors separately and obtain more adversarial ex-
amples. According to our practice, the former is
more suitable for later adversarial training. Finally,
the GEC models are supposed to correct the crafted
sentences. If the results are different from the un-
modified version, the adversarial examples are con-
sidered to be generated successfully. Our algo-
rithm of adversarial examples generation for GEC
is shown in Algorithm 1.

3.3 Adversarial Training
We also show that GEC models’ robustness can be
improved by crafting high-quality adversaries and
including them in the training stage while suffering
little to no performance drop on the clean input data.
In this section, we conduct adversarial training with
sentence pairs generated by large unlabeled corpora
and adopt the pre-training and fine-tuning training
strategy.

Leveraging Large Unlabeled Corpora The
standard BEA-19 training set (Bryant et al., 2019)
has only about 640, 000 sentence pairs, which is
very insufficient for the GEC task. Thus, the

Algorithm 1 Adversarial examples generation
Input:
x: A grammatical sentence with n words.
f : A target GEC model.
Dt: The training corpus of GEC.
ε: A threshold to select vulnerable tokens.

Output:
S: Adversarial examples set towards x.

1: Set S = ∅ and extract the correction-to-error
mappings m(x) x ∈M , from the corpus Dt;

2: for each j ∈ [1, n] do
3: Calculate the position score g(yi) = f(xj)
4: if g(yi) < ε then
5: if xj ∈M then
6: sample the error e from m(xj)
7: else
8: Obtain e by rule-base method r(xj)
9: end if

10: x′ = [x1:j−1, e, xj+1:n]
11: if f(x′) 6= x then
12: S = S ∪ {x′}
13: end if
14: end if
15: end for
16: return S;

clean sentences in large unlabeled corpora, such as
Wikipedia or Gigaword (Napoles et al., 2012), and
One billion word benchmark (Chelba et al., 2013),
are usually used as seeds to generate ungrammati-
cal sentences for data augmentation. Some studies
found that the more unlabeled corpora used, the
more improvement the GEC model will achieve
(Kiyono et al., 2019). Unlabeled corpora also con-
tribute to correct out-of-training-set errors. If a
sentence in the test set contains these unseen errors,
the GEC model training without external corpora is
hard to correct. Therefore, We also leverage the un-
labeled corpora and obtain large-scale adversarial
examples for the later training.

Training strategy Adversarial training by means
of adding the adversarial examples into the training
set can effectively improve the models’ robustness.
However, Some studies show that the models tend
to overfit the noises, and the accuracy of the clean
data will drop if the number of adversarial exam-
ples dominates the training set. Zhao et al. (2019)
and Kiyono et al. (2019) adopt the pre-training and
fine-tuning strategy to alleviate the noise-overfit
problem. Similarly, our model is pre-trained with
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adversarial examples then fine-tuned on the orig-
inal training set instead of adding the large-scale
data to the training set directly. The training strat-
egy can be formally divided into four steps:

(1) Train a base model f on training set Dt.

(2) Generate the adversarial examples set De on
unlabeled sentences by attacking f .

(3) Pre-train the model f on the De.

(4) Fine-tune it on the training set Dt.

We also can use adversarial training to improve the
model’s robustness:

(5) Generate adversarial examples set Dadv from
the training set Dt [Optional].

(6) Add examples into the training set and train
the model on Dt = Dt ∪Dadv [Optional].

We can alternately run the step (5) and (6) to further
improve models’ robustness.

4 Experiments

4.1 Datasets and Evaluations
Like the previous studies of GEC models, we use
the BEA-2019 workshop official dataset3 (Bryant
et al., 2019) as our training and validation data. We
remove the sentence pairs with identical source and
target sentences from the training set and sample
about 1.2M sentences without numerals and proper
nouns from the Gigaword dataset4 as our unlabeled
data for pre-training. Table 3 shows the statistics
of the datasets.

Our reported results are measured by the Max-
Match (M2) scores 5 (Dahlmeier and Ng, 2012) on
CoNLL-2014 (Ng et al., 2014) and use the GLEU
metric for JFLEG 6 (Napoles et al., 2017). Fol-
lowing Ge et al. (2018); Junczys-Dowmunt et al.
(2018); Chollampatt and Ng (2018a); Zhao et al.
(2019), we apply spell correction with a 50, 000-
word dictionary extracted in Lang-8 corpus (Tajiri
et al., 2012) before evaluation.

4.2 Models and Hyper-parameter Settings
We adopt Transformer (Vaswani et al., 2017) as
our baseline seq2seq model implemented in the
fairseq toolkit (Ott et al., 2019), and apply
byte-pair-encoding(BPE) (Sennrich et al., 2015)

3https://www.cl.cam.ac.uk/research/nl/bea2019st/.
4English Gigaword Fourth Edition (LDC2009T13)
5avaliable at https://github.com/nusnlp/m2scorer
6avaliable at https://github.com/keisks/jfleg

Dataset #sent pairs #split
BEA-train 635582 train
BEA-valid 4384 valid
CoNLL-2014 1312 test
JFLEG 747 test
Gigaword* 1.2M pre-train

Table 3: The statistics of data sets used in our experi-
ments. A subset of Gigaword, denoted by Gigaword*,
was randomly sampled from the entire Gigaword4. The
sentences containing numerals or proper nouns were
not be sampled.

to source and target sentences and the number of
merge operation is set to 8, 000.

The base model is iterated 20 epochs on the train-
ing set. For adversarial examples generation, we
set the threshold ε to −0.2, and use the edit dis-
tance to calculate the context similarity with the
minimum weight λ = 0.1. To avoid the sentences
being changed beyond recognition, we choose at
most 6 tokens with the lowest positional score to
attack. After generation, we use these data to pre-
train the base model for 10 epochs and then fine-
tune on the training set for 15 epochs. Our model
is also further fine-tuned by adversarial training
several epochs. Here, “one epoch” means that we
generate an adversarial example against the cur-
rent model for each sentence in the training set,
and the model is continuously trained on those
generated examples for three normal epochs. We
also implement other data augmentation methods
as comparison models on the same unlabeled data
and training settings. For direct noise, the operation
choice is made based on the categorical distribution
(µadd, µdel, µreplace, µkeep) = (0.1, 0.1, 0.1, 0.7),
then shuffle the tokens by adding a normal distri-
bution bias N(0, 0.52) to the positions and re-sort
the tokens For back translation, we trained a re-
verse model with original sentence pairs and gener-
ated the error sentences with diverse beam strength
β = 6 following Kiyono et al. (2019)7.

To measure the model’s robustness, we conduct
adversarial attacks on the model by our adversarial
examples generation method to add one or three
errors to the test text, respectively (to ensure that
errors are always generated during the attack, we
set ε = 0). We measure the models’ robustness by
the drop of F0.5 scores and the correction rates of
newly added errors. Due to the randomness of the

7The detailed hyper-parameters are listed in Appendix A.
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CoNLL-2014 JFLEG

Model Prec. Rec. F0.5 GLEU

Transformer 53.3 37.3 49.1 54.7
+ pre-training and fine-tuning

Direct Noise 62.7 33.4 53.3 55.1
Back Translation 62.5 34.2 53.6 55.7
ADV 62.9 39.9 56.4 56.5

- Random Token Substitution 62.2 37.7 55.0 56.0
- Only Context-Aware Error Generation 62.4 39.3 55.8 56.4
- Only Rule-based Error Generation 64.0 37.7 56.2 56.2

Junczys-Dowmunt et al. (2018) −− −− 53.0 57.9
Grundkiewicz and Junczys-Dowmunt (2018) 66.8 34.5 56.3 61.5
Lichtarge et al. (2019) 65.5 37.1 56.8 61.6
Zhao et al. (2019) 8 68.6 38.9 59.5 57.8
Kiyono et al. (2019) 67.9 44.1 61.3 59.7

Table 4: Results of different GEC models on CoNLL-2014 and JFLEG. The model, indicated by ADV, is first pre-
trained with our adversarial examples and then fine-tuned on the training set. The upper part of the table lists the
results of the models trained with different data augmentation methods. The bottom shows the results of recently
proposed GEC models. Our model outperforms the models trained with other data augmentation methods and
achieves comparable performance to other competitors. However, the comparison is not direct, we only use 1.2M
unlabelled data, much less than Kiyono et al. (2019) (70M) and Lichtarge et al. (2019) (170M).

ATK-1 ATK-3

Model F0.5 Drop Corr. Rate% Drop Corr. Rate%

Transformer 49.1 −12.8 18.9 −24.2 18.8
Direct Noise 53.3 −17.0 12.8 −28.6 12.6
Back Translation 53.6 −16.4 19.7 −27.9 19.6
Zhao et al. (2019)8 59.5 −16.1 16.7 −27.8 19.5

ADV 56.4 −14.0 26.5 −26.7 26.7
ADV† 54.0 −13.8 36.0 −26.5 31.7
ADV†† 52.0 −12.1 39.5 −26.2 34.5

Table 5: Results of the adversarial attacks on CoNLL-2014 dataset. ATK-1 and ATK-3 respectively denote the
attacks with adding one and three errors into each test example. Drop denotes the performance drop in F0.5 on the
adversarial examples and Corr. Rate% denotes the correction rate of newly added errors. The model, indicated
by ADV, is first pre-trained with our adversarial examples and then fine-tuned on the training set. The model of
ADV† is initialized with ADV, and then adversarially trained only with one epoch, and the model of ADV†† is also
initialized with ADV, but adversarially trained after three epochs. Our models have less performance degradation
than others under the two attacks while achieving higher correction rates for newly added errors.

attacks, we average the results of 10 attacks.

4.3 Results of GEC Task

We compare our model pre-training with adversar-
ial examples to the ones training with the data gen-
erated by other data augmentation methods. Table
4 shows the results. We achieve 7.3% improve-
ments of F0.5 on the base model and also leave
a large margin to direct noise (+3.1%) and back
translation (+2.8%), which proves that the adver-
sarial examples crafted by our method have a more
significant contribution to improving the model.
We also compare our model with the current top
single models. Our model outperforms Junczys-
Dowmunt et al. (2018) and reach the same level

of as Lichtarge et al. (2019), Grundkiewicz and
Junczys-Dowmunt (2018). Notably, Lichtarge et al.
(2019) pre-trained their model with the data gener-
ated by back translation on a subset of Wikipedia,
which contains 170M sentences, and we only use
1.2M unlabeled data, which also indicates the high
value of our adversarial examples. Similarly, Zhao
et al. (2019) leveraged 30M unlabeled data (direct
noise) and Kiyono et al. (2019) 70M (back trans-
lation) for pre-training, taking the performance of
the model to a new level.

We also conducted ablation experiments to eval-
uate the different components of our adversarial
error generation model. If a random strategy is
used to select the weak spots, the F0.5 score drops
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NN VB JJ RB IN PRP

Model ATK-1 ATK-3 ATK-1 ATK-3 ATK-1 ATK-3 ATK-1 ATK-3 ATK-1 ATK-3 ATK-1 ATK-3

Transformer 19.8 22.8 23.8 22.7 13.8 16.6 14.9 11.8 20.8 11.2 24.5 14.3

Direct Noise 12.6 12.2 13.0 16.0 10.6 10.2 10.8 10.4 12.0 8.3 18.9 13.9

Back Translation 23.1 20.3 15.4 25.5 21.2 19.3 13.6 16.3 20.5 18.6 22.2 18.5

Zhao et al. (2019) 6.5 10.1 14.9 20.8 3.0 9.6 6.2 6.5 15.6 18.7 26.4 19.9

ADV 27.6 25.9 30.3 28.8 27.2 27.0 19.2 22.3 13.3 18.0 32.4 31.8

ADV† 37.9 31.8 33.8 29.0 39.9 37.0 26.3 27.3 22.2 19.4 40.5 28.7

ADV†† 41.0 36.4 29.8 30.3 47.5 36.0 26.2 33.3 29.3 18.0 34.5 29.4

Table 6: The correction rates of the newly added errors versus different types of part-of-speech. ”NN” denotes
noun, ”VB” verb, ”JJ” adjective, ”RB” adverb, ”IN” preposition, ”PRP” personal and possessive pronoun. ATK-1
and ATK-3 respectively denote the attacks with adding one and three error into each test example. ADV, ADV†

and ADV†† are used to denote the same models as Table 5.

to 55.0. If only the context-aware generator is used
for word substitution, the resulting F0.5 score is
55.8, and the model achieves 56.2 in F0.5 for rule-
based generator only. The experimental results
show that our strategy of identifying vulnerable
token is more effective than the random way, and
the two error generators all contribute to improving
the models’ performance and robustness.

4.4 Analysis of Adversarial Attack

We conduct the attack experiments on the base, pre-
trained and adversarially trained models, including
the model provided by Zhao et al. (2019)8. Table 5
shows the results of adversarial attack experiments.
Under the attack, our models dropped the less in
F0.5 scores and achieved the higher newly added
error correction rate, which indicates our adversar-
ial examples can be used to substantially improve
GEC models’ robustness. The results in Table 5 are
worth exploring, from which we can draw several
other conclusions: (i) Current seq2seq-based GEC
models, including some state-of-the-art models, are
vulnerable to adversarail examples. (ii) The models
using the direct noise method for data augmenta-
tion, Zhao et al. (2019)) for example, are less robust
to adversarial attacks even than their vanilla ver-
sions. It is likely to be associated with the editing
operations of direct noise injecting a lot of task-
irrelevant noise, which might be detrimental to the
robustness of the model. (iii) Combined with ad-
versarial training, the robustness of the model can
be improved continually at the cost of acceptable
loss in performance. We also analyzed the trade-off
between generalization and robustness at the adver-

8We run the code and the pre-trained model offered by the
authors at https://github.com/zhawe01/fairseq-gec.

sarial training stage. The results are visualized in
Figure 1.
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Figure 1: Trade-off between generalization and robust-
ness. The blue and orange lines respectively denote
the scores of F0.5 (generalization) and the correction
rates (robustness) with four different training epochs.
The model’s robustness will continue to improve with
a slight drop in performance.

We would also like to know which type of words
to modify is most likely to form a successful attack.
Therefore, we calculate the correction rates of the
newly added errors with different types of part-of-
speech. Table 6 shows that: (i) The robustness of
the model after adversarial training is significantly
improved against the attack that tries to replace the
lexical words such as nouns and verbs. It shows
that the generated examples by our adversarial at-
tack algorithm cover a variety of grammatical er-
rors involving various POS types. (ii) The errors in-
volving adjectives and adverbs are less likely to be
corrected without adversarial examples. Whether
an adjective or adverb is properly used heavily re-
lies on the context, making it difficult for the GEC
systems to correct them all. (iii) Not surprisingly,
most of the prepositions errors are inherently hard
to correct, even for native speakers.
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5 Conclusion

In this paper, we proposed a data augmentation
method for training a GEC model by continually
adding to the training set the adversarial examples,
particularly generated to compensate the weakness
of the current model. To generate such adversarial
examples, we first determine an important position
to change and then modify it by introducing spe-
cific grammatical issues that maximize the GEC
model’s prediction error. The samples generated by
our adversarial attack algorithm are more meaning-
ful and valuable than those produced by recently
proposed methods, such as the direct noise and the
back translation. Experimental results demonstrate
that the GEC models trained with the data aug-
mented by these adversarial examples can substan-
tially improve both generalization and robustness.
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A Detailed Hyper-parameter Settings

Transformer (large)

Configurations Values

6
6
1024
1024
4096
16
0.3

Number of Encoder Layers Ne

Number of Decoder Layers Nd

Dimension of Embeddings dembed

Dimension of Hiddens dh
Dimension of Feed-forward Layers dff
Number of Multi-heads h
Dropout Pdrop

Number of parameters 2.13 × 108

Table 7: The architecture of the Transformer(big) (Vaswani et al., 2017) is used as our base model.

Configurations Values

Base Model Training

Number of Epochs
Loss Function
Optimizer
Learning Rate Schedule
Gradient Clipping

20
Label smoothed cross entropy(smoothing value: εls = 0.1) (Szegedy et al., 2016)
Adam (Kingma and Ba, 2014) (β1 = 0.9, β2 = 0.98, ε = 1× 10−8)
Inverse square root of the update number, initial value = 5× 10−4

1.0

Pre-training

Number of Epochs
Loss Function
Optimizer
Learning Rate Schedule
Gradient Clipping

10
Label smoothed cross entropy
Adam
Inverse square root of the update number, initial value = 5× 10−4

1.0

Fine-tuning

Number of Epochs
Loss Function
Optimizer
Learning Rate Schedule
Stopping Criterion
Gradient Clipping
Beam Search size

15
Label smoothed cross entropy
Adafactor (Shazeer and Stern, 2018)
Fixed learning rate 3× 10−5

Use the model with best validation perplexity on BEA-valid
1.0
5

Adversarial Training

Number of Epochs
Loss Function
Optimizer
Learning Rate Schedule
Gradient Clipping
Beam Search size

3 (each time)
Label smoothed cross entropy
Adafactor (β1 = 0.9, β2 = 0.98, ε = 1× 10−8)
Fixed learning rate 3× 10−5

1.0
5

Table 8: Hyper-parameter settings for training. Kiyono et al. (2019) conducted an empirical study of pre-training
with pseudo data and we follow many settings with them. We conducted our experiments on 4 TITAN Xp GPUs.
Each epoch took 20 minutes during pre-training, and 10 minutes during fine-tuning and base model training. The
time spent on adversarial training depends on the number of adversarial examples, about 20-30 minutes each epoch.




