MEGATRON-CNTRL: Controllable Story Generation with External
Knowledge Using Large-Scale Language Models

Peng Xu’; Mostofa Patwary®, Mohammad Shoeybi’, Raul Puri?,
Pascale Fung’, Anima Anandkumar?, Bryan Catanzaro®
*The Hong Kong University of Science and Technology, NVIDIA

peng.xul@connect.ust.hk, mpatwary@nvidia.com

Abstract

Existing pre-trained large language models
have shown unparalleled generative capabili-
ties. However, they are not controllable. In
this paper, we propose MEGATRON-CNTRL,
a novel framework that uses large-scale lan-
guage models and adds control to text gener-
ation by incorporating an external knowledge
base. Our framework consists of a keyword
predictor, a knowledge retriever, a contextual
knowledge ranker, and a conditional text gen-
erator. As we do not have access to ground-
truth supervision for the knowledge ranker, we
make use of weak supervision from sentence
embedding. The empirical results show that
our model generates more fluent, consistent,
and coherent stories with less repetition and
higher diversity compared to prior work on the
ROC story dataset. We showcase the controlla-
bility of our model by replacing the keywords
used to generate stories and re-running the
generation process. Human evaluation results
show that 77.5% of these stories are success-
fully controlled by the new keywords. Further-
more, by scaling our model from 124 million
to 8.3 billion parameters we demonstrate that
larger models improve both the quality of gen-
eration (from 74.5% to 93.0% for consistency)
and controllability (from 77.5% to 91.5%).

1 Introduction

Text generation has recently attracted significant
attention from the research community as large pre-
trained language models, such as GPT-2 (Radford
et al., 2018, 2019) demonstrated promising results
for generating long, grammatically correct, and flu-
ent text. Finetuning these models has shown signif-
icant improvements in downstream tasks, such as
persona chat (Wolf et al., 2019). However, one non-
negligible drawback of these large models is the

* This work was done during the internship of Peng Xu at
NVIDIA. Corresponding authors: Peng Xu, Mostofa Patwary.

Context
Guan et al. (2020)

[FEMALE] was on a long road trip .

she had just driven into town . she had been
driving for hours . she was so tired she decided
to take a nap . when she woke up , she still
had n’t slept well .

she was on her way to see a strange country.
she had never seen anything like that before.
finally she saw a small town that was so small.
it was a great little town with a nice park !

she was driving in the middle of [PLACE]. all
of a sudden the tire pressure light came on. she
got out to check her tire. it was flat so she used
the roadside assistance.

she really wanted to see a few attractions. the
first one she saw was a giant water park. it was
amazing. it ended up being a fun experience.

MEGATRON-
CNTRL-124M
keyword: driving

MEGATRON-
CNTRL-8B
keyword: driving

MEGATRON-
CNTRL-8B-ANT
keyword: attract

Table 1: Stories generated by models of increas-
ing capacity and controllability. As the model size
grows, story quality becomes increasingly coherent,
fluent, and logically consistent. The last row demon-
strates how MEGATRON-CNTRL-8B-ANT model con-
trols the story generation with a new keyword, “attract”.
Note that [MALE] and [FEMALE] denote names and
[PLACE] denotes locations.

lack of knowledge which humans use to produce
natural text. For example, GPT-2 based models
produce degraded generations that are illogical and
ungrammatical for knowledge-driven generation
tasks, such as story generation. Guan et al. (2020)
therefore introduced commonsense knowledge to
the pre-trained language model by further finetun-
ing on commonsense datasets. Although implicit
encoding of knowledge is helpful for knowledge
incorporation, there is still a lack of training mech-
anism to teach the model when and what to incor-
porate from external knowledge.

In addition, these large pre-trained language
models are hard to control. Recently, plug-and-play
language models Dathathri et al. (2019) addressed
whole document controllability by adding a lin-
ear classifier on top of GPT-2 to predict whether
generated text observes a particular style or prop-
erty. Keskar et al. (2019) controlled a 1.2B pa-
rameter language model generation via the use of

2831

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2831-2845,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

External Keywords

External Control

(Optional)

Knowledge Base

Knowledge

GPT-2
) xi-1 Keywords
. i—1
Input Context: X Predictor

;

i
overwrite| X1

)

X
(Input Context: X1 J

GPT-2

Generated Ston
Sentence g*

S overwrite)
R, s" J ----- =1--*| Input Context: X*~!
X! R
Conditional

Generator

Predicted Keywords K* Retriever

Knowledge Sentences| R?

BERT

Contextual

Knowledge
Ranker

Top Ranked Knowledge
Sentences R

lel

Xi—l

Figure 1: Overview of our generation process. Based on an input context, we generate keywords for future context,
use the keywords to retrieve the relevant knowledge from an external knowledge-base, filter them based on their
relevance to the context, and use the top scored knowledge sentences to guide the generation.

control codes prepended to the model input. Boyd
et al. (2020) controlled the personality of a dialogue
agent by conditioning it on prior conversations of a
target actor. However, these controlling conditions
are predefined, limited in their capability, and are
only used once at the beginning to condition the
generation of the rest of the document. They do
not provide control granularity at either a sentence
or sub-document level.

In this work, we address these shortcomings and
develop an efficient controllable text generation
framework that we apply to the story generation
task. In order to provide manual control to users
through a set of interpretable keywords, we first
develop a keyword predictor model for the next
sentence. These keywords are then used to retrieve
knowledge sentences from an external knowledge
base. Not all the retrieved knowledge is relevant to
the story context and often it is noisy. To this end,
we introduce a novel contextual ranker that ranks
knowledge sentences based on the relevance to the
context. As we do not have access to ground-truth
supervision for this contextual knowledge ranker,
we make use of sentence embedding for weak su-
pervision. The top-ranked knowledge sentences
from the knowledge ranker are then fed to the con-
ditional text generator to guide generation. By
giving the knowledge in addition to the context, we
provide rich information for the generator to attend
to and help the model better understand the ratio-
nale between sentences. Table 1 shows an example
of controllable story generation with increasing
model capacity.

Summary of Contributions:

e We propose a novel generation framework that al-
lows dynamical incorporation of external knowl-
edge into language model as well as control for
text generation.

e Using both automatic metrics as well as human
evaluations, we demonstrate that our model gen-
erates more fluent, consistent, and coherent sto-
ries with lower repetition rate and higher diversi-
ties compared to the previous state-of-the-art on
RoC story datasets (Mostafazadeh et al., 2016).

e We showcase the controllability of our model
by replacing the keywords used to generate sto-
ries. Human evaluation results show that up to
91.5% of the generated stories are successfully
controlled by the new keywords .

e We scale our model from 124 million to 8.3 bil-
lion parameters and demonstrate that both quali-
ties, as well as controllability of the generations,
improve as the model size increases.

2 Framework

In our problem setup, we complete a story using
the first sentence as input, similar to Guan et al.
(2020). We augment the generation process with an
external knowledge-base and develop a methodol-
ogy that can guide and control the story generation.
Our approach consists of the following four steps
connected together as shown in Figure 1:

2832

1. Given the story context, a keyword predictor
model first predicts a set of keywords for the
next sentence yet to be generated.

2. A knowledge retriever then takes the gen-
erated keywords and queries an external
knowledge-base where each knowledge triple
is converted into natural language “knowledge
sentences” using templates.

3. A contextual knowledge ranker then ranks the
external knowledge sentences based on their
relevance to the story context.

4. Finally, a generator takes both the story con-
text as well as the top-ranked knowledge sen-
tences as input and generates the next sentence
in the story. The output sentence is appended
to the story context and steps 1-4 are repeated.

This formulation naturally allows controllability by
replacing the keyword prediction process with man-
ual external keywords. This work uses dynamic
planning of the keywords and knowledge at each
generation step. This allows the users to participate
and control the generation on the go. As a result,
they don’t need to pre-specify the keywords explic-
itly. We also note that it is challenging to statically
plan all the knowledge needed for generation at
the beginning. This issue becomes severe for long
generations. To formalize this method, we start by
introducing notation used throughout the paper and
then detail each aforementioned four steps in the
following subsections.

Notation: A knowledge-base, G is de-
fined as a set of knowledge triples ¢ =
(subject, relation, object). A knowledge sentence,
r is defined as » = T'(t) by mapping ¢ using prede-
fined templates T'. For example, (eiffel tower, At-
Location, paris) is transformed into eiffel tower is
at paris. We should highlight that since our frame-
work transforms the triple knowledge database into
natural language sentences, any knowledge base in
natural language format can be readily incorporated
into our framework. We use superscripts to index
story sentences and define a story S of length [as
a sequence of individual story sentences s’ where
S ={s',s% .- s'}. Weuse K' = {ki,--- ,ké}
to denote the keywords associated with story sen-
tence s'. A keyword kzé is made up of subword to-
kens from our language model’s vocabulary. Note
that the number of keywords ¢ per sentence varies
and can be zero. We define R = {r},--- ,rl}

as the knowledge associated with s', where 17 de-
notes the j-th knowledge sentence associated s°.
The number of knowledge sentences v varies per
sentence and can be zero. Note that v # ¢ because
a keyword can have multiple knowledge triples
associated with it. Given this notation, we de-
fine the story context X* = {z!,--- 2’} where

' = [R!, s]. The goal of this work is to generate
x' given X*~1, that is to first predict the knowledge
R' contained in s’ and then predict s° itself.

2.1 Keyword Predictor Model

To provide manual control to users, we first develop
a keyword predictor model. Given the current story
context X!, the model predicts a set of keywords
K for the next sentence yet to be generated. The
prediction of keywords instead of directly predict-
ing knowledge triples not only allows us to control
the generation in an interpretable manner, but it
also helps to greatly reduce the search space for the
knowledge triples. We formulate this keyword pre-
diction problem similar to a left-to-right language
model where the goal is to predict the string of
concatenated keywords:

q
K’L X'L 1 H k'L Xz 1 Kz) (1)

where K _; denotes all the predicted keywords up
to the jth keyword and p is the probability distri-
bution. We use a GPT-2 (Radford et al., 2019)
transformer to model this probability distribution.
We optimize the keyword predictor with maximum
likelihood training and a next token prediction loss.
Following Yao et al. (2019), we provide the la-
bels for K by extracting keywords from a ground
truth training sentence s’ using the RAKE algorithm
(Rose et al., 2010) to train our keyword predictor.
Note that our model allows generation of multi-
ple keywords and thus provides the flexibility to
choose a subset of them as the control signal to fit
in the generation.

2.2 Knowledge Retrieval

In this step, we use the generated keywords K in
Section 2.1 and retrieve all the related knowledge
triples from our knowledge base GG. This is sim-
ply done by converting all knowledge triples into
knowledge sentences using predefined templates
and then matching keywords against the knowl-
edge sentences. This results in the knowledge set
RP = {fi, ..., #} with size z. Future work will

2833

focus on replacing this simple retrieval with a learn-
able module similar to Guu et al. (2020).

Algorithm 1 Building Pseudo Label of R

Input: Story sentence s° and its preceding sentence
s'~1, USE encoder U, RAKE keywords extractor, and
knowledge base G

Output: Pseudo Label of R’

. Extract keywords K from s’ using RAKE
Find R = {T'(t)|t € G and 3k € K',s.t. k! € t}
Encode each 7; € R to Uy using USE

Encode [s;_1, s;] to U*®

Compute cosine similarity score between each U;

and U*®
6: return 7;s with the top IV highest score

Sk

2.3 Building Pseudo Label of R’

The main challenge for controlling generation with
knowledge is that we have no explicit access to the
hidden, latent controlling knowledge humans use
to supervise their story writing. That means R,
the knowledge associated with s’ is not available.
We, therefore, propose to use a weakly supervised
signal to build the pseudo labels of R’ from s'.
We hypothesize that R’ should 1) overlap with s
in terms of keywords and 2) have strong connec-
tions to both the preceding sentence s'~! and s°.
We include s°~! along with s’ because it is hard
to retrieve appropriate knowledge using only s’
due to the ambiguity of natural language. We also
did not include other previous context beyond s°~!
as additional context overwhelms the information
contained in s’

Following our hypothesis, we first extract key-
words K’ from s using RAKE (Rose et al., 2010)
and then match K with all knowledge triples in
(. Transforming the retrieved triples into knowl-
edge sentences gives us our set of R’. We then take
the sentence s’ and s~ !, concatenate them, and
encode them using the Universal Sentence Encoder
(USE) (Cer et al., 2018), a widely-used toolkit for
semantic similarity, U® = U([s"~", 5']), where we
denote the encoder of USE as U. For each rj € R,
we then calculate the cosine similarity between U*®
and U] = U(7;) and sort R? based on this score.
We take the top N highest scores Fé- as a pseudo
label of R'. Algorithm 1 describes this process.
During the training phase of each following model,
we use this pseudo label of R’ to represent R'.

2.4 Contextual Knowledge Ranker

While knowledge retrieval with keywords reduces
the controlling knowledge candidate space from
the knowledge base G to the subset R, this set
is still large and noisy since words are ambiguous
and can have multiple senses. We, therefore, con-
textualize the knowledge sentences in R to obtain
relevant and useful ones under X*~!. To do this,
we develop a contextual knowledge ranker. The
model is trained with pseudo-labels extracted with
access to the future sentence s’ as described in Sec.
2.3.

We use a BERT model to encode both the context
X! and each knowledge sentence f; e R'. To
adapt to the format of BERT, we append a [SEP]
token to each R’ and s/ inside the context X?~!.
A [CLS] token is then added to the beginning of
X1, For segment ids, we mark the tokens from
the knowledge base as 0 and those from the story
as 1. The representation of X*~" and % are then
obtained after applying a linear layer on top of the
embedding of the [CLS] token:

Vx = W1 BERTCLs(Xi_l),
V} = W2 BERTCLS (f’;),

where W, and W5 are learnable weights. We then
calculate the relevance score C between X! and
7% using the inner product between V; and Vj as :

C,=C(X""L i) =WV (2)

We take R’ (Sec. 2.3) as positive samples and

RI\R' as negative samples to train our ranker.
Given a positive and a negative knowledge sen-
tence 1, and r,, we define the ranking loss as

L=max{0,M —C(X" ") +C(X" " r,)} (3

where M is a margin and determined empirically.
Algorithms 2 describe the ranker training process.

At inference time, we simply calculate C; for all
f; € R, sort them based on C’; score and pick the

top N most relevant knowledge sentences as R'.

2.5 Conditional Generator

The conditional generator is a language model that
incorporates the controlling knowledge and gener-
ates the following sentences. It concatenates the
story context X~ ! and controlling knowledge R’
as input and generates s°. A GPT-2 transformer is
used to model this conditional probability distribu-
tion. We describe the concatenated input represen-
tation in the Appendix A.5.

2834

Algorithm 2 Knowledge Ranker Training

Parameters: BERT model parameters © and ranker
model parameters Wy and Wo
Input: A story S’ with [sentences and a knowledge
base G
1: Initialize © using a pre-trained BERT model and
W1, Wy randomly.
2: Dataset D =)
3: Call Algorithm 1 to retrieve R' from G using s!.
4: fori € {2,...,1} do
5: Call Algorithm 1 to retrieve R’ using s°.
6
7
8

Get R! using knowledge retrieval (Section 2.2)
forje {1,...,N} do
: Sample 7, from R’ and r,, from R\R'
9: D=DuU (X"t r,r,)

10: end for

11: end for

12: for (X,rp,r,) € D do

13: Calculate loss L using Equation 3
14: Optimize BERT, W7, W

15: end for

16: return BERT, W7, Ws

3 Experimental Setup

3.1 Datasets

We use the ROC story dataset (Mostafazadeh
et al., 2016) for our experiments. It consists of
98,161 stories, where each story contains five sen-
tences. 88,344/4,908/4,909 stories are used for
train/validation/test sets, respectively. Following
Guan et al. (2020), for each sentence, delexicaliza-
tion is performed by replacing all the names and en-
tities in stories with special placeholders, [MALE],
[FEMALE]), and [NEUTRAL] for male, female and
unknown names and entities, respectively. Given
the first sentence of each story, our model’s task is
to generate the rest of the story. For our external
knowledge base, we use ConceptNet (Speer and
Havasi, 2012), consists of 600k knowledge triples.

3.2 Models

We used Megatron-LM (Shoeybi et al., 2019) for
pre-trained BERT and GPT-2 models to initialize
our contextual knowledge ranker and generative
models, respectively. For the model configurations,
hidden size, number of layers, and attention heads,
we used the configurations of BERT and GPT-2 as
in Megatron-LM. For generation with our GPT-2
models, we used a top-k sampling scheme (Fan
et al., 2018) with £ = 40 and a softmax tempera-
ture of 0.7. We detail the training hyperparameters
and the input representations for GPT-2 and BERT
in Appendix A.1 & A.2 . Both the keyword predic-
tor and the conditional sentence generator follow

the same settings.

To train our contextual knowledge ranker, we set
the margin to 5.0. We set the number of knowledge
sentences in R’ to 10. Therefore, for a given story
context, the top 10 retrieved knowledge sentences
from ConceptNet according to USE are chosen as
the positive samples. We further select 40 nega-
tive samples to compute our margin loss. We then
randomly sample 50 (positive, negative) pairs for
each story context to train our contextual knowl-
edge ranker. In total, we used ~15 million pairs
for training and ~1 million pairs for validation.
After training our ranker, we achieve a validation
accuracy of 0.9.

3.3 Controllability Experiment Setup

To test the controllability of our model, we perform
experiments where we change keywords to their
antonyms. With antonyms, we expect maximal
change to the story generation. To do that, we first
use MEGATRON-CNTRL-124M to generate key-
words K and corresponding full story S. Then we
identify the first keyword k! € K* from K whose
antonym is available at WordNet (Miller, 1995). If
multiple antonyms for k% are available we sample
one with a uniform random probability. Afterwards,
we provide the start of story {s!,s? .- s'71},
the keywords shared with our original story
{K' K2 ... K1}, and the antonym of k! to
either MEGATRON-CNTRL-124M or larger mod-
els (e.g. MEGATRON-CNTRL-355M). We then
let the model finish the generation. We refer
to these generations as MEGATRON-CNTRL-ANT,
for example, we call the antonym generations from
MEGATRON-CNTRL-355M model as MEGATRON-
CNTRL-355M-ANT.

3.4 Baselines

We compare our model with the following state-
of-the-art story generation models. (1) Plan and
write (Yao et al.,, 2019): The authors use an
LSTM-based model to first generate a sequence
of keywords for planning the story. These key-
words are then used to condition the generation.
(2) Knowledge enhanced GPT-2 (Guan et al.,
2020): This work is currently the SOTA for ROC
story generation. It finetunes a pre-trained GPT-2
model with knowledge triples from commonsense
datasets. Similar to our method, the knowledge
triples are converted to sentences with templates.
A multitask learning framework is then developed
to further finetune the story generation task and

2835

classify corrupted stories from real ones. We do
not compare to Fan et al. (2019) because Guan et al.
(2020) has already shown their model significantly
outperforms Fan et al. (2019) and in this work, we
compare to Guan et al. (2020). (3) GPT-2-124M:
This baseline finetunes a GPT-2 model with a next
token prediction loss on the story.

3.5 Evaluation

We conduct both automatic as well as human eval-
uations to assess our generation.

3.5.1 Automatic Evaluation

We use the following metrics to compare differ-
ent models: Repeat: measures the redundancy of
the generated story by reporting the percentage
of the stories that contain at least one repeated 4-
gram (Shao et al., 2019). Distinct: measures the
diversity of generated stories by reporting the ratio
between distinct 4-grams to all generated 4-grams.
Perplexity: In the inference phase, our models in-
volve two steps of generation: (i) generate set of
knowledge sentences, R’ from story context X°~!,
(ii) generate story sentence, s* from X*~! and R'.
To report the perplexity of the conditional generator
we sample R’ sequentially before generating each
story sentence s’ and report the total perplexity of
all sentences s° for i € [2,1] where [is the number
of sentences in the story.

3.5.2 Human Evaluation on Quality

We conduct human evaluations on Amazon Me-
chanical Turk! (AMT) to analyze the quality of
our generations on three aspects: Fluency, Co-
herence, and Consistency. To evaluate fluency,
we show the annotators a pair of generated sto-
ries from two models. We ask them to evaluate
each sentence independently and choose the story
with better overall fluency. Fluency of a story is
defined as a measure of intra-sentence linguistic
quality and grammatical correctness taken over all
sentences of the story. For coherence, we provide
the same stories as in fluency but ask to choose the
one with better inter-sentence causal and temporal
dependencies. We let the annotators choose tie for
both fluency and coherence.

Different from the settings of fluency and coher-
ence, we only show one generated story to anno-
tators to evaluate consistency. They are required
to choose whether the story is logically consistent,
based on whether the story self contradicts or not.

'https://www.mturk.com/

We set up these three evaluations as independent
AMT tasks to make sure the tasks do not influ-
ence each other and introduce spurious correlations
between labels. To reduce noise in our labeling pro-
cess, we only accepted workers with an approval
rating over 90% and have over 1k accepted jobs.
We further limited the location of the annotators to
the United States. For each example, we explicitly
ask them to spend at least 15 seconds to evaluate
coherency and 10 seconds to evaluate the other two
properties. In total, we randomly sample 200 sto-
ries and assign five annotators for each story. We
adopted majority voting to make final decisions
among the five annotators.

3.5.3 Human Evaluation on Controllability

To evaluate how controllable our model is, we con-
duct another human evaluation just for controlla-
bility. We show the annotators the start of a story,
original keywords, and the corresponding genera-
tion. We then show the antonyms of the keywords,
along with the corresponding generated story, and
ask the annotators if the new story has changed
compared to the original story in accordance with
the meaning of the keyword’s antonyms. The rest
of the AMT settings for these experiments are the
same as our consistency experiments.

4 Results

In this section, we first perform automatic and hu-
man evaluations with different model sizes and
compare our framework to the existing baselines.
We then evaluate the controllability of our model
and finally show ablation study varying GPT-2 and
BERT model sizes. The detailed configuration of
the model sizes are shown in Table 2. We provide
several generated stories in Appendix A.7 varying
the length of the given context. We use M-CNTRL
to denote MEGATRON-CNTRL in the tables due to
the limited space.

Conditional Keyword Knowledge

Model Name Generator Generator Ranker

(GPT-2) (GPT-2) (BERT)

M-CNTRL-124M 124M 124M 336M
M-CNTRL-355M 355M 355M 336M
M-CNTRL-774M 774M 774M 336M
M-CNTRL-2B 2.5B 2.5B 336M

M-CNTRL-8B 8.3B 2.5B 336M

Table 2: Number of parameters of our models (M-

CNTRL is the short form for MEGATRON-CNTRL).

2836

Source A Coherence 1

Fluency 1 Source B

78.5% - 13.0%
46.0% - 39.0%
56.0% - 30.5%

M-CNTRL-124M
M-CNTRL-124M
M-CNTRL-355M

66.5% - 22.5%
44.5% - 43.5%
46.5% - 30.5%

Yao et al. (2018)
Guan et al. (2020)
Guan et al. (2020)

M-CNTRL-355M
M-CNTRL-774M
M-CNTRL-2B
M-CNTRL-8B

52.0% - 31.5%
44.5% - 41.5%
50.5% - 30.5%
46.0% - 39.5%

46.5% - 39.0%
56.0% - 33.5%
53.0% - 39.0%
46.5% - 46.5%

M-CNTRL-124M
M-CNTRL-355M
M-CNTRL-774M

M-CNTRL-2B

Table 3: Pairwise comparison between our models and baselines. Percentages in the format “A% - B%” indicate
how often annotators rank the samples from source A better than from source B for a given category, and vice
versa. Percentage pairs do not sum to 100% as the annotators were allowed to choose “tie” as being of equal
quality. MEGATRON-CNTRL-124M achieves better results than all baselines. Scaling the models shows better

coherence and fluency.

Consistency T

Name PPL | Repeat] Distinct T (Human Eval)
GPT-2-124M 6.98 27.2 74.1 69.5
Yao et al. (2018) NA 13.3 63.7 49.0
Guan et al. (2020) 7.04 22.1 77.1 67.0
M-CNTRL-124M 9.37 20.0 80.1 74.5
M-CNTRL-355M 8.02 19.9 81.6 75.5
M-CNTRL-774M 6.58 21.3 81.6 80.5
M-CNTRL-2B 6.31 21.2 82.6 89.0
M-CNTRL-8B 6.21 21.2 82.8 93.0

Table 4: Evaluation results for the previous state-of-
the-art models as well as our algorithm at different
sizes. Perplexity, repeat, and distinct are evaluated auto-
matically whereas consistency is obtained using human
evaluations. Our smallest model with 124M parame-
ters achieves better distinct and consistency score com-
pared to prior work. Increasing model size up to 8B
improves perplexity, distinct, and consistency scores.
For reference, the ground truth human writing gives 7.6
score for repeat and 88.9 for distinct.

4.1 Automatic and Human Evaluations

Table 4 shows that our smallest model,
MEGATRON-CNTRL-124M achieves better
distinct and consistency scores compared to
previous work. For repetition, our model is worse
than Yao et al. (2019) which was also observed in
Guan et al. (2020). The reason could be their small
8M model is better at learning short term statistics
(e.g. 4-grams), while large models are better at
learning long term dependencies. Compared to
other GPT-2 based models (i.e. GPT-2-124M and
Guan et al. (2020)), MEGATRON-CNTRL-124M
achieves lower repeat and higher distinct scores,
hence our model generates less repetitive stories.
We notice from Table 4 that our perplexity (PPL)
score is much higher than other GPT-2-based mod-
els. Our hypothesis for why this occurs is that other
GPT-2-based methods directly model and report
P(s%|s!, 8% ... s"~1) while our conditional gen-
erator models and reports P(s!| X!, R"). When

computing perplexity, [s!, s, - - | s'~!] are given
ground truth tokens, but R and all R in X*~! must
be sampled from a distribution that is learned with
weak supervision. This sampling introduces noise
and non-determinism that results in higher perplex-
ity. This discrepancy is not an issue when analyzing
automatic evaluation metrics within our model fam-
ily. When scaling our model from 124M up to 8B
parameters we see a consistent drop in PPL and
increase in distinct. This shows larger models can
generate better stories with more diversity.

Human evaluation results are presented in last
column of Table 4 (consistency) and in Table
3. Comparing MEGATRON-CNTRL-124M to Yao
et al. (2019), we achieve much better coherence,
fluency, and consistency scores, which shows the
benefit of large pre-trained transformer models.
Comparing MEGATRON-CNTRL-124M to Guan
et al. (2020) which uses a similar base model, we
find that fluency is similar, however we should note
that Guan et al. (2020) is not controllable and our
model has significantly better coherence (+7.0%)
in Table 3 and consistency (+7.5%) in Table 4. We
attribute this to the use of the retrieved knowledge,
R'. By explicitly providing facts pertinent to the
next sentence, the conditional generative model
can focus on just generating text. By comparison,
a standard autoregressive GPT-2 model is tasked
with predicting both the topics and the text of the
next sentence.

Scaling this up, and comparing MEGATRON-
CNTRL-355M to Guan et al. (2020), our
model significantly outperforms in all aspects.
Furthermore, a thorough comparison among
MEGATRON-CNTRL-355M, MEGATRON-CNTRL-
774M, MEGATRON-CNTRL-2B, MEGATRON-
CNTRL-8B shows that scaling the model size fur-
ther almost always improves the quality of genera-

2837

tion in terms of fluency, coherence and consistency.
For consistency, our best model at 8B parameters
achieves a score of 93%.

4.2 Controllability Evaluation

We evaluate the controllability by changing key-
words to their antonyms as detailed in Section
3.3 & 3.5. Table 5 shows repeat and distinct
for MEGATRON-CNTRL-124M as well as the con-
trolled versions at three different sizes. Altering
control with antonym keywords gives lower repeat
and higher distinct scores than the original genera-
tion. As the model size increases, the repeat stays
almost constant while distinct improves. These
results show that changing keywords manually re-
sults in distinct and not repeated text.

Name Repeat | Distinct T
M-CNTRL-124M 20.0 80.1
M-CNTRL-124M-ANT 17.8 80.9
M-CNTRL-355M-ANT 18.0 81.6
M-CNTRL-8B-ANT 18.5 82.8

Table 5: Comparing controllability of the models by
changing the keywords to their antonyms. Controlled
generations show less repetition and higher diversity
compared to the original one.

Further supporting this hypothesis, evaluation of
controllability in Table 6 shows that MEGATRON-
CNTRL-124M-ANT achieves a high controllabil-
ity score of 77.5%. This means that by changing
the keywords to their antonym, 77.5% of newly
generated stories change their semantic content to
follow the new antonym keywords. We also show
that larger models are better able to leverage key-
word control. Scaling the model size from 124M
to 355M and 8B model further improves the con-
trollability score to 84.5% and 91.5%, respectively.
We again observe the quality (e.g. coherence) of
our controlled generation improves as the model
size scales to 8B.

Name Controllability 1
M-CNTRL-124M-ANT 77.5%
M-CNTRL-355M-ANT 84.5%
M-CNTRL-8B-ANT 91.5%

Table 6: Human evaluation for controllability by
changing keywords to their antonyms. Over 77% of
our generation changes according to the keywords.

4.3 Ablation Studies

In this section, we conduct the ablation study on
the planning strategy and external knowledge. The

Name Repeat | Distinct 1
M-CNTRL-124M (D) 20.04 80.14
M-CNTRL-124M w/o knowledge (D) 23.59 79.39
M-CNTRL-124M (S) 23.87 79.45
M-CNTRL-124M w/o knowledge (S) 23.98 79.61

Table 7: Ablation studies of static (S) vs dynamic (D)
planning strategy, with and without knowledge.

study of model size can be found in the Appendix
A3.

4.3.1 Planning Strategy

In this section, we investigate the effects of plan-
ning strategy in our framework. Yao et al. (2019)
showed that static planning works better than dy-
namic planning for LSTM-based models. To intro-
duce the static planning in our model, we predicted
all the keywords and relevant knowledge sentences
from the starting sentence and generated the en-
tire stories. When we compare these generations
with the stories generated by dynamic planning, we
see in Table 7 (first and third rows) that dynamic
planning outperforms the static planning strategy
with higher distinction (+0.7%) and lower repeti-
tion (-3.8%) scores. This is due to direct guidance
over each sentence provided by the retrieved knowl-
edge from dynamic planning . In contrast, in static
planning, the retrieved knowledge sentences are all
predicted together at the beginning using only the
starting sentence, which makes the supervision for
each story sentence weaker and noisier.

4.3.2 External Knowledge

In this section, we investigate the importance of
retrieved knowledge. Table 7 (first and second
rows) shows that, when excluding the knowledge
from our framework (i.e. MEGATRON-CNTRL-
124M w/o knowledge), distinction score decreases
by 0.8% and repetition increases by 3.6%, high-
lighting the importance of external knowledge in
our approach. Unlike dynamic planning, we ob-
serve that in static planning, the external knowledge
does not play an important role in the quality of
the generations and using or not using the knowl-
edge leads to similar qualities. This observation
also confirms that knowledge needs to be planned
dynamically.

5 Future Work

Short story sentences in ROC story dataset limits
our exploration from several potential research di-
rections. For example, how long the control signal

2838

would propagate for longer generations? Investi-
gating this issue using longer story datasets (e.g.
WRITINGPROMPTS (Fan et al., 2018)) is a subject
for future work. Other interesting direction may
include incorporating the structure-level control-
lability by adding it as either an extra input for
the conditional generator or a multitask learning
supervision for each sequence.

We also observed that in some cases during the
generation, our model simply mentions the given
word in the sentence, and talks about things that are
not strictly related to or restricted by the given word.
For example, the generated story of MEGATRON-
CNTRL-8B in Table 15 only mentions the keyword
“realize” instead of centering around it. This is
caused by the RAKE keywords extractor, which
does not always extract the keywords that represent
the sentence well. One way to mitigate this issue is
to leverage longer context information to identify
better keywords which is subject of the future work.

6 Related Work

Knowledge Incorporation of knowledge into lan-
guage models has shown promising results for
downstream tasks, such as factual correct genera-
tion (Logan et al., 2019) , commonsense knowledge
graph construction (Bosselut et al., 2019), entity
typing (Zhang et al., 2019) and etc. More recently,
several works have shown that inclusion of learned
mechanisms for explicit or implicit knowledge can
lead to the state-of-the-art results in Question An-
swering (Guu et al., 2020; Karpukhin et al., 2020;
Lee et al., 2019; Lewis et al., 2020) and dialogue
modeling (Roller et al., 2020).

Storytelling There are several different story-
telling tasks described throughout the literature.
Storytelling can be classified into story completion
(Chen et al., 2019), story ending generation (Guan
et al., 2019), story generation from prompts (Fan
et al., 2018) or titles (Yao et al., 2019), and story
generation from a given sentence (Guan et al.,
2020). Difterent approaches have been developed
to model the structure of stories with storylines
(Yao et al., 2019), skeletons (Xu et al., 2018),
Conditional Variational AutoEncoders (Wang and
Wan, 2019) and a coarse-to-fine framework (Fan
et al.,, 2019). Other works focus on incorporat-
ing commonsense knowledge into story generation
with attention-based models (Guan et al., 2019;
Chen et al., 2019). Recently, pre-trained language

models have been used to finetune on both story
completion datasets and commonsense knowledge
to further improve the quality of story completion
(Guan et al., 2020). However, few works concern
the controllability of language model generation,
especially for the large pre-trained models that are
common in today’s literature.

Controllable Generation Controllable text gen-
eration has a wide range of applications, including
controlling through persona (Zhang et al., 2018;
Boyd et al., 2020), politeness (Niu and Bansal,
2018), etc. Wiseman et al. (2018) presented con-
trolling generations by learning latent, discrete tem-
plates from data. Fu et al. (2019) discovered the
importance of pivot words that determines the sen-
tence attributes and presented a lexical analysis
framework. To control large pre-trained models,
Keskar et al. (2019) demonstrated the ability to con-
trol text generation through a wide range of aspects,
such as domains and links. Plug-and-play language
models Dathathri et al. (2019) also address whole
document controllability by adding a linear classi-
fier on top of GPT-2 to predict whether generated
text observes a particular style or property. Prabhu-
moye et al. (2020) provides a good survey of five
modules for control. Differing from these works,
we control the generation through keywords backed
by external knowledge.

7 Conclusion

In this paper, we proposed a novel framework that
adds control to text generation with external knowl-
edge. Our model first generates a set of keywords
and a knowledge retriever then queries an external
knowledge base for triples related to the keywords.
Based on the relevance to the story context, a con-
textual knowledge ranker ranks the retrieved knowl-
edge sentences and feeds the top ones to a condi-
tional generator to generate the next story sentence.
Experimental results on the ROC story dataset
showed that our model outperforms state-of-the-art
models by generating less repetitive, more diverse
and logically consistent stories. Human evalua-
tion of the controllability of our model shows that
91.5% of generated stories are successfully con-
trolled by changing keywords to their antonym. In
line with current trends, we also demonstrate that
using larger pre-trained language models consis-
tently improves both the quality of the generated
stories and controllability.

2839

References

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Celikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for au-
tomatic knowledge graph construction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 4762-4779.

Alex Boyd, Raul Puri, Mohammad Shoeybi, Mostofa
Patwary, and Bryan Catanzaro. 2020. Large scale
multi-actor generative dialog modeling. arXiv
preprint arXiv:2005.06114.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder. arXiv
preprint arXiv:1803.11175.

Jiaao Chen, Jianshu Chen, and Zhou Yu. 2019. In-
corporating structured commonsense knowledge in
story completion. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 33, pages
6244-6251.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2019. Plug and play language mod-
els: a simple approach to controlled text generation.
arXiv preprint arXiv:1912.02164.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hi-
erarchical neural story generation. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 889-898.

Angela Fan, Mike Lewis, and Yann Dauphin. 2019.
Strategies for structuring story generation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2650-
2660.

Yao Fu, Hao Zhou, Jiaze Chen, and Lei Li. 2019. Re-
thinking text attribute transfer: A lexical analysis. In
Proceedings of the 12th International Conference on
Natural Language Generation, pages 24-33.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus.

Jian Guan, Fei Huang, Zhihao Zhao, Xiaoyan Zhu, and
Minlie Huang. 2020. A knowledge-enhanced pre-
training model for commonsense story generation.
arXiv preprint arXiv:2001.05139.

Jian Guan, Yansen Wang, and Minlie Huang. 2019.
Story ending generation with incremental encoding
and commonsense knowledge. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 6473-6480.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. arXiv
preprint arXiv:2002.08909.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Ledell
Wu, Sergey Edunov, Danqgi Chen, and Wen-
tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Nitish Shirish Keskar, Bryan McCann, Lav R. Varsh-
ney, Caiming Xiong, and Richard Socher. 2019.
Ctrl: A conditional transformer language model for
controllable generation.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova.
2019. Latent retrieval for weakly supervised

open domain question answering. arXiv preprint
arXiv:1906.00300.

Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim
Rocktischel, et al. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. arXiv
preprint arXiv:2005.11401.

Robert Logan, Nelson F Liu, Matthew E Peters, Matt
Gardner, and Sameer Singh. 2019. Barack’s wife
hillary: Using knowledge graphs for fact-aware lan-
guage modeling. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 5962-5971.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39-
41.

Nasrin Mostafazadeh, Lucy Vanderwende, Wen-tau
Yih, Pushmeet Kohli, and James Allen. 2016. Story
cloze evaluator: Vector space representation evalu-
ation by predicting what happens next. In Proceed-
ings of the 1st Workshop on Evaluating Vector-Space
Representations for NLP, pages 24-29.

Tong Niu and Mohit Bansal. 2018. Polite dialogue gen-
eration without parallel data. Transactions of the As-
sociation for Computational Linguistics, 6:373-389.

Shrimai Prabhumoye, Alan W Black, and Rus-
lan Salakhutdinov. 2020. Exploring control-
lable text generation techniques. arXiv preprint
arXiv:2005.01822.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

2840

http://arxiv.org/abs/1909.05858
http://arxiv.org/abs/1909.05858

Stephen Roller, Emily Dinan, Naman Goyal, Da Ju,
Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott,
Kurt Shuster, Eric M Smith, et al. 2020. Recipes
for building an open-domain chatbot. arXiv preprint
arXiv:2004.13637.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text mining: applications
and theory, 1:1-20.

Zhihong Shao, Minlie Huang, Jiangtao Wen, Wenfei
Xu, et al. 2019. Long and diverse text generation
with planning-based hierarchical variational model.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3248—
3259.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using gpu model paral-
lelism. arXiv preprint arXiv:1909.08053.

Robert Speer and Catherine Havasi. 2012. Represent-
ing general relational knowledge in conceptnet 5. In
LREC, pages 3679-3686.

Triew H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Tianming Wang and Xiaojun Wan. 2019. T-cvae:
Transformer-based conditioned variational autoen-
coder for story completion. In Proceedings of the
28th International Joint Conference on Artificial In-
telligence, pages 5233-5239. AAAI Press.

Sam Wiseman, Stuart M Shieber, and Alexander M
Rush. 2018. Learning neural templates for text gen-
eration. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3174-3187.

Thomas Wolf, Victor Sanh, Julien Chaumond, and
Clement Delangue. 2019. Transfertransfo: A
transfer learning approach for neural network

based conversational agents. arXiv preprint
arXiv:1901.08149.

Jingjing Xu, Xuancheng Ren, Yi Zhang, Qi Zeng, Xi-
aoyan Cai, and Xu Sun. 2018. A skeleton-based
model for promoting coherence among sentences in
narrative story generation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 4306-4315.

Lili Yao, Nanyun Peng, Ralph Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-
and-write: Towards better automatic storytelling. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 7378-7385.

Lili Yao, Nanyun Peng, Ralph M. Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2018. Plan-

and-write: Towards better automatic storytelling.
CoRR, abs/1811.05701.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. In Advances in Neural Information Process-
ing Systems, pages 9051-9062.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you
have pets too? In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2204—
2213.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang,
Maosong Sun, and Qun Liu. 2019. Ernie: Enhanced
language representation with informative entities. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1441—
1451.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. CoRR, abs/1506.06724.

2841

http://arxiv.org/abs/1811.05701
http://arxiv.org/abs/1811.05701
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724
http://arxiv.org/abs/1506.06724

A Appendices

A.1 GPT-2 Hyperparameters:

We used the BPE subword tokenizer from Radford
et al. (2019) to tokenize each sentence of the RocC
story dataset. The maximum sequence length is set
to 1024 learned positional embeddings. An Adam
optimizer (Kingma and Ba, 2014) with learning
rate of 0.0001 is utilized. We added dropout to
both the embedding layer and multi-head attention
layers with 0.1 probability. Gradients were clipped
to a global gradient norm of 5.0. We finetuned the
GPT-2 models for 5 epochs and selected the best
one with the lowest perplexity on the validation set.

A.2 BERT Hyperparameters:

We set the maximum sequence length to
512 learned positional embeddings. We
used a WordPiece tokenizer with the
bert-large-uncased vocabulary for to-
kenization. The model was also optimized with
an Adam optimizer with a learning rate of 0.0001,
but it used a weight decay of 0.01. Gradients
are clipped to a global norm of 1.0. We also
added dropout to embedding layer and multi-head
attention layers with 0.1 probability. For the
selection of margin, we tried 0.1, 0.5, 1.0, and 5.0.
The choice of 5.0 gives the best result.

A.3 Model Size

In addition to analyzing the effect of scale on our
conditional generative model, we also performed
an ablation study on the model size of our GPT-2-
based keyword predictor and BERT-based ranker
models. The results in Table 8 show that increasing
the keyword model size from 774M to 2B reduces
the repetition while keeping the other scores sim-
ilar. Increasing the size of our contextual ranker
from 336M to 1.2B reduces the repetition while
also decreasing the diversity. It is not clear which
one is better. We conjecture that as the positive sam-
ples, R, we used to train our contextual ranker are
weakly supervised, and the fact that we used tem-
plates to synthetically convert knowledge triples
to knowledge sentences, scaling the model size
might be overfitting to noise. We, therefore, use
the smaller, more computationally efficient model
with 336M parameters for ranker models in all our
experiments.

Name (a-b-c) PPL| Repeat] Distinct T

2B-2B-336M 6.31 21.2 82.6
2B-2B-1.2B 6.35 19.7 81.2
2B-774M-1.2B 6.33 204 81.4

Table 8: Ablation studies varying keyword prediction
model (b) and ranking model (¢) keeping the condi-
tional generator fixed (a). Increasing keyword predic-
tion model reduces repetition. Larger ranking models
does not give consistently better scores as it may overfit
to noise due to the weakly supervised labels.

A.4 Datasets Used for pre-trained Models

The pre-trained GPT-2 models were trained on a
174GB corpora including: Wikipedia (Devlin et al.,
2018), OpenWebText (Gokaslan and Cohen, 2019),
RealNews (Zellers et al., 2019), and CC-Stories
(Trinh and Le, 2018). For BERT models we in-
clude BooksCorpus (Zhu et al., 2015) in the train-
ing dataset.

A.5 Input Format

For the format of R/, we add a *“ SEP ” string to
separate different knowledge sentences r7, in RI.
We add a “ EOK ” string to denote the end of
knowledge sentences.

For the story context X! =
{xt 2%, 271} where 2/ = [R/,s/], we
add a “OS” token to the end of each s’ to
denote the end of sentence. At the end of the
story, a “ |endoftext| ” token is appended. We
then concatenated X! with R’ as the input to
conditional generator.

A.6 Preprocessing

We follow the implementation of Guan et al. (2020),
to replace ““.” with “. . More details have already

been provided in Section 3.1.

A.6.1 Computation Resources

We used up to 20 DGX-1V servers (a total of 160
Tesla V100 32GB GPUs) for our experiments. Our
infrastructure is highly optimized for large scale
deep learning applications. The servers are con-
nected via NVSwitch with 300 GB/sec bandwidth
between GPUs inside a server and 100 GB/sec of
interconnect bandwidth between servers using 8 In-
finiBand adapters per server. As our story dataset is
small, the training of GPT-2 models usually takes
less than three hours. For the BERT model, it took
eight hours as we have ~ 15 million samples to
train.

2842

A.7 Generation Examples

A.7.1 Single Sentence Context

We present five generation examples keeping the
context fixed to one sentence.

Context: [MALE] and his friends are bored on a
weekend day.

Guan et al. (2019)

they decided to sneak into a movie . they got a bunch
of popcorn and a movie . then , they made it to a
movie . now , they have a really good time .

MEGATRON-CNTRL-124M keyword: go, decides
it is going to be a big night. [MALE] and his friends
decide to go out. they get drunk and have a great
time. when they are done they feel happy.

MEGATRON-CNTRL-8B keyword: go, decides

they decided to go to the video game store. [MALE]
picks out a new video game. [MALE] and his friends
have fun playing the new video game. [MALE] is no
longer bored.

MEGATRON-CNTRL-8B-ANT keyword: come

a new tv show begins to come on the local channel.
[MALE] is excited to watch his favorite tv show.
he watches his show and they all laugh together.
[MALE] and his friends have a fun time watching
their favorite show.

Table 9: Example 1

Context: [MALE] had a heavy duty backpack.

Guan et al. (2019)
he took it to the airport . he checked his pockets .
[MALE] did not have a bag . [MALE] was sad .

MEGATRON-CNTRL-124M keyword: took

he took it to the store one morning. he put it on the
shelf at the store. a coworker looked at it. then he
told [MALE] he hated lugging around.

MEGATRON-CNTRL-8B keyword: took

he took it to the army base camp. he packed it with
items like food , ammo , and tools. he took it to the
jungle every day. one day , he took it out and his
backpack exploded.

MEGATRON-CNTRL-8B-ANT keyword: abstain

he abstained from buying another backpack.
[MALE] used the old backpack for years. his old
backpack was a big burden. [MALE] bought a new
backpack with greater weight capacity.

Table 10: Example 2

2843

Context: [NEUTRAL] ’s blind date insisted on going
to the new sushi place.

Guan et al. (2019)

she accepted without saying a word . later , he picked
out a sushi roll . [NEUTRAL] was so happy with
her new sushi rolls . she had to wait for him to come
back .

MEGATRON-CNTRL-124M keyword: sure, date
she decided to go to the restaurant. she ordered a
blowfish. they gave her a small grin. she had a great
time.

MEGATRON-CNTRL-8B keyword: thought, rude
[NEUTRAL] was nervous because he was worried
she would be rude. but at the table , she was sweet
and friendly. and she was very nice , even though
she ate little sushi. [NEUTRAL] wondered if maybe
blind dates were actually very wonderful !

MEGATRON-CNTRL-8B-ANT keyword: uncertain
[NEUTRAL] was uncertain. she was not a sushi
person but agreed to try it. [NEUTRAL] and her
blind date ordered salmon sushi. the salmon sushi
was delicious.

Table 11: Example 3

Context: [MALE] hiked up the local hill.

Guan et al. (2019)

he stopped and picked up his brush . he used that
brush to brush his teeth . afterwards , he was ready
to ride back home . he went on his way home .

MEGATRON-CNTRL-124M keyword: top

he got a great view from the top. his legs felt great.
he climbed up the mountain and felt much better. he
went back to the hill and reached the top.

MEGATRON-CNTRL-8B keyword: top
he was at the top of the hill looking down. the weather
looked beautiful. the clouds suddenly passed. the
sun began to shine over the land again.

MEGATRON-CNTRL-8B-ANT keyword: bottom

he saw a huge boulder at the bottom. he could n’t
believe its size. he had to climb to the top of the hill.
he was afraid he would fall if he stood on top.

Table 12: Example 4

Context: her favorite glasses were ruined.

Guan et al. (2019)

she was really upset . she had no choice but to buy
new ones . she went to the mall to shop and found a
great pair . she bought them and was so happy .

MEGATRON-CNTRL-124M keyword: wore

she wore them every day. then she had a horrible
accident. her sister had broken them. she had to buy
new ones.

MEGATRON-CNTRL-8B keyword: wore

she wore them daily. she got them at the shoe store.
she found them and they were her favorite. after a
while they got broken.

MEGATRON-CNTRL-8B-ANT keyword: refresh
she was desperate to refresh them. she found a recipe
online. she poured bleach in them. she was glad to
have functional glasses.

Table 13: Example 5

A.7.2 Varying Number of Sentences in the
Context

We present three generation examples varying the
number of sentences in the context.

Context: [MALE] and his friends are bored on a
weekend day. it is going to be a big night.

MEGATRON-CNTRL-124M keyword: go, decides
[MALE] and his friends decide to go out. they get
drunk and have a great time. when they are done they
feel happy.

MEGATRON-CNTRL-8B keyword: decides
[MALE] decides to watch horror movies. his friends
join him. they watch horror movies all night.

MEGATRON-CNTRL-8B-ANT keyword: stop

they stop by a local arcade after the baseball game.
[MALE] turns on his favorite arcade game. [MALE]
’s favorite game makes him feel happy.

Table 14: The context contains two sentences.

Context: [MALE] liked trading commodities. one
day [MALE] was trading several products. [MALE]
noticed that he gained a lot of money from the new
trades.

MEGATRON-CNTRL-124M keyword: lost, money
[MALE] invested the money into stocks. [MALE]
lost all of his trading profits.

MEGATRON-CNTRL-8B keyword: realize

[MALE] realized that the new trades were his best
trading idea. [MALE] quit his old job and went full
time on his new trading idea.

MEGATRON-CNTRL-8B-ANT keyword: keep
[MALE] decided to keep doing this. now [MALE]
had a successful trading career.

Table 15: The context contains three sentences.

Context: we went to a dinner and show one night.
the first guy we saw was really nice. after that we
asked him out. he agreed.

MEGATRON-CNTRL-124M keyword: got
we got into a bad argument.

MEGATRON-CNTRL-8B keyword: NONE (no key-
words)
we had a really good time.

MEGATRON-CNTRL-8B-ANT keyword: end
we ended up dating exclusively.

Table 16: The context contains four sentences.

A.8 Human Evaluation Interface for
Annotators

Below we provide the interfaces used for human
evaluations (coherence, fluency, logical consis-
tency, and controllability).

2844

Which story has better coherence?

Select an option
Spending less than 15 secs per task will disqualify the evaluation! Text 1 is better 1

Evaluation: Determine which story has its sentences better connected or have Text 2 is better 2

better inter-sentence causal and temporal dependencies and coherence. Tie 3
Text 1: ${text1}

Text 2: ${text2}

ﬁfter ev')aluating each sentence independently, which story has better overall English
uency?

Select an option
Spending less than 10 secs per task will disqualify the evaluation! Text 1is better 1

Evaluation: For each story ignore coherency between sentences, evaluate each Text 2 is better 2

sentence independently, and give an overall rating of which story has better Tie 3
English fluency.

Text 1: ${text1}

Text 2: ${text2}

Is this story logically consistent?

Select an option
Spending less than 10 secs per task will disqualify the evaluation! Text 1 is consistent 1

Evaluation: Determine whether the facts in each story are logically consistent. Text T1is NOT consistent 2

For example, the story does not self contradict.

Text 1: S{text1}

Does the story change according to the new keyword(s)?

Select an option

Spending less than 15 secs per task will disqualify the evaluation! New story follows new 1
keywords (changes based on
Evaluation: Determine whether the new story changes according to the new new keywords)

keyword compared to the original story. New story does not follow 2

Start of the story: ${text} new keywords

Original keywords: ${keyword1}
Original story: ${text1}

New keywords: ${keyword2}
New story: ${text2}

2845

