
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 2771–2785,
November 16–20, 2020. c©2020 Association for Computational Linguistics

2771

Discontinuous Constituent Parsing as Sequence Labeling

David Vilares and Carlos Gómez-Rodrı́guez
Universidade da Coruña, CITIC

Departamento de Ciencias de la Computación y Tecnologı́as de la Información
Campus de Elviña s/n, 15071

A Coruña, Spain
{david.vilares,carlos.gomez}@udc.es

Abstract

This paper reduces discontinuous parsing to
sequence labeling. It first shows that exist-
ing reductions for constituent parsing as label-
ing do not support discontinuities. Second, it
fills this gap and proposes to encode tree dis-
continuities as nearly ordered permutations of
the input sequence. Third, it studies whether
such discontinuous representations are learn-
able. The experiments show that despite the
architectural simplicity, under the right repre-
sentation, the models are fast and accurate.1

1 Introduction

Discontinuous constituent parsing studies how to
generate phrase-structure trees of sentences com-
ing from non-configurational languages (John-
son, 1985), where non-consecutive tokens can be
part of the same grammatical function (e.g. non-
consecutive terms belonging to the same verb
phrase). Figure 1 shows a German sentence exhibit-
ing this phenomenon. Discontinuities happen in
languages that exhibit free word order such as Ger-
man or Guugu Yimidhirr (Haviland, 1979; Johnson,
1985), but also in those with high rigidity, e.g. En-
glish, whose grammar allows certain discontinuous
expressions, such as wh-movement or extraposition
(Evang and Kallmeyer, 2011). This makes discon-
tinuous parsing a core computational linguistics
problem that affects a wide spectrum of languages.

There are different paradigms for discontinu-
ous phrase-structure parsing, such as chart-based
parsers (Maier, 2010; Corro, 2020), transition-
based algorithms (Coavoux and Crabbé, 2017;
Coavoux and Cohen, 2019) or reductions to a prob-
lem of a different nature, such as dependency pars-
ing (Hall and Nivre, 2008; Fernández-González
and Martins, 2015). However, many of these ap-
proaches come either at a high complexity or low

1https://github.com/aghie/disco2labels

Noch nie habe ich so viel gewählt .

ROOT
S

VP

AVP

ADV ADV VAFIN PPER ADV ADV VVPP $.

AVP

(Yet) (never) (have) (I) (so) (much) (chosen) .

Figure 1: An example of a German sentence exhibiting
discontinuous structures, extracted from the NEGRA
treebank (Skut et al., 1997). A valid English translation
is: ‘Never before I have chosen so much.’

speed, while others give up significant performance
to achieve an acceptable latency (Maier, 2015).

Related to these research aspects, this work ex-
plores the feasibility of discontinuous parsing un-
der the sequence labeling paradigm, inspired by
Gómez-Rodrı́guez and Vilares (2018)’s work on
fast and simple continuous constituent parsing. We
will focus on tackling the limitations of their en-
coding functions when it comes to analyzing dis-
continuous structures, and include an empirical
comparison against existing parsers.

Contribution (i) The first contribution is theoret-
ical: to reduce constituent parsing of free word or-
der languages to a sequence labeling problem. This
is done by encoding the order of the sentence as
(nearly ordered) permutations. We present various
ways of doing so, which can be naturally combined
with the labels produced by existing reductions for
continuous constituent parsing. (ii) The second
contribution is a practical one: to show how these
representations can be learned by neural transduc-
ers. We also shed light on whether general-purpose
architectures for NLP tasks (Devlin et al., 2019;
Sanh et al., 2019) can effectively parse free word
order languages, and be used as an alternative to ad-
hoc algorithms and architectures for discontinuous
constituent parsing.

https://github.com/aghie/disco2labels

2772

2 Related work

Discontinuous phrase-structure trees can be derived
by expressive formalisms such as Multiple Context
Free Grammmars (Seki et al., 1991) (MCFGs) or
Linear Context-Free Rewriting Systems (LCFRS)
(Vijay-Shanker et al., 1987). MCFGs and LCFRS
are essentially an extension of Context-Free Gram-
mars (CFGs) such that non-terminals can link to
non-consecutive spans. Traditionally, chart-based
parsers relying on this paradigm commonly suf-
fer from high complexity (Evang and Kallmeyer,
2011; Maier and Kallmeyer, 2010; Maier, 2010).
Let k be the block degree, i.e. the number of non-
consecutive spans than can be attached to a single
non-terminal; the complexity of applying CYK (af-
ter binarizing the grammar) would beO(n3k) (Seki
et al., 1991), which can be improved to O(n2k+2)
if the parser is restricted to well-nested LCFRS
(Gómez-Rodrı́guez et al., 2010), and Maier (2015)
discusses how for a standard discontinuous tree-
bank, k ≈ 3 (in contrast to k = 1 in CFGs). Re-
cently, Corro (2020) presents a chart-based parser
for k = 2 that can run in O(n3), which is equiva-
lent to the running time of a continuous chart parser,
while covering 98% of the discontinuities. Also re-
cently, Stanojević and Steedman (2020) present an
LCFRS parser with k = 2 that runs inO(ln4 +n6)
worst-case time, where l is the number of unique
non-terminal symbols, but in practice they show
that the empirical running time is among the best
chart-based parsers.

Differently, it is possible to rely on the idea that
discontinuities are inherently related to the loca-
tion of the token in the sentence. In this sense, it
is possible to reorder the tokens while still obtain-
ing a grammatical sentence that could be parsed by
a continuous algorithm. This is usually achieved
with transition-based parsing algorithms and the
swap transition (Nivre, 2009) which switches the
topmost elements in the stack. For instance, Vers-
ley (2014) uses this transition to adapt an easy-first
strategy (Goldberg and Elhadad, 2010) for depen-
dency parsing to discontinuous constituent parsing.
In a similar vein, Maier (2015) builds on top of
a fast continuous shift-reduce constituent parser
(Zhu et al., 2013), and incorporates both standard
and bundled swap transitions in order to analyze
discontinuous constituents. Maier’s system pro-
duces derivations of up to a length of n2 − n + 1
given a sentence of length n. More efficiently,
Coavoux and Crabbé (2017) present a transition

system which replaces swap with a gap transition.
The intuition is that a reduction does not need to be
always applied locally to the two topmost elements
in the stack, and that those two items can be con-
nected, despite the existence of a gap between them,
using non-local reductions. Their algorithm en-
sures an upper-bound of n(n−1)

2 transitions.2 With
a different optimization goal, Stanojević and Al-
hama (2017) removed the traditional reliance of
discontinuous parsers on averaged perceptrons and
hand-crafted features for a recursive neural network
approach that guides a swap-based system, with
the capacity to generate contextualized representa-
tions. Coavoux and Cohen (2019) replace the stack
used in transition-based systems with a memory
set containing the created constituents. This model
allows interactions between elements that are not
adjacent, without the swap transition, to create a
new (discontinuous) constituent. Trained on a 2
stacked BiLSTM transducer, the model is guaran-
teed to build a tree with in 4n-2 transitions, given a
sentence of length n.

A middle ground between explicit constituent
parsing algorithms and this paper is the work
based on transformations. For instance, Hall and
Nivre (2008) convert constituent trees into a non-
linguistic dependency representation that is learned
by a transition-based dependency parser, to then
map its output back to a constituent tree. A simi-
lar approach is taken by Fernández-González and
Martins (2015), but they proposed a more compact
representation that leads to a much reduced set of
output labels. Other authors such as Versley (2016)
propose a two-step approach that approximates dis-
continuous structure trees by parsing context-free
grammars with generative probabilistic models and
transforming them to discontinuous ones. Corro
et al. (2017) cast discontinuous phrase-structure
parsing into a framework that jointly performs su-
pertagging and non-projective dependency pars-
ing by a reduction to the Generalized Maximum
Spanning Arborescence problem (Myung et al.,
1995). The recent work by Fernández-González
and Gómez-Rodrı́guez (2020a) can be also framed
within this paradigm. They essentially adapt the
work by Fernández-González and Martins (2015)
and replace the averaged perceptron classifier with
pointer networks (Vinyals et al., 2015), adressing

2Or alternatively 4n−2, if we apply additional constraints
to the gap transition and transitions following a shift ac-
tion. However this comes at a cost of not being able to map
more than m gaps within the same discontinuous constituent.

2773

the problem as a sequence-to-sequence task (for
dependency parsing) whose output is then mapped
back to the constituent tree. And next, Fernández-
González and Gómez-Rodrı́guez (2020b) extended
pointer networks with multitask learning to jointly
predict constituent and dependency outputs.

In this context, the closest work to ours is the re-
duction proposed by Gómez-Rodrı́guez and Vilares
(2018), who cast continuous constituent parsing as
sequence labeling.3 In the next sections we build
on top of their work and: (i) analyze why their
approach cannot handle discontinuous phrases, (ii)
extend it to handle such phenomena, and (iii) train
functional sequence labeling discontinuous parsers.

3 Preliminaries

Let w = [w0, w1, ..., w|w|−1] be an input sequence
of tokens, and T|w| the set of (continuous) con-
stituent trees for sequences of length |w|; Gómez-
Rodrı́guez and Vilares (2018) define an encoding
function Φ : T|w| → L|w| to map continuous con-
stituent trees into a sequence of labels of the same
length as the input. Each label, li ∈ L, is composed
of three components li = (ni, xi, ui):

• ni encodes the number of levels in the tree
in common between a word wi and wi+1. To
obtain a manageable output vocabulary space,
ni is actually encoded as the difference ni −
ni−1, with n−1 = 0. We denote by abs(ni)
the absolute number of levels represented by
ni. i.e. the total levels in common shared
between a word and its next one.

• xi represents the lowest non-terminal symbol
shared between wi and wi+1 at level abs(ni).

• ui encodes a leaf unary chain, i.e. non-
terminals that belong only to the path from the
terminal wi to the root.4 Note that Φ cannot
encode this information in (ni, xi), as these
components always represent common infor-
mation between wi and wi+1.

3Related to constituent parsing and sequence labeling,
there are two related papers that made early efforts (although
not a full reduction of the former to the latter) and need to
be credited too. Ratnaparkhi (1999) popularized maximum
entropy models for parsing and combined a sequence labeling
process that performs PoS-tagging and chunking with a set of
shift-reduce-like operations to complete the constituent tree.
In a related line, Collobert (2011) proposed a multi-step ap-
proach consisting of n passes over the input sentence, where
each of them tags every word as being part of a constituent or
not at one of the n levels of the tree, using a IOBES scheme.

4Intermediate unary chains are compressed into a single
non-terminal and treated as a regular branches.

Figure 2 illustrates the encoding on a continuous
example.

John likes the movie .
NOUN VERB DET NOUN PUNCT

S

VPNP

NP

(1,S,NP) (1,VP,) (1,NP,) (-2,S,) ()
(1,S,NP) (2,VP,) (3,NP,) (1,S,) ()

with ni

with abs(ni)

Figure 2: An example of a continuous tree encoded
according to Gómez-Rodrı́guez and Vilares (2018).

Incompleteness for discontinuous phrase struc-
tures Gómez-Rodrı́guez and Vilares proved that
Φ is complete and injective for continuous trees.
However, it is easy to prove that its validity does
not extend to discontinuous trees, by using a coun-
terexample. Figure 3 shows a minimal discontinu-
ous tree that cannot be correctly decoded.

The inability to encode discontinuities lies on
the assumption that wi+1 will always be attached
to a node belonging to the path from the root to wi

(ni is then used to specify the location of that node
in the path). This is always true in continuous trees,
but not in discontinuous trees, as can be seen in
Figure 3 where c is the child of a constituent that
does not lie in the path from S to b.

a b c

S
X

a b c

S

i) Minimal discon�nuous tree

(1,S,) (1,S,) ()
ii) Wrongly decoded tree

Figure 3: A minimal discontinuous constituent tree
that cannot be decoded correctly if we rely on the
(Gómez-Rodrı́guez and Vilares, 2018) linearization.

4 Encoding nearly ordered permutations

Next, we fill this gap to address discontinuous pars-
ing as sequence labeling. We will extend the en-
coding Φ to the set of discontinuous constituent
trees, which we will call T ′|w|. The key to do this
relies on a well-known property: a discontinuous
tree t ∈ T ′|w| can be represented as a continuous
one using an in-order traversal that keeps track of
the original indexes (e.g. the trees at the left and the
right in Figure 4).5 We will call this tree the (canon-
ical) continuous arrangement of t, ω(t) ∈ T|w|.

5This is the discbracket format. See: https:
//discodop.readthedocs.io/en/latest/
fileformats.html

https://discodop.readthedocs.io/en/latest/fileformats.html
https://discodop.readthedocs.io/en/latest/fileformats.html
https://discodop.readthedocs.io/en/latest/fileformats.html

2774

Thus, if given an input sentence we can generate
the position of every word as a terminal in ω(t),
the existing encodings to predict continuous trees
as sequence labeling could be applied on ω(t). In
essence, this is learning to predict a permutation
of w. As introduced in §2, the concept of location
of a token is not a stranger in transition-based dis-
continuous parsing, where actions such as swap
switch the position of two elements in order to cre-
ate a discontinuous phrase. We instead propose to
explore how to handle this problem in end-to-end
sequence labeling fashion, without relying on any
parsing structure nor a set of transitions.

To do so, first we denote by τ : {0, . . . , |w| −
1} → {0, . . . , |w| − 1} the permutation that maps
the position i of a given wi in w into its position
as a terminal node in ω(t).6 From this, one can
derive π : Wn → Wn, a function that encodes
a permutation of w in such way that its phrase
structure does not have crossing branches. For
continuous trees, τ and π are identity permutations.
Then, we extend the tree encoding function Φ to
Φ′ : T ′|w| → L′|w| where l′i ∈ L′ is enriched with a
fourth component pi such that l′i = (ni, xi, ui, pi),
where pi is a discrete symbol such that the sequence
of pi’s encodes the permutation τ (typically each pi
will be an encoding of τ(i), i.e. the position of wi

in the continuous arrangement, although this need
not be true in all encodings, as will be seen below).

The crux of defining a viable encoding for dis-
continuous parsing is then in how we encode τ
as a sequence of values pi, for i = 0 . . . |w| − 1.
While the naive approach would be the identity en-
coding (pi = τ(i)), we ideally want an encoding
that balances minimizing sparsity (by minimizing
infrequently-used values) and maximizing learn-
ability (by being predictable). To do so, we will
look for encodings that take advantage of the fact
that discontinuities in attested syntactic structures
are mild (Maier and Lichte, 2011), i.e., in most
cases, τ(i+ 1) = τ(i) + 1. In other words, permu-
tations τ corresponding to real syntactic trees tend
to be nearly ordered permutations. Based on these
principles, we propose below a set of concrete en-
codings, which are also depicted on an example in
Figure 4. All of them handle multiple gaps (a dis-
continuity inside a discontinuity) and cover 100%

6Permutations are often defined as mappings from the
element at a given position to the element that replaces it, but
for our purpose, we believe that the definition as a function
from original positions to rearranged positions (following, e.g.,
(O’Donnell et al., 2007)) is more straightforward.

of the discontinuities. Even if this has little effect
in practice, it is an interesting property compared
to algorithms that limit the number of gaps they can
address (Coavoux and Cohen, 2019; Corro, 2020).

Absolute-position For every token wi, pi = τ(i)
only if i 6= τ(i). Otherwise, we use a special label
INV, which represents that the word is a fixed point
in the permutation, i.e., it occupies the same place
in the sentence and in the continuous arrangement.

Relative-position If i 6= τ(i), then pi = i−τ(i);
otherwise, we again use the INV label.

Lehmer code (Laisant, 1888; Lehmer, 1960) In
combinatorics, let n = [0, ..., n − 1] be a sorted
sequence of objects, a Lehmer code is a sequence
σ = [σ0, ...σn−1] that encodes one of the n! per-
mutations of n, namely α. The idea is intuitive: let
ni+1 be the subsequence of objects from n that re-
main available after we have permuted the first i ob-
jects to achieve the permutation α, then σi+1 equals
the (zero-based) position in ni+1 of the next object
to be selected. For instance, given n = [0, 1, 2, 3, 4]
and a valid permutation α = [0, 1, 3, 4, 2], then σ
= [0, 0, 1, 1, 0]. Note that the identity permutation
would be encoded as a sequence of zeros.

In the context of discontinuous parsing and en-
coding pi, n can be seen as the input sentence w
where π(w) is encoded by σ. The Lehmer code is
particularly suitable for this task in terms of com-
pression, as in most of the cases we expect (nearly)
ordered permutations, which translates into the ma-
jority of elements of σ being zero.7 However, this
encoding poses some potential learnability prob-
lems. The root of the problem is that σi does not
necessarily encode τ(i), but τ(j) where j is the in-
dex of the word that occupies the ith position in the
continuous arrangement (i.e., j = τ−1(i)). In other
words, this encoding is expressed following the or-
der of words in the continuous arrangement rather
than the input order, causing a non-straightforward
mapping between input words and labels. For in-
stance, in the previous example, σ2 does not encode
the location of the object n2=2 but that of n3=3.

Lehmer code of the inverse permutation To
ensure that each pi encodes τ(i), we instead inter-
pret pi as meaning that wi should fill the (pi + 1)th
currently remaining blank in a sequence σ that
is initialized as a sequence of blanks, i.e. σ =
[◦, ◦, ..., ◦]. For instance, let n = [0, 1, 2, 3, 4] be

7For a continuous tree, σi = 0 ∀i ∈ [0, |w| − 1].

2775

Noch0 nie1 habe2 ich3 so4 viel5 gewählt6 .7

ROOT
S

VP

AVP

ADV ADV VAFIN PPER ADV ADV VVPP $.

AVP

w= Noch0 nie1 so4 viel5 gewählt6 habe2 ich3 .7

ADV ADV ADV ADV VVPP VAFIN PPER $.

AVP AVP

VP
S

Absolute

INV INV 5 6 2 3 4 INV

Noch0 nie1 habe2 ich3 so4 viel5 gewählt6 .7

INV INV 3 3 -2 -2 -2 INV

0 0 2 2 2 0 0 0

0 0 3 3 0 0 0 0

NEXT NEXT NEXT NEXT 1ADV NEXT NEXT 1PPER

3. Applica�on of the proposed encodings to encode the sentence

permuta�on π(w) that corresponds to the con�nuous arrangement

in 2 as a sequence of labels p = [p0 ... p|w|-1]

τ(0)=0 τ(1)=1 τ(4)=2 τ(5)=3 τ(6)=4 τ(2)=5 τ(3)=6 τ(7)=7

1. Original discon�nuous tree.

ROOT

2. (i) Con�nuous arrangement, (ii) τ values (in grey), and (iii) con�nuous labels by

the Φ func�on proposed by Gómez-Rodríguez and Vilares (2018)

(4,AVP,) (-1,VP,) (1,AVP,) (-1,VP,) (-1,S,) (0,S,) (-1,ROOT,) ()

Relative

Lehmer code

Lehmer code of the inverse permutation

Pointer-based

4. Combine p (encoded with pointer-based labels, for example) with the labels

coming from Φ in the con�nuous arrangement.

Noch0

nie1

habe2

ich3

so4

viel5

gewählt6

.7

 NEXT

 NEXT

 NEXT

 NEXT

 1ADV

 NEXT

 NEXT

 1PPER

 (4,AVP,)

 (-1,VP,)

 (0,S,)

 (-1,ROOT,)

 (1,ADP,)

 (-1,VP,)

 (-1,S,)

 ()

+

+

+

+

+

+

+

+

(i)

(ii)

(iii)

Figure 4: An example of the permutation encodings that allow for discontinuous parsing as sequence labeling

the original input and π(n) = [0, 1, 3, 4, 2] its de-
sired continuous arrangement. At the first and sec-
ond steps, n0 = 0 and n1 = 1 occupy the first
available blanks (so p0 = p1 = 0), generating
partial arrangements of the form [0, ◦, ◦, ◦, ◦] and
[0, 1, ◦, ◦, ◦]. Then, n2 = 2 would need to fill
the third empty blank (so p2 = 2), and we obtain
[0, 0, ◦, ◦, 2]. After that, n3 and n4 occupy the first
available blank (so p3 = p4 = 0). Thus, we obtain
the desired arrangement σ = [0, 1, 3, 4, 2], and the
encoding is [0, 0, 2, 0, 0]. It is easy to check that
this produces the Lehmer code for the inverse per-
mutation to τ . Hence, it shares the property that
the identity permutation is encoded by a sequence
of zeros, but it is more straightforward for our pur-
poses as each pi encodes information about τ(i),
the target position of wi in the continuous arrange-
ment. Note that this and the Lehmer code coincide
iff τ is a self-conjugate permutation (i.e., a conju-
gate that is its own inverse, see (Muir, 1891)), of
which the identity is a particular case.

Pointer-based encoding When encoding τ(i),
the previous encodings generate the position for
the target word, but they do not really take into ac-
count the left-to-right order in which sentences are
naturally read,8 nor they are linguistically inspired.

In particular, informally speaking, in human lin-

8We use left-to-right in an informal sense to mean that
sentences are processed in linear temporal order. Of course,
not all languages follow a left-to-right script.

guistic processing (i.e. when a sentence is read
from left to right) we could say that a discontinu-
ity is processed when we read a word that con-
tinues a phrase other than that of the previously
read word. For example, for the running exam-
ple sentence (Figure 4), from an abstract stand-
point we know that there is a discontinuity because
τ(2) 6= τ(1) + 1, i.e., “nie” and “habe” are not
contiguous in the continuous arrangement of the
tree. However, in a left-to-right processing of the
sentence, there is no way to know the final desired
position of “habe” (τ(2)) until we read the words
“so viel gewählt”, which go before it in the contin-
uous arrangement. Thus, the requirement of the
previous four encodings to assign a concrete non-
default value to the pis associated with “habe” and
“ich” is not too natural from an incremental read-
ing standpoint, as learning pi requires information
that can only be obtained by looking to the right
of wi. This can be avoided by using a model that
just processes “Noch nie habe ich” as if it were
a continuous subtree (in fact, if we removed “so
viel gewählt” from the sentence, the tree would be
continuous). Then, upon reading “so”, the model
notices that it continues the phrase associated with
“nie” and not with “ich”, and hence inserts it after
“nie” in the continuous arrangement.

This idea of incremental left-to-right process-
ing of discontinuities is abstracted in the form of a
pointer ô that signals the last terminal in the current

2776

continuous arrangement of the constituent that we
are currently filling. That said, to generate the la-
bels this approach needs to consider two situations:

• If wi is to be inserted right after wi−1 (this sit-
uation is characterized by τ(i− 1) < τ(i) ∧
@j < i | τ(i − 1) < τ(j) < τ(i)). This
case is abstracted by a single label, pi=NEXT,
that means to insert at the position currently
pointed by ô, and then update ô = τ ′i(i),
where the function τ ′i is defined as τ ′i(x) =
#{j ≤ i | τ(j) ≤ τ(x)}. τ ′i(x) can infor-
mally be described as a tentative value of τ(x),
corresponding to the position of wx in the part
of the continuous arrangement that involves
the substring w0 . . . wi.

• Otherwise, wi should be inserted after some
wi−x with x ≥ 1, which means there is a
discontinuity and that the current pointer ô is
no longer valid and needs to be first updated
to point to τ ′i(i − x). To generate the label
pi we use a tuple (j, t) that indicates that the
predecessor of wi in ω(t) is the jth preceding
word in w with the PoS tag t. After that, we
update the pointer to ô = τ ′i(i). While this en-
coding could work with PoS-tag-independent
relative offsets, or any word property, the PoS-
tag-based indexing provides linguistic ground-
ing and is consistent with sequence labeling
encodings that have obtained good results in
dependency parsing (Strzyz et al., 2019).

Pointer-based encoding (with simplified PoS
tags) A pointer-based variant where the PoS tags
in (j, t) are simplified (e.g. NNS → NN). The
mapping is described in Appendix A.1. Apart from
reducing sparsity, the idea is that a discontinuity is
not so much influenced by specific information but
by the coarse morphological category.

Ill-formed permutations are corrected with post-
processing, following Appendix A.2, to ensure that
the derived permutations contain all word indexes.

4.1 Limitations
The encodings are complete under the assumption
of an infinite label vocabulary. In practice, training
sets are finite and this could cause the presence
of unseen labels in the test set, especially for the
integer-based label components:9 the levels in com-

9This is a general limitation also present in previous pars-
ing as sequence labeling approaches (e.g. (Gómez-Rodrı́guez

mon (ni) and the label component pi that encodes
τ(i). However, as illustrated in Appendix A.3, an
analysis on the corpora used in this work shows
that the presence of unseen labels in the test set is
virtually zero.

5 Sequence labeling frameworks

To test whether these encoding functions are learn-
able by parametrizable functions, we consider dif-
ferent sequence labeling architectures. We will
be denoting by ENCODER a generic, contextual-
ized encoder that for every word wi generates a
hidden vector hi conditioned on the sentence, i.e.
ENCODER(wi|w)=hi. We use a hard-sharing multi-
task learning architecture (Caruana, 1997; Vilares
et al., 2019) to map every hi to four 1-layered feed-
forward networks, followed by softmaxes, that pre-
dict each of the components of l′i. Each task’s
loss is optimized using categorical cross-entropy
Lt = −

∑
log(P (l′i|hi)) and the final loss com-

puted as L =
∑

t∈Tasks Lt. We test four EN-
CODERs, which we briefly review but treat as black
boxes. Their number of parameters and the training
hyper-parameters are listed in Appendix A.4.

Transducers without pretraining We try (i) a
2-stacked BiLSTM (Hochreiter and Schmidhuber,
1997; Yang and Zhang, 2018) where the genera-
tion of hi is conditioned on the left and right con-
text. (ii) We also explore a Transformer encoder
(Vaswani et al., 2017) with 6 layers and 8 heads.
The motivation is that we believe that the multi-
head attention mechanism, in which a word attends
to every other word in the sentence, together with
positional embeddings, could be beneficial to de-
tect discontinuities. In practice, we found training
these transformer encoders harder than training
BiLSTMs, and that obtaining a competitive per-
formance required larger models, smaller learning
rates, and more epochs (see also Appendix A.4).

The input to these two transducers is a sequence
of vectors composed of: a pre-trained word embed-
ding (Ling et al., 2015) further fine-tuned during
training, a PoStag embedding, and a second word
embedding trained with a character LSTM. Addi-
tionally, the Transformer uses positional embed-
dings to be aware of the order of the sentence.

and Vilares, 2018)), and could potentially happen with any
label component, e.g. predicting the non-terminal symbol.
However, it is very unlikely that a non-terminal symbol has not
been observed in the training set. Also, chart- and transition-
based parsers would suffer from this same limitation.

2777

Transducers with pretraining Previous work
on sequence labeling parsing (Gómez-Rodrı́guez
and Vilares, 2018; Strzyz et al., 2019) has shown
that although effective, the models lag a bit behind
state-of-the-art accuracy. This setup, inspired in
Vilares et al. (2020), aims to evaluate whether gen-
eral purpose NLP architectures can achieve strong
results when parsing free word order languages. In
particular, we fine-tune (iii) pre-trained BERT (De-
vlin et al., 2019), and (iv) pre-trained DistilBERT
(Sanh et al., 2019). BERT and DistilBERT map
input words to sub-word pieces (Wu et al., 2016).
We align each word with its first sub-word, and use
their embedding as the only input for these models.

6 Experiments

Setup For English, we use the discontinuous
Penn Treebank (DPTB) by Evang and Kallmeyer
(2011). For German, we use TIGER and NEGRA
(Brants et al., 2002; Skut et al., 1997). We use the
splits by Coavoux and Cohen (2019) which in turn
follow the Dubey and Keller (2003) splits for the
NEGRA treebank, the Seddah et al. (2013) splits
for TIGER, and the standard splits for (D)PTB (Sec-
tions 2 to 21 for training, 22 for development and
23 for testing). See also Appendix A.5 for more
detailed statistics. We consider gold and predicted
PoS tags. For the latter, the parsers are trained on
predicted PoS tags, which are generated by a 2-
stacked BiLSTM, with the hyper-parameters used
to train the parsers. The PoS tagging accuracy
(%) on the dev/test is: DPTB 97.5/97.7, TIGER
98.7/97.8 and NEGRA 98.6/98.1. BERT and Dis-
tilBERT do not use PoS tags as input, but when
used to predict the pointer-based encodings, they
are required to decode the labels into a parenthe-
sized tree, causing variations in the performance.10

Table 1 shows the number of labels per treebank.

Metrics We report the F-1 labeled bracketing
score for all and discontinuous constituents, using
discodop (van Cranenburgh et al., 2016)11 and
the proper.prm parameter file. Model selection
is based on overall bracketing F1- score.

6.1 Results
Table 2 shows the results on the dev sets for all
encodings and transducers. The tendency is clear
showing that the pointer-based encodings obtain
the best results. The pointer-based encoding with

10The rest of BERT models do not require PoS tags at all.
11http://github.com/andreasvc/disco-dop

Label Component #Labels
TIGER NEGRA DPTB

ni 22 19 34
xi 93 56 137
ui 15 4 56
pi as absolute-position 129 110 98
pi as relative-position 105 90 87
pi as Lehmer 39 34 27
pi as inverse Lehmer 68 57 61
pi as pointer-based 122 99? 110?

pi as pointer-based simplified 81 65 83?

Table 1: Number of values per label component, merg-
ing the training and dev sets (gold setup). ? are codes
that generate one extra label with predicted PoS tags
(this variability depends on the used PoS-tagger).

simplified PoS tags does not lead however to clear
improvements, suggesting that the models can learn
the sparser original PoS tags set. For the rest of en-
codings we also observe interesting tendencies. For
instance, when running experiments using stacked
BiLSTMs, the relative encoding performs better
than the absolute one, which was somehow ex-
pected as the encoding is less sparse. However,
the tendency is the opposite for the Transformer
encoders (including BERT and DistilBERT), es-
pecially for the case of discontinuous constituents.
We hypothesize this is due to the capacity of Trans-
formers to attend to every other word through multi-
head attention, which might give an advantage to
encode absolute positions over BiLSTMs, where
the whole left and right context is represented by
a single vector. With respect to the Lehmer and
Lehmer of the inverse permutation encodings, the
latter performs better overall, confirming the bigger
difficulties for the tested sequence labelers to learn
Lehmer, which in some cases has a performance
even close to the naive absolute-positional encod-
ing (e.g. for TIGER using the vanilla Transformer
encoder and BERT). As introduced in §4, we hy-
pothesize this is caused by the non-straightforward
mapping between words and labels (in the Lehmer
code the label generated for a word does not nec-
essarily contain information about the position of
such word in the continuous arrangement).

In Table 3 we compare a selection of our models
against previous work using both gold and pre-
dicted PoS tags. In particular, we include: (i) mod-
els using the pointer-based encoding, since they
obtained the overall best performance on the dev
sets, and (ii) a representative subset of encodings
(the absolute positional one and the Lehmer code
of the inverse permutation) trained with the best

http://github.com/andreasvc/disco-dop

2778

Encoding Transducer TIGER NEGRA DPTB
F1 Disco F-1 F1 Disco F-1 F1 Disco F-1

Absolute-position BiLSTM 75.2 12.4 72.8 12.8 86.0 10.7
Relative-position BiLSTM 77.7 20.4 73.4 14.9 86.6 15.2
Lehmer BiLSTM 81.6 33.4 76.8 26.2 88.4 30.7
Inverse Lehmer BiLSTM 83.2 41.6 77.3 27.0 88.9 36.0
Pointer-based BiLSTM 84.4 49.0 79.8 36.7 89.9 47.9
Pointer-based simplified BiLSTM 84.6 48.7 79.8 38.1 90.0 46.3
Absolute-position Transformer 81.9 38.3 75.3 25.4 87.5 25.8
Relative-position Transformer 77.0 20.2 71.4 13.5 86.8 16.4
Lehmer Transformer 82.6 38.5 75.4 21.4 88.1 24.8
Inverse Lehmer Transformer 85.3 47.9 77.7 30.8 88.7 35.7
Pointer-based Transformer 86.0 51.2 79.8 38.8 90.2 46.7
Pointer-based simplified Transformer 86.0 50.4 80.6 42.5 90.2 46.2
Absolute-position BERT 86.4 47.4 80.7 25.3 89.4 20.7
Relative-position BERT 83.8 29.5 78.7 18.0 89.8 22.5
Lehmer BERT 86.9 43.6 82.6 30.4 91.0 36.3
Inverse Lehmer BERT 86.9 50.3 83.3 34.6 90.9 38.1
Pointer-based BERT 89.2 57.8 86.4 52.0 92.2 53.8
Pointer-based simplified BERT 89.2 59.7 86.4 49.3 92.0 50.9
Absolute-position DistilBERT 82.0 30.6 75.6 19.0 88.2 17.7
Relative-position DistilBERT 80.3 21.8 74.3 12.3 88.1 18.4
Lehmer DistilBERT 83.3 32.8 77.6 21.6 89.5 33.0
Inverse Lehmer DistilBERT 84.2 39.7 78.5 25.3 89.7 34.2
Pointer-based DistilBERT 86.8 51.6 82.8 42.7 90.7 46.3
Pointer-based simplified DistilBERT 87.0 54.7 82.7 40.5 90.7 43.1

Table 2: Comparison of our approaches on the TIGER, NEGRA and DPTB dev splits (with gold PoS tags)

performing transducer. Additionally, for the case of
the (English) DPTB, we also include experiments
using a bert-large model, to shed more light
on whether the size of the networks is playing a
role when it comes to detect discontinuities. Ad-
ditionally, we report speeds on CPU and GPU.12

The experiments show that the encodings are learn-
able, but that the model’s power makes a differ-
ence. For instance, in the predicted setup BILSTMs
and vanilla Transformers perform in line with pre-
deep learning models (Maier, 2015; Fernández-
González and Martins, 2015; Coavoux and Crabbé,
2017), DistilBERT already achieves a robust perfor-
mance, close to models such as (Coavoux and Co-
hen, 2019; Coavoux et al., 2019); and BERT trans-
ducers suffice to achieve results close to some of the
strongest approaches, e.g. (Fernández-González
and Gómez-Rodrı́guez, 2020a). Yet, the results lag
behind the state of the art. With respect to the ar-
chitectures that performed the best the main issue
is that they are the bottleneck of the pipeline. Thus,
the computation of the contextualized word vectors
under current approaches greatly decreases the im-
portance, when it comes to speed, of the chosen
parsing paradigm used to generate the output trees

12For CPU, we used a single core of an Intel(R) Core(TM)
i7-7700 CPU @ 3.60GHz. For GPU experiments, we relied
on a single GeForce GTX 1080, except for the BERT-large
experiments, where due to memory requirements we required
a Tesla P40.

(e.g. chart-based versus sequence labeling).
Finally, Table 4 details the discontinuous perfor-

mance of our best performing models.

Discussion on other applications It is worth
noting that while we focused on parsing as se-
quence labeling, encoding syntactic trees as labels
is useful to straightforwardly feed syntactic infor-
mation to downstream models, even if the trees
themselves come from a non-sequence-labeling
parser. For example, Wang et al. (2019) use the
sequence labeling encoding of Gómez-Rodrı́guez
and Vilares (2018) to provide syntactic information
to a semantic role labeling model. Apart from pro-
viding fast and accurate parsers, our encodings can
be used to do the same with discontinuous syntax.

7 Conclusion

We reduced discontinuous parsing to sequence la-
beling. The key contribution consisted in predict-
ing a continuous tree with a rearrangement of the
leaf nodes to shape discontinuities, and defining
various ways to encode such a rearrangement as a
sequence of labels associated to each word, taking
advantage of the fact that in practice they are nearly
ordered permutations. We tested whether those en-
codings are learnable by neural models and saw
that the choice of permutation encoding is not triv-
ial, and there are interactions between encodings

2779

Model TIGER NEGRA DPTB
F1 Dis F-1 CPU GPU F1 Dis F-1 CPU GPU F1 Dis F-1 CPU GPU

Pr
ed

ic
te

d
Po

S
ta

gs
,o

w
n

ta
gs

,o
rn

o
ta

gs
Pointer-based BiLSTM 77.5 39.5 210 568 75.6 34.6 244 715 88.8 45.8 194 611
Pointer-based Transformer 78.3 41.2 97 516 75.0 33.6 118 659 89.3 45.2 104 572
Pointer-based DistillBERT 81.3 43.2 5 145 81.0 41.5 5 147 90.1 41.0 5 142
Pointer-based BERT base 84.6 51.1 2 80 83.9 45.6 2 80 91.9 50.8 2 80
Pointer-based BERT large - - - - - - - - 92.8 53.9 0.75 34
Absolute-position BERT base 80.3 34.8 2 80 76.6 22.6 2 81 88.8 18.0 2 79
Inverse Lehmer BERT base 81.5 38.7 2 80 80.5 34.4 2 81 89.7 29.3 2 80
Fernández-G. and Gómez-R. (2020b) 86.6 62.6 - - 86.8 69.5 - - - - - -
Fernández-G. and Gómez-R. (2020b)? 89.8 71.0 - - 91.0 76.6 - - - - - -
Stanojević and Steedman (2020) 83.4 53.5 - - 83.6 50.7 - - 90.5 67.1 - -
Corro (2020)O(n3) 85.2 51.2 - 474 86.3 56.1 - 478 92.9 64.9 - 355
Corro (2020)O(n6) 84.9 51.0 - 3 85.6 53.0 - 41 92.6 59.7 - 22
Corro (2020)O(n3)

? 90.0 62.1 - - 91.6 66.1 - - 94.8 68.9 - -
Fernández-G. and Gómez-R. (2020a) 85.7 60.4 - - 85.7 58.6 - - - - - -
Coavoux and Cohen (2019)� 82.5 55.9 64 - 83.2 56.3 - - 90.9 67.3 38 -
Coavoux et al. (2019)� 82.7 55.9 126 - 83.2 54.6 - - 91.0 71.3 80 -
Coavoux and Crabbé (2017)� 79.3 - 260 - - - - - - - - -
Corro et al. (2017) - - - - - - - - 89.2 - 7 -
Stanojević and Alhama (2017) 77.0 - - - - - - - - - - -
Versley (2016) 79.5 - - - - - - - - - - -
Fernández and Martins (2015) 77.3 - - - 77.0 - 37 - - - - -

G
ol

d
Po

S
ta

gs

Pointer-based BiLSTM 79.2 40.1 210 568 77.1 36.5 244 715 89.1 41.8 194 611
Pointer-based Transformer 79.4 41.0 97 516 77.1 34.9 118 659 89.9 48.0 104 572
Pointer-based DistillBERT 81.4 43.8 5 145 80.7 36.8 5 147 90.4 42.7 5 142
Pointer-based BERT base 84.7 51.6 2 80 84.2 46.9 2 81 91.7 49.1 2 80
Pointer-based BERT large - - - - - - - - 92.8 55.4 0.75 34
Fernández-G. and Gómez-R. (2020b) 87.3 64.2 - - 87.3 71.0 - - - - - -
Fernández-G. and Gómez-R. (2020a) 86.3 60.7 - - 86.1 59.9 - - - - - -
Coavoux and Crabbé (2017)� 81.6 49.2 260 - 82.2 50.0 - - - - - -
Corro et al. (2017) 81.6 - - - - - - - 90.1 - 7 -
Stanojević and Alhama (2017) 81.6 - - - 82.9 - - - - - - -
Maier and Lichte (2016) 76.5 - - - - - - - - - - -
Fernández-G. and Martins (2015) 80.6 - - - 80.5 - 37 - - - - -
Maier (2015) beam search� 74.7 18.8 73 77.0 19.8 80 - - - - -
Maier (2015) greedy� - - - - - - 640 - - - - -

Table 3: Comparison against related work on the TIGER, NEGRA and DPTB test splits. The ? symbol indicates
that a model used BERT to contextualize the input. The reported speeds are extracted from the related work and
therefore results are not directly comparable since the hardware can be different. The � symbol indicates work that
reported the speed (in sentences per second) on the dev sets instead.

Model TIGER NEGRA DPTB
Dis P Dis R Dis F-1 Dis P Dis R Dis F-1 Dis P Dis R Dis F-1

Pointer-based BiLSTM 41.0 38.1 39.5 34.7 34.5 34.6 46.7 45.0 45.8
Pointer-based Transformer 39.0 43.8 41.2 30.4 37.7 33.6 43.3 47.2 45.2
Pointer-based DistillBERT 42.5 43.9 43.2 41.0 42.0 41.5 37.6 45.0 41.0
Pointer-based BERT 50.9 51.4 51.1 43.2 48.4 45.6 47.9 54.0 50.8

Table 4: Detailed discontinuous performance (Discontinuous Precision, Recall and F1-score) by our best sequence
labeling models (predicted PoS tags setup).

and models (i.e., a given architecture may be better
at learning a given encoding than another). Overall,
the models achieve a good trade-off speed/accuracy
without the need of any parsing algorithm or auxil-
iary structures, while being easily parallelizable.

Acknowledgments

We thank Maximin Coavoux for giving us access
to the data used in this work. We acknowledge
the European Research Council (ERC), which has

funded this research under the European Union’s
Horizon 2020 research and innovation programme
(FASTPARSE, grant agreement No 714150),
MINECO (ANSWER-ASAP, TIN2017-85160-C2-
1-R), Xunta de Galicia (ED431C 2020/11), and
Centro de Investigación de Galicia ”CITIC”,
funded by Xunta de Galicia and the European
Union (European Regional Development Fund-
Galicia 2014-2020 Program), by grant ED431G
2019/01.

2780

References
Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolf-

gang Lezius, and George Smith. 2002. The tiger
treebank. In Proceedings of the workshop on tree-
banks and linguistic theories, volume 168.

Rich Caruana. 1997. Multitask learning. Machine
learning, 28(1):41–75.

Maximin Coavoux and Shay B Cohen. 2019. Discon-
tinuous constituency parsing with a stack-free tran-
sition system and a dynamic oracle. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 204–217.

Maximin Coavoux and Benoit Crabbé. 2017. Incre-
mental discontinuous phrase structure parsing with
the gap transition. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 1, Long Pa-
pers, pages 1259–1270.

Maximin Coavoux, Benoı̂t Crabbé, and Shay B Cohen.
2019. Unlexicalized transition-based discontinuous
constituency parsing. Transactions of the Associa-
tion for Computational Linguistics, 7:73–89.

Ronan Collobert. 2011. Deep learning for efficient
discriminative parsing. In Proceedings of the four-
teenth international conference on artificial intelli-
gence and statistics, pages 224–232.

Caio Corro. 2020. Span-based discontinuous con-
stituency parsing: a family of exact chart-based al-
gorithms with time complexities from o (nˆ 6) down
to o (nˆ 3). arXiv preprint arXiv:2003.13785.

Caio Corro, Joseph Le Roux, and Mathieu Lacroix.
2017. Efficient discontinuous phrase-structure pars-
ing via the generalized maximum spanning arbores-
cence. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1644–1654.

Andreas van Cranenburgh, Remko Scha, and Rens Bod.
2016. Data-oriented parsing with discontinuous con-
stituents and function tags. Journal of Language
Modelling, 4(1):57–111.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Amit Dubey and Frank Keller. 2003. Probabilistic pars-
ing for German using sister-head dependencies. In

Proceedings of the 41st Annual Meeting of the As-
sociation for Computational Linguistics, pages 96–
103, Sapporo, Japan. Association for Computational
Linguistics.

Kilian Evang and Laura Kallmeyer. 2011. PLCFRS
parsing of English discontinuous constituents. In
Proceedings of the 12th International Conference on
Parsing Technologies, pages 104–116. Association
for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2020a. Discontinuous constituent
parsing with pointer networks. In Proceedings of
the Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 7724–7731. AAAI
Press.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2020b. Multitask Pointer Network for
Multi-Representational Parsing. arXiv e-prints,
page arXiv:2009.09730.

Daniel Fernández-González and André FT Martins.
2015. Parsing as reduction. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1523–1533.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, HLT ’10, page 742–750, USA. Association
for Computational Linguistics.

Carlos Gómez-Rodrı́guez, Marco Kuhlmann, and Gior-
gio Satta. 2010. Efficient parsing of well-nested lin-
ear context-free rewriting systems. In Human Lan-
guage Technologies: The 2010 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, pages 276–284, Los
Angeles, California. Association for Computational
Linguistics.

Carlos Gómez-Rodrı́guez and David Vilares. 2018.
Constituent parsing as sequence labeling. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1314–
1324, Brussels, Belgium. Association for Computa-
tional Linguistics.

Johan Hall and Joakim Nivre. 2008. A dependency-
driven parser for german dependency and con-
stituency representations. In Proceedings of the
Workshop on Parsing German, pages 47–54.

John B Haviland. 1979. Guugu yimidhirr brother-in-
law language. Language in Society, 8(2-3):365–
393.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

http://bultreebank.org/wp-content/uploads/2017/05/paper03.pdf
http://bultreebank.org/wp-content/uploads/2017/05/paper03.pdf
https://link.springer.com/content/pdf/10.1023/A:1007379606734.pdf
https://www.aclweb.org/anthology/N19-1018/
https://www.aclweb.org/anthology/N19-1018/
https://www.aclweb.org/anthology/N19-1018/
https://www.aclweb.org/anthology/E17-1118/
https://www.aclweb.org/anthology/E17-1118/
https://www.aclweb.org/anthology/E17-1118/
https://www.aclweb.org/anthology/Q19-1005/
https://www.aclweb.org/anthology/Q19-1005/
http://proceedings.mlr.press/v15/collobert11a.html
http://proceedings.mlr.press/v15/collobert11a.html
https://arxiv.org/abs/2003.13785
https://arxiv.org/abs/2003.13785
https://arxiv.org/abs/2003.13785
https://arxiv.org/abs/2003.13785
https://www.aclweb.org/anthology/D17-1172/
https://www.aclweb.org/anthology/D17-1172/
https://www.aclweb.org/anthology/D17-1172/
http://dx.doi.org/10.15398/jlm.v4i1.100
http://dx.doi.org/10.15398/jlm.v4i1.100
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.3115/1075096.1075109
https://doi.org/10.3115/1075096.1075109
https://www.aclweb.org/anthology/W11-2913/
https://www.aclweb.org/anthology/W11-2913/
https://doi.org/https://doi.org/10.1609/aaai.v34i05.6275
https://doi.org/https://doi.org/10.1609/aaai.v34i05.6275
http://arxiv.org/abs/2009.09730
http://arxiv.org/abs/2009.09730
https://www.aclweb.org/anthology/P15-1147/
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/N10-1115/
https://www.aclweb.org/anthology/N10-1035
https://www.aclweb.org/anthology/N10-1035
https://doi.org/10.18653/v1/D18-1162
https://www.aclweb.org/anthology/W08-1007/
https://www.aclweb.org/anthology/W08-1007/
https://www.aclweb.org/anthology/W08-1007/
https://pages.ucsd.edu/~jhaviland/Publications/GYBiL/HavilandGYBilLang.pdf
https://pages.ucsd.edu/~jhaviland/Publications/GYBiL/HavilandGYBilLang.pdf
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735?casa_token=Db-8E2iYS6EAAAAA%3AZDNt2NtYYX7gBhsh9asE6xxNdHwuexacLPE86-U4KIk0Hc-T_BHe67oa-ZaDvgVPLT1XdnbET9M&journalCode=neco

2781

Mark Johnson. 1985. Parsing with discontinuous con-
stituents. In 23rd Annual Meeting of the Association
for Computational Linguistics, pages 127–132.

C-A Laisant. 1888. Sur la numération factorielle, ap-
plication aux permutations. Bulletin de la Société
Mathématique de France, 16:176–183.

Derrick H Lehmer. 1960. Teaching combinatorial
tricks to a computer. In Proc. Sympos. Appl. Math.
Combinatorial Analysis, volume 10, pages 179–193.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Wolfgang Maier. 2010. Direct parsing of discontin-
uous constituents in german. In Proceedings of
the NAACL HLT 2010 First Workshop on Statistical
Parsing of Morphologically-Rich Languages, pages
58–66. Association for Computational Linguistics.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1202–1212.

Wolfgang Maier and Laura Kallmeyer. 2010. Discon-
tinuity and non-projectivity: Using mildly context-
sensitive formalisms for data-driven parsing. In
Proceedings of the 10th International Workshop on
Tree Adjoining Grammar and Related Frameworks
(TAG+ 10), pages 119–126.

Wolfgang Maier and Timm Lichte. 2011. Characteriz-
ing discontinuity in constituent treebanks. In For-
mal Grammar. 14th International Conference, FG
2009. Bordeaux, France, July 25-26, 2009. Revised
Selected Papers, volume 5591 of LNCS/LNAI, pages
167–182, Berlin-Heidelberg. Springer.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proceedings
of the Workshop on Discontinuous Structures in Nat-
ural Language Processing, pages 47–57.

Thomas Muir. 1891. On self-conjugate permutations.
Proceedings of the Royal Society of Edinburgh,
17:7–13.

Young-Soo Myung, Chang-Ho Lee, and Dong-Wan
Tcha. 1995. On the generalized minimum spanning
tree problem. Networks, 26(4):231–241.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 1-Volume 1, pages 351–359. Association for
Computational Linguistics.

John O’Donnell, Cordelia Hall, and Rex Page. 2007.
Discrete mathematics using a computer. Springer
Science & Business Media.

Adwait Ratnaparkhi. 1999. Learning to parse natural
language with maximum entropy models. Machine
learning, 34(1-3):151–175.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jen-
nifer Foster, Iakes Goenaga, Koldo Gojenola Gal-
letebeitia, Yoav Goldberg, Spence Green, Nizar
Habash, Marco Kuhlmann, Wolfgang Maier, Joakim
Nivre, Adam Przepiórkowski, Ryan Roth, Wolfgang
Seeker, Yannick Versley, Veronika Vincze, Marcin
Woliński, Alina Wróblewska, and Eric Villemonte
de la Clergerie. 2013. Overview of the SPMRL
2013 shared task: A cross-framework evaluation of
parsing morphologically rich languages. In Proceed-
ings of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Compu-
tational Linguistics.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii,
and Tadao Kasami. 1991. On multiple context-
free grammars. Theoretical Computer Science,
88(2):191–229.

Wojciech Skut, Brigitte Krenn, Thorsten Brants, and
Hans Uszkoreit. 1997. An annotation scheme for
free word order languages. In Fifth Conference on
Applied Natural Language Processing, pages 88–95,
Washington, DC, USA. Association for Computa-
tional Linguistics.

Miloš Stanojević and Raquel G Alhama. 2017. Neu-
ral discontinuous constituency parsing. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 1666–1676.

Miloš Stanojević and Mark Steedman. 2020. Span-
based LCFRS-2 parsing. In Proceedings of the 16th
International Conference on Parsing Technologies
and the IWPT 2020 Shared Task on Parsing into
Enhanced Universal Dependencies, pages 111–121,
Online. Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodrı́guez. 2019. Viable dependency parsing as se-
quence labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://www.aclweb.org/anthology/P85-1015/
https://www.aclweb.org/anthology/P85-1015/
https://www.aclweb.org/anthology/N15-1142/
https://www.aclweb.org/anthology/N15-1142/
https://www.aclweb.org/anthology/W10-1407/
https://www.aclweb.org/anthology/W10-1407/
https://www.aclweb.org/anthology/P15-1116/
https://www.aclweb.org/anthology/P15-1116/
https://www.aclweb.org/anthology/W10-4415/
https://www.aclweb.org/anthology/W10-4415/
https://www.aclweb.org/anthology/W10-4415/
http://webloria.loria.fr/~degroote/FG09/
http://webloria.loria.fr/~degroote/FG09/
https://www.aclweb.org/anthology/W16-0906/
https://www.aclweb.org/anthology/W16-0906/
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230260407?casa_token=3ahsfRxQqRoAAAAA%3AiVk6n_tycbllQ_S19F0y6vUG0QES7bPz2RaIY8z31k5BRPssdh9nTMBiQ60Ly62b27gBwm8lfXS5sQ
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230260407?casa_token=3ahsfRxQqRoAAAAA%3AiVk6n_tycbllQ_S19F0y6vUG0QES7bPz2RaIY8z31k5BRPssdh9nTMBiQ60Ly62b27gBwm8lfXS5sQ
https://www.aclweb.org/anthology/P09-1040/
https://www.aclweb.org/anthology/P09-1040/
https://link.springer.com/article/10.1023/A:1007502103375
https://link.springer.com/article/10.1023/A:1007502103375
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.aclweb.org/anthology/W13-4917
https://www.sciencedirect.com/science/article/pii/030439759190374B
https://www.sciencedirect.com/science/article/pii/030439759190374B
https://doi.org/10.3115/974557.974571
https://doi.org/10.3115/974557.974571
https://www.aclweb.org/anthology/D17-1174/
https://www.aclweb.org/anthology/D17-1174/
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://doi.org/10.18653/v1/2020.iwpt-1.12
https://www.aclweb.org/anthology/N19-1077/
https://www.aclweb.org/anthology/N19-1077/
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf

2782

Yannick Versley. 2014. Incorporating semi-supervised
features into discontinuous easy-first constituent
parsing. In Proceedings of the First Joint Work-
shop on Statistical Parsing of Morphologically Rich
Languages and Syntactic Analysis of Non-Canonical
Languages, pages 39–53.

Yannick Versley. 2016. Discontinuity (re) 2-visited: A
minimalist approach to pseudoprojective constituent
parsing. In Proceedings of the Workshop on Discon-
tinuous Structures in Natural Language Processing,
pages 58–69.

Krishnamurti Vijay-Shanker, David J Weir, and Ar-
avind K Joshi. 1987. Characterizing structural
descriptions produced by various grammatical for-
malisms. In Proceedings of the 25th annual meet-
ing on Association for Computational Linguistics,
pages 104–111. Association for Computational Lin-
guistics.

David Vilares, Mostafa Abdou, and Anders Søgaard.
2019. Better, faster, stronger sequence tagging con-
stituent parsers. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 3372–3383, Minneapolis, Minnesota.
Association for Computational Linguistics.

David Vilares, Michalina Strzyz, Anders Søgaard, and
Carlos Gómez-Rodrı́guez. 2020. Parsing as pretrain-
ing. In Proceedings of the Thirty-Fourth AAAI Con-
ference on Artificial Intelligence (AAAI-20).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in neural in-
formation processing systems, pages 2692–2700.

Yufei Wang, Mark Johnson, Stephen Wan, Yifang Sun,
and Wei Wang. 2019. How to best use syntax in se-
mantic role labelling. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5338–5343, Florence, Italy. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

Jie Yang and Yue Zhang. 2018. Ncrf++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
434–443.

https://arxiv.org/abs/1409.3813
https://arxiv.org/abs/1409.3813
https://arxiv.org/abs/1409.3813
https://www.aclweb.org/anthology/P87-1015/
https://www.aclweb.org/anthology/P87-1015/
https://www.aclweb.org/anthology/P87-1015/
https://doi.org/10.18653/v1/N19-1341
https://doi.org/10.18653/v1/N19-1341
https://aaai.org/ojs/index.php/AAAI/article/view/6446/6302
https://aaai.org/ojs/index.php/AAAI/article/view/6446/6302
https://papers.nips.cc/paper/5866-pointer-networks
https://doi.org/10.18653/v1/P19-1529
https://doi.org/10.18653/v1/P19-1529
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1609.08144
https://www.aclweb.org/anthology/P18-4013/
https://www.aclweb.org/anthology/P18-4013/
https://www.aclweb.org/anthology/P13-1043/
https://www.aclweb.org/anthology/P13-1043/

2783

A Appendices

A.1 Simplified part-of-speech tags for the
pointer-based encoding

Table 5 maps the original PoS tags in the DPTB
treebank into the simplified ones used for the sec-
ond variant of the pointer-based encoding. Table
6 does the same but for the TIGER and NEGRA
treebanks.

Original label Coarse label
CC CC
CD CD
DT DT
EX EX
FW FW
IN IN
JJ,JJR,JJS JJ
LS LS
MD MD
NN,NNS,NNP,NNPS NN
PDT PDT
POS POS
PRP,PRP$ PRP
RB,RBR,RBS RB
RP RP
SYM SYM
TO TO
UH UH
VB,VBD,VBG,VBN,VBP,VBZ V
WDT,WP,WP$,WRB W

Table 5: Mapping from the original labels to coarse
labels in the DPTB treebank

Original label Coarse label
NN,NE N
ADJA,ADJD ADJ
CARD CARD
VAFIN,VAIMP,VVFIN,VVIMP,VMFIN V
VVINF,VAINF,VMINF,VVIZU V
VVPP,VMPP,VAPP V
ART ART
PPER,PRF,PPOSAT,PPOSS,PDAT,PDS P
PIDAT,PIS,PIAT,PRELAT,PRELS P
PWAT,PWS,PWAV,PAV P
ADV,ADJD AD
KOUI,KOUS,KON,KOKOM K
APPR,APPRART,APPO,APZR AP
PTKZU,PTKNEG,PTKVZ PT
,PTKA,PTKANT PT
$,$(,$. $
ITJ ITJ
TRUNC TRUNC
XY XY
FM FM

Table 6: Mapping from the original labels to coarse
labels in the TIGER and NEGRA treebanks

A.2 Postprocessing of corrupted outputs

We describe below the post-processing of the en-
codings to ensure that the generated sequences can
be later decoded to a well-formed tree. Before post-
processing the predicted permutation, we make
sure that one, and only one label (ni, xi, ui, pi),
can be identified as the last word in the contin-
uous arrangement. This is required because the
component ni encodes unique information for the
last word (an empty dummy value, as ni always
encodes information between a word and the next
one, which does not exist for the last token); which
can conflict with some of the predicted pis, that
might put a different word into the last position.
That said, we rely on the value ni to identify which
word should be located as the last one.13

Absolute-position and relative-position encod-
ings Given the sequence p that encodes the per-
mutation π(w) of the words of w in the continuous
arrangement ω(t), we: (i) fill the indexes for which
the predicted labels indicate that the token should
remain in the same position, i.e. pi=INV, and (ii)
for the remaining pi’s we check whether the pre-
dicted index has not been yet filled, and otherwise
assign it to the closest available index (computed
as the minimum absolute difference).

Lehmer encoding Given p and the list of avail-
able word indexes idxs (initially all the words),
we process the elements in p in a left-to-right fash-
ion: (i) if the corresponding index encoded at pi
is in idxs, then we select the index and remove
it from idxs, (ii) otherwise, we select the last
element in idxs and, again, remove it.

Lehmer of the inverse permutation encoding
The post-processing is similar to the Lehmer code
encoding, but considering the available blanks in-
stead of a list of word indexes.

Pointer-based encodings Given the encoded
permutation p, we process the elements left-to-
right and: (i) if pi=NEXT, then we apply no post-
processing and we consider the word will be in-
serted after the current pointer ô at the moment of
decoding, which is always valid. (ii) Otherwise,
we are processing an element pi that encodes the
pointer ô = (j, t), and try to map it to τ ′(i). If such
mapping is not possible, this is because j is greater
than the number of previously processed words that

13If more than one ni refers to the last word, we consider
the one with the largest index.

2784

have the postag t. If so, then we post-process pi to
(k, t), where k was the first processed word with
postag t, or to pi=NEXT, if there is no previous
word labeled with the postag t.

A.3 Unseen labels in the training set

Table 7 shows some statistics on the number of gold
pi label components that are present in the test sets,
but not on the corresponding training or dev splits.
We do not show statistics for the label component
that represents the number of levels in common
(ni) since for all treebanks the number of missing
ni values on the test sets was zero. For pi, the
missing elements correspond to rare situations. For
instance, taking NEGRA as our reference corpus,14

for the relative index encoding the only missing
element was ‘-29’ and occurred a single time in
the test set; and for the pointer-based encoding the
missing components were just three: ‘-10 NN’ (2
occurrences), ‘-4 ADV’ (1 occurrence), ‘-4 $[’ (1
occurrence).

Encoding Treebank Missing elements
Unique Total %

Absolute
TIGER 6 6 6.5×10−3

NEGRA 0 0 0
DPTB 0 0 0

Relative
TIGER 1 8 8.7×10−3

NEGRA 1 1 5.9×10−3

DPTB 0 0 0

Lehmer
TIGER 0 0 0
NEGRA 1 1 5.9×10−3

DPTB 0 0 0

Inverse Lehmer
TIGER 1 1 1.1×10−3

NEGRA 0 0 0
DPTB 0 0 0

Pointer-based
TIGER 1 1 1.1×10−3

NEGRA 3 4 0.02
DPTB 0 0 0

Pointer-based simp.
TIGER 1 1 1.1×10−3

NEGRA 1 1 5.9×10−3

DPTB 0 0 0

Table 7: Number of unique pi label components that
occur on the test set but not on the training or dev splits,
total ocurrences and the corresponding percentage over
the total number of labels.

A.4 Training hyper-parameters and size of
the trained models

Table 8 shows the hyper-parameters used to train
the BiLSTMs, both for the gold and predicted se-
tups. We use pre-trained embeddings for English

14We consider NEGRA as the reference corpus since it was
the treebank that showed the largest percentage of missing pi
elements.

and German (Ling et al., 2015). The embeddings
for English have 100 dimensions, while the Ger-
man ones only have 60. For the BiLSTMs, we
did not do any hyper-parameter engineering and
just considered the hyper-parameters reported by
Gómez-Rodrı́guez and Vilares (2018).

Hyperparameter Value
BiLSTM size 800
BiLSTM layers 2
optimizer SGD
loss cat. cross-entropy
learning rate 0.2
decay (linear) 0.05
momentum 0.9
dropout 0.5
word embs Ling et al. (2015)
PoS tags emb size 20
character emb size 30
batch size training 8
training epochs 100
batch size test 128

Table 8: Main hyper-parameters for the training of the
BiLSTMs, both for the gold and predicted setups

Table 9 shows the configuration used to train
the vanilla Transformer encoders. As explained in
the paper, we found out that Transformers were
more unstable during training in comparison to
BILSTMs. To overcome such unstability, we per-
formed a small manual hyper-parameter search.
This translated into training during more epochs,
with a low learning rate and large dropout.

To fine-tune the BERT and DistilBERT mod-
els we use the default fine-tuning setup provided
by huggingface.15 Table 10 shows the hyper-
parameters that we have modified. For English,
the pre-trained models we relied on were: ‘bert-
base-cased’, ‘distilbert-base-cased’ (distilled from
‘bert-base-cased’), and ‘bert-large-cased’. For Ger-
man, we used ‘bert-base-german-dbmdz-cased’
and ‘distilbert-base-german-cased’ (distilled from
‘bert-base-german-dbmdz-cased’).

Finally, in Table 11 we list the number of pa-
rameters for each of the transducers trained on the
pointer-based encoding. For the rest of the encod-
ings, the models have a similar number of param-
eters, as the only change in the architecture is the
small part involving the feed-forward output layer
that predicts the label component pi.

More in detail, for BiLSTMs and vanilla Trans-

15See https://github.com/huggingface/
transformers and https://github.com/aghie/
disco2labels/blob/master/run_token_
classifier.py

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/aghie/disco2labels/blob/master/run_token_classifier.py
https://github.com/aghie/disco2labels/blob/master/run_token_classifier.py
https://github.com/aghie/disco2labels/blob/master/run_token_classifier.py

2785

Hyperparameter Value Value
(gold setup) (pred setup)

Att. heads 8 8
Att. layers 6 6
Hidden size 800 800
Hidden dropout 0.4 0.4
optimizer SGD SGD
loss cross-entropy cross-entropy
learning rate 0.004? 0.003
decay (linear) 0.0 0.0
momentum 0.0 0.0
word embs Ling et al. (2015) Ling et al. (2015)
PoS tags emb size 20 20
character emb size 136/1324 136/1324

batch size training 8 8
training epochs 400 400
batch size test 128 128

Table 9: Main hyper-parameters for the training of the
vanilla Transformer encoder, both for the gold and pre-
dicted setups. ? Except for the pointer-based encoding,
where 0.003 was necessary to converge. 4 The char-
acter embedding size used for the TIGER and NEGRA
models, so the size of the input to the model is a mul-
tiplier of the number of attention heads. As Ling et al.
(2015) embeddings for German only have 60 dimen-
sions, this tweak was necessary for those treebanks.

Hyperparameter Value
loss cross-entropy
learning rate 1e−5

batch size training 6
training epochs 45?

batch size test 8

Table 10: Main hyper-parameters for the training of
the BERT and DistilBERT models, both for the gold
and predicted setups. ? except for BERT large, where
we trained for 30 epochs.

Transducer TIGER NEGRA DPTB
BiSLTM 11.1M 8.9M 10.5M
Transformer 8.6M 6.5M 8.8M
DistilBERT 67.0M 67.0M 65.5M
BERT-base 110.1M 110.1M 108.6M
BERT-large 333.9M

Table 11: Number of parameters (millions) for each
model with the pointer-based encoding.

formers the TIGER model is the larger than the
NEGRA one. This is because for these transducers
we only store and use the word embeddings from
Ling et al. (2015) that were seen in the training
and dev sets, and the TIGER treebank is larger and
contains more unique words. Also, we see that for
the BiLSTMs the TIGER model is slightly larger
than the DPTB one, while for the vanilla Trans-
former the opposite happens. This is due to the
smaller char embedding size in the case of the Ger-

man Transformers, which is required so the total
size of the input vector is divisible by 8, the num-
ber of attention heads (the root of the need for the
disparity in the char embedding sizes is that the
pre-trained English and German embeddings also
have a different number of dimensions). On the
contrary, for the BERT-based models we use the
same pre-trained model for TIGER and NEGRA,
for example, which causes these models to have an
almost identical number of parameters.

A.5 Treebank statistics
Table 12 shows the number of samples per treebank
split.

Treebank Training Dev Test
TIGER 40 472 5 000 5 000
NEGRA 18 602 1000 1000
DPTB 39 832 1 700 2 416

Table 12: Number of samples per treebank split.

