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Abstract
Automatic post-editing (APE) aims to improve
machine translations, thereby reducing human
post-editing effort. APE has had notable suc-
cess when used with statistical machine trans-
lation (SMT) systems but has not been as suc-
cessful over neural machine translation (NMT)
systems. This has raised questions on the
relevance of APE task in the current sce-
nario. However, the training of APE models
has been heavily reliant on large-scale artifi-
cial corpora combined with only limited hu-
man post-edited data. We hypothesize that
APE models have been underperforming in
improving NMT translations due to the lack
of adequate supervision. To ascertain our hy-
pothesis, we compile a larger corpus of hu-
man post-edits of English to German NMT.
We empirically show that a state-of-art neural
APE model trained on this corpus can signifi-
cantly improve a strong in-domain NMT sys-
tem, challenging the current understanding in
the field. We further investigate the effects
of varying training data sizes, using artificial
training data, and domain specificity for the
APE task. We release this new corpus un-
der CC BY-NC-SA 4.0 license at https://
github.com/shamilcm/pedra.

1 Introduction

Automatic Post-Editing (APE) aims to reduce
manual post-editing effort by automatically fixing
errors in the machine-translated output. Knight
and Chander (1994) first proposed APE to cope
with systematic errors in selecting appropriate ar-
ticles for Japanese to English translation. Earlier
application of statistical phrase-based models for
APE treated it as a monolingual re-writing task
without considering the source sentence (Simard
et al., 2007; Béchara et al., 2011). Modern
APE models take the source text and machine-
translated text as input and output the post-edited
text in the target language (see Figure 1).

Source text (English):
Will he send the gifts to the house?

Machine translated text (German):
Die Geschenke in mein Haus schicken?
       (The gifts)                    (to my)     (house)        (send)

Post-edited text (German):
Wird er die Geschenke ins Haus schicken?
(Will he)               (the gifts)            (to the) (house)        (send)

Figure 1: An example of post-editing given the source
text in English and the translated text in German.

APE models are usually trained and evaluated
in a black-box scenario where the underlying MT
model and the decoding process are inaccessible
making it difficult to improve the MT system di-
rectly. APE can be effective in this case to improve
the MT output or to adapt its style or domain.

Recent advancement of APE has shown remark-
able success on statistical machine translation
(SMT) outputs (Junczys-Dowmunt and Grund-
kiewicz, 2018; Correia and Martins, 2019) even
when trained with limited number of post-edited
training instances (generally “triplets” consisting
of source, translated, and post-edited segments),
with or without additional large-scale artificial
data (Junczys-Dowmunt and Grundkiewicz, 2016;
Negri et al., 2018). Substantial improvements
have been reported especially on English-German
(EN-DE) WMT APE shared tasks on SMT (Bo-
jar et al., 2017; Chatterjee et al., 2018), when
models were trained with fewer than 25,000 hu-
man post-edited triplets. However, on NMT,
strong APE models have failed to show any no-
table improvement (Chatterjee et al., 2018, 2019;
Ive et al., 2020) when trained on similar-sized
human post-edited data. This has led to ques-
tions regarding the usefulness of APE with cur-
rent NMT systems that produce improved trans-

https://github.com/shamilcm/pedra
https://github.com/shamilcm/pedra
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lations compared to SMT. Junczys-Dowmunt and
Grundkiewicz (2018) concluded that the results
of the WMT’18 APE (NMT) task “might consti-
tute the end of neural automatic post-editing for
strong neural in-domain systems” and that “neural-
on-neural APE might not actually be useful”. Con-
trary to this belief, we hypothesize that a com-
petitive neural APE model still has potential to
further improve strong state-of-the-art in-domain
NMT systems when trained on adequate human
post-edited data.

We compile a new large post-edited corpus,
SubEdits, which consists of actual human post-
edits of translations of drama and movie subtitles
produced by a strong in-domain proprietary NMT
system. We use this corpus to train a state-of-the-
art neural APE model (Correia and Martins, 2019),
with the goal of answering the following three re-
search questions to better assess the relevance of
APE going forward:

• Can APE substantially improve in-domain
NMT with adequate data size?

• How much does artificial APE data help?

• How significant is domain shift for APE?

Spoilers: Through automatic and human evalu-
ation, we confirm our hypothesis that, in order
to notably improve over the original NMT output
(“do-nothing” baseline), state-of-the-art APE mod-
els need to be trained on a larger number of hu-
man post-edits, unlike the case with SMT. Train-
ing on datasets of sizes in the scale of those from
the WMT APE tasks, even with large-scale in-
domain artificial APE corpora, leads to underper-
formance. Our experimental results also highlight
that APE models are highly sensitive to domain
differences. To effectively exploit out-of-domain
post-edited corpora such as SubEdits in other do-
mains, it has to be carefully mixed with available
in-domain data.

2 SubEdits Corpus

Human post-edited corpora of NMT outputs from
previous WMT APE shared tasks usually consist
of fewer than 25,000 instances. Large-scale artifi-
cial corpora such as eSCAPE (Negri et al., 2018),
do not adequately cater to the primary APE ob-
jective of correcting systematic errors of the MT
outputs since the pseudo “post-edits” are indepen-
dent human-translated references often differing

Lang. Size Domain
Human post-edited corpora
QT21 EN-LV 21K Life
(Specia et al., 2017) Sciences
WMT’18 & ’19 APE EN-DE 15K IT(Chatterjee et al., 2018)
WMT’19 APE EN-RU 17K IT(Chatterjee et al., 2019)
APE-QUEST EN-NL 11K

Legal(Ive et al., 2020) EN-FR 10K
EN-PT 10K

SubEdits (this work) EN-DE 161K Subtitles
Artificial corpora
eSCAPE EN-DE 7.2M

Mixed(Negri et al., 2018) EN-IT 3.3M
EN-RU 7.7M

Table 1: APE corpora on NMT outputs and their sizes
in terms of number of post-edited triplets.

greatly from the MT output. Table 1 lists the
real and artificial APE corpora on NMT outputs.
Due to the paucity of larger human post-edited
corpora on NMT outputs, a study of APE per-
formance under sufficient supervised training data
conditions was not possible previously. To en-
able such a study, we introduce the SubEdits EN-
DE post-editing corpus with over 161K triplets of
source sentences, NMT translations, and human
post-edits of NMT translations.

2.1 Corpus Collection

SubEdits corpus is collected from a database of
subtitles of a popular video streaming platform,
Rakuten Viki (https://www.viki.com/) Every sub-
title segment had been originally manually tran-
scribed and translated to English before translating
it to German using a proprietary NMT system em-
ployed by the platform and specialized at translat-
ing subtitles. Viki community1 members who vol-
unteer as subtitle translators would then post-edit
the machine-translated subtitles to further improve
it, if necessary.

2.2 Corpus Filtering

We use an adaptation of Gale-Church filtering (Tan
and Pal, 2014) used for machine translation for fil-
tering the triplets. The global character mean ratio
rc is computed as the ratio between the number
of characters in the source and machine translated
portions of the entire corpus. We remove triplets
(src, mt, pe) from the corpus where the ratio be-
tween the number of characters of source (src) and

1https://contribute.viki.com/

https://www.viki.com/
https://contribute.viki.com/
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No. of No. of tokens
triplets src mt pe

Train 141,413 1,432,247 1,395,211 1,423,257
Dev 10,000 101,330 98,581 100,795
Test 10,000 101,709 99,032 101,112

Table 2: Statistics of the SubEdits corpus

post-edit (pe) does not lie within a threshold range
of (1 − t)rc and (1 + t)rc with t = 0.2. We nor-
malize punctuation2 and remove duplicate triplets.
Among the triplets that share the same src and mt
segments, we choose only the one with the longest
pe. Finally, we remove triplets that are not cor-
rectly identified with the respective source and tar-
get language using a language identification tool3

(Lui and Baldwin, 2012). We set aside 10,000
triplets as development set and 10,000 triplets as
test set. The final statistics are shown in Table 2.

3 BERT Encoder-Decoder APE Model

BERT Encoder-Decoder APE (Correia and Mar-
tins, 2019) is a state-of-the-art neural APE model
based on a Transformer model (Vaswani et al.,
2017) with the encoder and decoder initialized
with pre-trained multilingual BERT (Devlin et al.,
2019) weights and fine-tuned on post-editing data.

A single encoder is used to encode both
the source text and the machine-translated text
by concatenating them with the separator to-
ken [SEP]. The encoder component of the
model is identical to the original Transformer en-
coder initialized with pre-trained weights from
the multilingual BERT. For the decoder, Correia
and Martins (2019) initialized the context atten-
tion weights with the corresponding BERT self-
attention weights. Also, the weights of the self-
attention layers of the encoder and decoder are
tied. All other weights are initialized with cor-
responding weights from the same multilingual
BERT model as well.

BERT Encoder-Decoder APE was shown to out-
perform other state-of-the-art APE models (Tebbi-
fakhr et al., 2018; Junczys-Dowmunt and Grund-
kiewicz, 2018) on SMT outputs even in the ab-
sence of additional large-scale artificial data that
competing models have used. An improved vari-
ant of this model with additional in-domain arti-
ficial data, despite being the winning submission
of the recent WMT’19 APE EN-DE (NMT) task

2Using Moses normalize-punctuation.perl script.
3https://github.com/saffsd/langid.py

(Lopes et al., 2019), only performed marginally
better than the baseline NMT output. For the pur-
pose of this study, we base our experiments on the
BERT Encoder-Decoder APE architecture (Cor-
reia and Martins, 2019).

4 Experimental Setup

4.1 Model Hyperparameters

For the BERT Encoder-Decoder model (BERT
Enc-Dec), we use the implementation4 and model
hyperparameters used by Correia and Martins
(2019) and initialize the encoder and decoder with
cased multilingual BERT (base) from Transform-
ers5 library (Wolf et al., 2019). The encoder and
decoder follow the architecture of BERT (base)
with 12 layers and 12 attention heads, an embed-
ding size of 768, and a feed-forward layer size
of 3072. We set the effective batch size to 4096
tokens for parameter updates. We train BERT
Enc-Dec on a single NVIDIA Quadro RTX6000
GPU. Training on our SubEdits corpus took ap-
proximately 5 hours to converge. We validate and
save checkpoints at every 2000 steps and use early-
stopping (patience of 4 checkpoints) to select the
model based on best perplexity. We use a decod-
ing beam size of 5.

As a control measure, we compare BERT Enc-
Dec against two vanilla Transformer APE models
using automatic metrics. The Transformer APE
models use BERT vocabularies and tokenization,
and employ a single encoder to encode the con-
catenation src and mt, but they are not initialized
with pre-trained weights. The following are the de-
scriptions of the two Transformer APE baselines:

TF (base) A Transformer (base) (Vaswani et al.,
2017) model with 6 hidden layers implemented in
OpenNMT-py.6 The embedding size is 512 with
2048 feed-forward units. We use default learn-
ing parameters in OpenNMT-py: Adam optimizer
with a learning rate of 2 and Noam scheduler.

TF (BERT size.) A bigger Transformer with
the same number of layers, attention heads, em-
bedding dimensions, hidden, and feed-forward di-
mensions as BERT Enc-Dec, but without any pre-
training and tying of self-attention layers. All
learning hyperparameters follow that of TF (base)
model.

4https://github.com/deep-spin/OpenNMT-APE
5https://github.com/huggingface/transformers
6https://github.com/OpenNMT/OpenNMT-py

https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/normalize-punctuation.perl
https://github.com/saffsd/langid.py
https://github.com/deep-spin/OpenNMT-APE
https://github.com/huggingface/transformers
https://github.com/OpenNMT/OpenNMT-py
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4.2 Pre-processing and Post-processing

SubEdits corpus contains HTML tags such as line
breaks (<br>) and italic tags (<i>), and symbols
denoting musical notes (�, �) and segments often
begin with hyphens (-). We applied several pro-
cessing steps to make the data as close as possible
to natural sentences on which BERT has been pre-
trained on. The triplets with multi-line src, mt,
and pe containing <br> tags are split into sepa-
rate training instances7 and we remove italics and
other HTML tags, musical note symbols, and lead-
ing hyphens. Thereafter, the input is tokenized
with the BERT tokenization and word-piece seg-
mentation in the Transformers library. During test
time, we keep track of the changes made to input
such as deletion of leading hyphens, music sym-
bols, and italics tags, and splitting at <br> tags.
After decoding, the outputs are detokenized and
post-processed to re-introduce the tracked changes
and evaluated.

4.3 Evaluation

We evaluate the models using three different auto-
matic metrics: BLEU (Papineni et al., 2002), ChrF
(Popović, 2015), and TER (Snover et al., 2006).
For our evaluation on SubEdits test set, differing
from WMT APE task evaluation, we post-process
and detokenize the outputs and use SacreBLEU8

(Post, 2018) to evaluate BLEU and ChrF, and TER-
COM9 to compute TER with normalization. Sig-
nificance test is done by bootstrap re-sampling on
BLEU with 1000 samples (Koehn, 2004). Addi-
tionally, we conduct human evaluation to ascer-
tain the improvement of the BERT Enc-Dec APE
model and to determine the human upper-bound
performance for the SubEdits benchmark (see Sec-
tion 5.3).

We also compare the APE model on the canon-
ical WMT APE dataset (Section 5.6 and Table 7).
We follow their evaluation method and use the re-
leased tokenized post-edited reference to compute
BLEU, ChrF, and TER on the tokenized output.

5 Results and Discussion

5.1 Proprietary In-domain NMT

We first assess the quality of an proprietary in-
domain NMT system that is used for compiling

7We only separate at <br> when the src,mt, and pe con-
tains same number of <br> symbols.

8https://github.com/mjpost/sacreBLEU
9http://www.cs.umd.edu/˜snover/tercom/

BLEU↑ ChrF↑ TER↓
Proprietary NMT 46.83 63.81 37.20
Google Translate 40.96 59.20 41.91
Microsoft Translator 38.78 57.68 43.72
SYSTRAN 38.06 56.74 44.37

Table 3: Comparison of the proprietary NMT to leading
commercial MT systems on an in-domain test set.

the SubEdits corpus. We use it as a black-box sys-
tem and use the evaluation results from Table 3 to
demonstrate that it is a strong baseline for studying
APE performance on NMT outputs.

We compare the proprietary NMT system to
three leading commercial EN-DE NMT systems:
Google Translate, Microsoft Translator, and SYS-
TRAN, on a separate in-domain EN-DE test set
of 5,136 subtitle segments with independent ref-
erence translations (i.e., not post-edits of any sys-
tem) fetched from the same video streaming plat-
form as the SubEdits corpus. The results (as of
May 2020) are summarized in Table 3. Unsur-
prisingly, the proprietary NMT system specialized
at translating drama subtitles substantially outper-
forms other general MT systems.

5.2 APE Performance on SubEdits

Table 4 reports the performance of vanilla trans-
former and BERT Enc-Dec APE models and com-
pares it the do-nothing NMT baseline (the out-
put produced by the proprietary in-domain NMT
system). TF (base) APE improves over the do-
nothing NMT baseline output (p < 0.05), par-
ticularly on TER scores. However, TF (BERT
size) APE shows a smaller improvement on ChrF
and TER scores and a drop in BLEU. Even with
the SubEdits corpus, large networks such as TF
(BERT size) tends to overfit. However, with pre-
trained BERT initialization, BERT Enc-Dec APE
shows substantial improvement across all metrics.
Unlike previous studies that report marginal im-
provements (Chatterjee et al., 2018, 2019), our re-
sults show that a strong APE model trained on
large human post-edits can significantly outper-
form (p < 0.001) a strong in-domain NMT sys-
tem.

5.3 Human Evaluation

To validate the improvement in automatic evalua-
tion scores and to estimate the human upper-bound
performance on SubEdits, we conducted human
evaluation. We hired five German native freelance
translators who are also proficient in English and

https://github.com/mjpost/sacreBLEU
http://www.cs.umd.edu/\kern -.0em\lower .7ex\hbox {~{}}\kern .04emsnover/tercom/
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No. of Dev Test
Params BLEU↑ ChrF↑ TER↓ BLEU↑ ChrF↑ TER↓

do-nothing NMT 62.07 71.66 27.68 61.88 71.33 28.06
w/ TF (Base) APE 105.5M 62.47 72.26 25.65 62.26 71.97 25.94
w/ TF (BERT size.) APE 290.4M 62.04 72.04 25.73 61.62 71.65 26.14
w/ BERT Enc-Dec APE 262.4M 64.88 74.94 23.29 64.53 74.71 23.72

Table 4: Performance of APE models on the SubEdits test set.

Figure 2: Interface used to rate the translations.

had prior experience with English/German transla-
tion.

Given the original English text, the annotators
were asked to rate the adequacy (from 1 to 5)
for three German translations: (1) the do-nothing
baseline output (NMT), (2) BERT Enc-Dec APE
output (APE), and (3) the human post-edited text
(Human). Figure 2 shows the interface presented
to the annotators for rating the translations. The
three translations are presented on the same screen
in random order and the annotators are unaware of
their origin.

Following recent WMT APE tasks (Bojar et al.,
2017; Chatterjee et al., 2018, 2019), our human
evaluation is also based solely on adequacy assess-
ments. Previous studies reported a high correla-
tion of fluency judgments with adequacy (Callison-
Burch et al., 2007) making the fluency annotations

Annotator NMT APE Human # Eval.
A 3.7 4.2 4.5 593 / 603
B 3.5 4.0 4.4 594 / 603
C 3.7 4.3 4.4 603 / 603
D 2.8 3.4 3.8 587 / 603
E 3.3 3.8 4.3 602 / 603

A-E 3.4 3.9 4.3 2979 / 3015

Table 5: Average adequacy scores (1-5) rated by anno-
tators (A to E). Overall average is shown in the last row
(A-E).

superfluous (Przybocki et al., 2009). Unlike the re-
cent WMT APE tasks, we did not opt for direct as-
sessments (Graham et al., 2013) since we wanted
to evaluate the degradation or improvement in the
quality of the NMT output due to APE and human
post-edits on the same English source segments.

We elicit judgments for all test set instances
where the APE model modified the NMT output
beyond simple edits on punctuation, HTML tags,
spacing, or casing. 2,815 out of the 10,000 in-
stances in our test set contains non-simple edits.
A set of 50 instances out of 2,815 was evaluated
by all annotators to compute inter-annotator agree-
ment.10

After evaluation, we filtered out the instances
where the annotator was unable to decide a score
for any of the three translations. The average
scores by each annotator (A to E) and the overall
average scores are shown in Table 5. The numera-
tor of the “# Eval.” column indicates the number
of evaluations used for the average score computa-
tion after filtering out the “I can’t decide” annota-
tions. The results of our human evaluation (Table
5) show that all five annotators rate the APE out-
put better than baseline NMT output by at least
+0.5 on average, reaching an overall score of 3.9.
All the five annotators rated the human post-edited
output substantially better than the NMT output
and the APE output, which indicates that quality of
the post-edits in the SubEdits corpus is high. Hu-
man post-edits received an overall average score
of 4.3.

10Each annotator scored 603 test instances.
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Using the repeated set of 46 instances,11 we
compute inter-annotator agreement using average
pairwise Cohen’s Kappa κ (Cohen, 1960) to be
0.27 which is considered to be fair (Landis and
Koch, 1977) and similar to that observed for ade-
quacy judgments in WMT tasks (Callison-Burch
et al., 2007). However, the ranges of scores
used by the annotators differ considerably (espe-
cially, annotator ‘D’). Hence, measures such as
a weighted Kappa κw (Cohen, 1968), which as-
signs partial credit to smaller disagreements and
works better with ordinal data (such as our ad-
equacy judgments), is more suitable. We com-
pute the average pairwise quadratically weighted
Kappa κw to be 0.50, and consider their agreement
to be moderate.

5.4 Can APE substantially improve
in-domain NMT with adequate data size?

To analyze the effect of training data size with re-
spect to APE performance, we train BERT Enc-
Dec APE with varying sizes of training data from
the SubEdits corpus and evaluated the models on
the SubEdits development set. For each training
data size, ranging from 6,250 to 125,000, we train
three models on three random samples of the re-
spective size from the SubEdits training set. Each
point in Figure 3 denotes the mean score of the
three models (the vertical error bars at each point
denote the minimum and maximum scores). The
do-nothing NMT baseline score is represented by
a horizontal dotted line. As a reference, we mark
the size equivalent to that of WMT’18 APE EN-
DE (NMT) training set (13,441 triplets) with the
vertical dotted line. The rightmost point on each
graph represents the score if the full training cor-
pus is used.

Although the sizes of WMT APE dataset and
the SubEdits corpus are not directly comparable,
we see that size does matter for better APE perfor-
mance. When the APE model was trained on a sub-
set of SubEdits corpus that is of the same size as
the WMT’18 APE training data, it performs worse
than the baseline in terms of BLEU score and only
marginally improves in ChrF and TER scores (see
intersection points of the vertical and horizontal
lines in Figure 3).

Interestingly, doubling the amount of training
data from 12,500 to 25,000 provides slight BLEU

11We removed 4 instances out of the 50, where one or more
annotators chose the “I can’t decide” option.

gains above the do-nothing baseline and increas-
ing the data size to 50,000 training instances
improves the model further by +1 BLEU. The
curves continue to show an increasing trend. After
100,000 training instances, the data size effect on
score improvement slows down. This experiment
shows the possibility that previous work on APE
for NMT outputs might have reached a plateau
simply due to the lack of human post-edited data
rather than the limited usefulness of APE models.

5.5 How much does artificial APE data help?

Previous work using strong neural APE mod-
els (Junczys-Dowmunt and Grundkiewicz, 2018;
Tebbifakhr et al., 2018) relied predominantly on
artificial corpora such as that released by Junczys-
Dowmunt and Grundkiewicz (2016) and the eS-
CAPE corpora (Negri et al., 2018). However, arti-
ficial post-edits are either generated from monolin-
gual corpora or independent reference translations
and they do not directly address the errors made
by the MT system that is to be fixed by APE.

We compare the APE model performance
when trained on large-scale in-domain and out-
of-domain artificial data (in the order of millions
of triplets) to training on the human post-edited
SubEdits corpus (over 141K human post-edits).
As out-of-domain artificial data, we use the eS-
CAPE EN-DE NMT corpus and filter sentences
that have between 0 and 200 characters resulting
in 5.3 million triplets. As in-domain artificial data,
we generated an artificial APE corpus using the
same approach used to create the eSCAPE corpus
by decoding the source sentences from the Open-
Subtitles2016 parallel corpus (Lison and Tiede-
mann, 2016), which is also from the subtitle do-
main 12 using the same proprietary NMT system
we use to create the SubEdits corpus; the corre-
sponding references translations become the arti-
ficial post-edits. We use the same filtering crite-
ria and pre-processing methods for SubEdits (Sec-
tion 2.2 and 4.2) resulting in 5.6 million artificial
triplets. We set aside 10,000 triplets from each arti-
ficial corpus and use it as a development set when
training solely on the corresponding corpus. We
refer to this artificial corpus as SubEscape.

We compare the performance of the BERT Enc-
Dec APE trained on SubEdits corpus to that when

12Although both SubEdits and SubEscape are from the
subtitle domain, the translations in SubEscape are from
www.opensubtitles.org/ whereas the SubEdits post-edits are
compiled from Rakuten Viki.

www.opensubtitles.org
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Figure 3: Performance of BERT Enc-Dec APE model with varying training data size in terms of BLEU, ChrF, and
TER metrics on the SubEdits dev set. The vertical dotted line in each figure shows the data size used for WMT
APE EN-DE (NMT) task (13,441 triplets) and the horizontal dotted line shows the NMT Baseline results.

BLEU↑ ChrF↑ TER↓
do-nothing NMT 61.88 71.33 28.06
w/ BERT Enc-Dec APE trained on:
SubEdits (R) 64.53 74.71 23.72
eSCAPE (A) 52.35 65.65 31.95
SubEscape (A) 50.51 65.89 32.78
+ SubEdits 10× (A+R) 64.59 75.09 23.41

Table 6: APE performance on SubEdits test set when
trained with real (R) and artificial (A) training corpora.

trained on the artificial corpora in Table 6. We
find that training on artificial corpora alone, irre-
spective of their domain, cannot improve over the
do-nothing baseline and in fact, degrades the per-
formance substantially. However, when we com-
bine SubEscape with up-sampled (10×) SubEdits
corpus, we get a small improvement, particularly
in terms of ChrF and TER.

5.6 How significant is domain shift for APE?

While NMT performance has been known to be
particularly domain-dependant (Chu and Wang,
2018), domain shift between NMT and APE train-
ing has not been investigated previously. To
assess this, we evaluate BERT Enc-Dec APE
on the canonical WMT’18 APE EN-DE (NMT)
dataset.13. The baseline NMT system and datasets
used for the WMT’18 task is from the Informa-
tion Technology (IT) domain and is notably dif-
ferent from the domain of SubEdits. We experi-
ment with different methods of combining SubEd-
its (out-domain) with the WMT APE training data
(in-domain). For all experiments, we use 1,000 in-
stances held out from the WMT’18 APE training

13WMT’19 APE task also used the same dataset for bench-
marking EN-DE APE systems

BLEU↑ ChrF↑ TER↓
do-nothing NMT 74.73 85.89 16.84
w/ BERT Enc-Dec APE trained on:
WMT’18 APE (I) 75.08 85.81 16.88
SubEdits (O) 49.05 69.48 39.30
+WMT’18 APE (O+I) 74.93 85.90 16.92
+WMT’18 APE 10× (O+I) 75.27 86.08 16.62

Table 7: APE performance with in (I) and out-of-
domain (O) training data on WMT APE NMT test set.

data as the validation set. The results are reported
in Table 7. When trained on SubEdits alone, de-
spite its size, we see that there is a drastic drop
in performance compared to training the much
smaller WMT APE data alone. When we combine
SubEdits with 10× upsampled WMT APE train-
ing data, we observe some improvement, particu-
larly in terms of BLEU (p < 0.05), over training
with WMT APE data alone. These results show
that in-domain training data is crucial to training
APE models to improve in-domain NMT.

6 Analysis

6.1 Impact of APE with varying NMT quality

To study the impact of APE with varying qual-
ity of NMT output, we conduct analysis on sub-
sets of our development set with varying transla-
tion qualities (Figure 4). We split the SubEdits
development set into 10 subsets by aggregating
those triplets with the NMT output scoring > 90
TER (lowest quality), 90 − 81 TER, . . ., 20 − 11
TER, and ≤ 10 (highest quality). They are or-
dered from left to right in the x-axis in Figure
4 according to increasing MT quality. y-axis de-
notes the difference (∆) between the TER score
of APE output and NMT output for each subset.
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Figure 4: Translation quality difference due to APE
(y-axis) shown by the ∆TERAPE−NMT with increas-
ing MT quality (x-axis). Negative ∆TER indicates im-
provement in performance.

The more negative ∆TER indicates a larger im-
provement due to APE. We find that on the lower
quality subsets, APE improves over NMT substan-
tially. This improvement margin reduces with im-
proving NMT quality and can deteriorate the NMT
output when NMT quality is at the highest. This
experiment shows that APE contributes to improv-
ing overall NMT performance by predominantly
fixing poorer quality NMT outputs. The APE
model’s error will dominate and APE can become
counter-productive when NMT output is nearly
perfect (i.e., when there are very few or no post-
edits done on them as indicated by sentence-level
TER scores of < 10). APE task remains relevant
until NMT systems achieve this state, which is still
not the case even for strong in-domain NMT sys-
tems as indicated by our experiments.

6.2 Qualitative Analysis

We qualitatively analyze the output produced by
APE on the SubEdits development set to better un-
derstand the improvements and errors made by the
APE model. Table 8 shows three example outputs
produced by the APE model along with the orig-
inal English text (SRC), the do-nothing baseline
output (NMT), and the human post-edits (Human).

APE is able to fix incorrect named-entity
translations made by the NMT system. Ex-
ample 1 demonstrates an example (“Zhongyuan
Palast”→“Palast Zhongcui”) where the incorrect
entity is corrected by the APE model to match the
human post-edits.

NMT often under-translates and misses phrases

Example 1: Incorrect named entities
SRC Go to Zhongcui Palace!
NMT Geh zum Zhongyuan Palast!
APE Geh zum Palast Zhongcui!
Human Geht zum Palast Zhongcui!
Example 2: Missing phrases
SRC Let’s go back to the resort and we’ll talk it out.
NMT Geh zurck und wir werden reden.
APE Geh zurck zum Resort und wir werden reden.
Human Lass uns zurck zum Resort gehen und darber

reden.
Example 3: Requires more context
SRC Before coming, City Master negotiated with me.
NMT Bevor er gekommen ist, hat der Stadtmeister ml

cit mir verhandelt.
APE Bevor wir kommen, hat die Stadtmeisterin mit

mir verhandelt.
Human Bevor ich kam, hat die Stadtmeisterin mit mir

verhandelt.

Table 8: Examples where the APE model proposes
changes to the NMT output on the SubEdits test set.
The original sentence in English (SRC) and the human
post-edit (Human) is also shown.

and the APE models usually can patch these under-
translations, e.g. Example 2 where the preposi-
tional phrase “to the resort”→“zum Resort” was
missing in the MT outputs and the APE model was
able to mend the translation.

As much as sentence-level APE works well em-
pirically, the lack of context results in erroneous
translation by the NMT system where it tries to in-
fer a wrong pronoun and the APE model attempts
to assume yet another wrong pronoun, e.g. trans-
lating a pronoun-dropped source text in Example
3. Often, the prior or future context from video, au-
dio, or other subtitle instances is necessary to fill
these contextual gaps. Sentence-level APE cannot
address these issues robustly, which calls for fur-
ther research on multimodal (Deena et al., 2017;
Caglayan et al., 2019) and document-level (Hard-
meier et al., 2015; Voita et al., 2019) translation
and post-editing, especially for subtitles.

7 Related Work

Until 2018, APE models were benchmarked on
SMT outputs through various WMT APE tasks
(Bojar et al., 2015, 2016, 2017). The scale
of post-edited data provided by these tasks was
in the order of 10,000 to 25,000 triplets. The
largest collection of human post-edits, released by
Zhechev (2012), however, was on SMT and con-
sisted of 30,000 to 410,000 triplets across 12 lan-
guage pairs. On SMT output, participating sys-
tems showed impressive gains even with small
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training datasets from WMT APE tasks (Junczys-
Dowmunt and Junczys-Dowmunt, 2017; Tebbi-
fakhr et al., 2018). The results of subsequent
APE (NMT) tasks were not as promising with only
marginal improvements on English-German and
no improvement on English-Russian (Chatterjee
et al., 2019).

Previously, there was no study to assess the ne-
cessity of larger human post-edited training data
on APE performance on NMT outputs which we
address in this paper. APE models were pre-
dominantly trained on large-scale artificial data
combined with a few thousand human post-edits.
Junczys-Dowmunt and Grundkiewicz (2016) pro-
posed generation of large-scale artificial APE
training data via round-trip translation approach
inspired from back-translation (Sennrich et al.,
2016). They combined artificial training data with
real data provided by WMT APE tasks to train
their model. Using a similar approach of generat-
ing artificial APE data, Freitag et al. (2019) trained
a monolingual re-writing APE model trained on
the generated artificial training data alone. Con-
trary to the round-trip translation approach, large-
scale artificial APE data was generated by simply
translating source sentences using NMT and SMT
systems and using the reference translations as
the “pseudo” post-edits to create eSCAPE corpus
(Negri et al., 2018). Using the eSCAPE English-
Italian APE corpus, Negri et al. (2017) assessed
the performance of an online APE model in a sim-
ulated environment where the APE model is up-
dated at test time with new user inputs. They
found that their online APE models trained on eS-
CAPE found it difficult to improve specialized in-
domain NMT systems.

Such an analysis by training on artificial corpora
may not adequately assess the actual potential of
APE since these corpora do not fully cater to the
task and can be noisy. The “synthetic” post-edits
are independent or loosely coupled with the MT
outputs, and are often drastically different from
the MT output. This makes analyzing APE perfor-
mance over competitive NMT systems on actual
post-edited data an important step in understand-
ing the potential of APE research. Contrary to pre-
vious conclusions, our analysis shows that a com-
petitive in-domain NMT system can be markedly
improved by a strong neural APE model when
trained on sufficient human post-edited training
data.

8 Conclusion

APE has been an effective option to fix systematic
MT errors and improve translations from black-
box MT services. However, on NMT outputs,
APE has shown hardly any improvement since
training has been done on limited human post-
edited data. The newly collected SubEdits corpus
is the largest corpus of NMT human post-edits col-
lected so far. We reassessed the usefulness of APE
on NMT using this corpus.

We showed that with a larger human post-edited
corpus, a strong neural APE model can substan-
tially improve a strong in-domain NMT system.
While artificial APE corpora help, we showed that
the APE model performs better when trained on
adequate human post-edited data (SubEdits) com-
pared to large-scale artificial corpora. Finally,
our experiments comparing in and out-domain
APE show that domain-specificity of training af-
fects APE performance drastically and a com-
bination of in and out-of-domain data with cer-
tain upscaling alleviates the domain-shift problem
for APE. We find that APE mostly contributes
to improving NMT performance by fixing the
poorer-quality outputs that still exist with strong
in-domain NMT systems. We release the post-
editing datasets used in this paper (SubEscape and
SubEdits) along with pre/post-processing scipts
at PEDRa GitHub repository (https://github.
com/shamilcm/pedra)
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Hanna Béchara, Yanjun Ma, and Josef van Genabith.
2011. Statistical post-editing for a statistical MT
system. In Proceedings of the 13th Machine Trans-
lation Summit.
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