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Abstract

Using a language model (LM) pretrained on
two languages with large monolingual data in
order to initialize an unsupervised neural ma-
chine translation (UNMT) system yields state-
of-the-art results. When limited data is avail-
able for one language, however, this method
leads to poor translations. We present an ef-
fective approach that reuses an LM that is
pretrained only on a high-resource language.
The monolingual LM is fine-tuned on both lan-
guages and is then used to initialize a UNMT
model. To reuse the pretrained LM, we have
to modify its predefined vocabulary, to ac-
count for the new language. We therefore
propose a novel vocabulary extension method.
Our approach, RE-LM, outperforms a com-
petitive cross-lingual pretraining model (XLM)
in English-Macedonian (En-Mk) and English-
Albanian (En-Sq), yielding more than +8.3
BLEU points for all four translation directions.

1 Introduction

Neural machine translation (NMT) has recently
achieved remarkable results (Bahdanau et al., 2015;
Vaswani et al., 2017), based on the exploitation of
large parallel training corpora. Such corpora are
only available for a limited number of languages.
UNMT has attempted to address this limitation by
training NMT systems using monolingual data only
(Artetxe et al., 2018; Lample et al., 2018). Top
performance is achieved using a bilingual masked
language model (Devlin et al., 2019) to initial-
ize a UNMT encoder-decoder system (Lample and
Conneau, 2019). The model is then trained us-
ing denoising auto-encoding (Vincent et al., 2008)
and back-translation (Sennrich et al., 2016a). The
approach was mainly evaluated by translating be-
tween high-resource languages.

Translating between a high-resource and a low-
resource language is a more challenging task. In

this setting, the UNMT model can be initialized with
a pretrained cross-lingual LM. However, training
this UNMT model has been shown to be ineffective
when the two languages are not related (Guzmán
et al., 2019). Moreover, in order to use a pretrained
cross-lingual LM to initialize a UNMT model, the
two models must have a shared vocabulary. Thus,
a bilingual LM needs to be trained from scratch for
each language pair, before being transferred to the
UNMT model (e.g. En-De LM for En-De UNMT).

Motivated by these issues, we focus on the ques-
tion: how can we accurately and efficiently trans-
late between a high-monolingual-resource (HMR)
and a low-monolingual-resource (LMR) language?
To address this question, we adapt a monolingual
LM, pretrained on an HMR language to an LMR

language, in order to initialize a UNMT system.
We make the following contributions: (1) We

propose REused-LM1 (RE-LM), an effective trans-
fer learning method for UNMT. Our method reuses
a pretrained LM on an HMR language, by fine-
tuning it on both LMR and HMR languages. The
fine-tuned LM is used to initialize a UNMT system
that translates the LMR to the HMR language (and
vice versa). (2) We introduce a novel vocabulary
extension method, which allows fine-tuning a pre-
trained LM to an unseen language. (3) We show that
RE-LM outperforms a competitive transfer learning
method (XLM) for UNMT on three language pairs:
English-German (En-De) on a synthetic setup, En-
Mk and En-Sq. (4) We show that RE-LM is effective
in low-resource supervised NMT. (5) We conduct
an analysis of fine-tuning schemes for RE-LM and
find that including adapters (Houlsby et al., 2019)
in the training procedure yields almost the same
UNMT results as RE-LM at a lower computational
price. We also run experiments to identify the con-
tribution of the vocabulary extension method.

1We release the code in https://github.com/
alexandra-chron/relm_unmt.

https://github.com/alexandra-chron/relm_unmt
https://github.com/alexandra-chron/relm_unmt
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Figure 1: RE-LM. (A) LM pretraining. (B) Fine-tuning.
The embedding and the projection layer are extended
using §3.2 (dark gray) and (C) Transfer to an NMT sys-
tem. Dashed arrows indicate transfer of weights.

2 Related Work

Transfer learning for UNMT. The field of UNMT

has recently experienced tremendous progress.
Artetxe et al. (2018); Lample et al. (2018) train
UNMT models with monolingual data only, using
denoising auto-encoding (Vincent et al., 2008) and
online back-translation (Sennrich et al., 2016a) as
training objectives. This approach is successful
for languages with high-quality, large, comparable
data. When these conditions are not met, though,
UNMT provides near-zero scores (Neubig and Hu,
2018). UNMT is further improved when initialized
with a cross-lingual pretrained model, trained on
large corpora (Lample and Conneau, 2019; Song
et al., 2019). However, many languages have only
limited monolingual data available, a setting where
UNMT is not effective (Guzmán et al., 2019). Sun
et al. (2020), whose work is close to our work in
motivation, train a UNMT model for an HMR-LMR

language pair. Iteratively, every subset (e.g. 10%)
of HMR and all LMR data is backtranslated and the
pseudo-parallel corpus is added to the training pro-
cess. Just like XLM, this training procedure needs
to run from scratch for every new language pair.
By contrast, our method fine-tunes a monolingual
pretrained LM for UNMT, so it is computationally
faster and simpler.
Vocabulary. Transferring a pretrained model
(source) to a new model (target) requires the use of
a shared vocabulary (Nguyen and Chiang, 2017).
Kim et al. (2019) propose a linear alignment of
the source and target model embeddings using an
unsupervised dictionary. However, when the em-
beddings of the two models do not have enough
overlapping strings, dictionary induction might fail
(Søgaard et al., 2018). Lakew et al. (2018) transfer

a source NMT model to a target NMT model (e.g.
De-En to Nl-En). To enable transfer, they overwrite
the source vocabulary with the target vocabulary.
By contrast, we keep the union of the two vocabu-
laries. We fine-tune a pretrained monolingual LM

to an LMR language, to initialize an NMT model.
Thus, we need the vocabularies of both languages.
Adapters. Residual adapters (Houlsby et al., 2019)
are feed-forward networks, added to each of to the
original model’s layers. During fine-tuning, the
model parameters are frozen and only the adapters
are fine-tuned. This can prevent catastrophic for-
getting (Goodfellow et al., 2014; Bapna and Fi-
rat, 2019). Adapters show promising results in
domain adaptation (Bapna and Firat, 2019) and
cross-lingual classification (Artetxe et al., 2020).
Motivated by this, we study the use of adapters
during LM fine-tuning in our analysis.

3 Proposed Approach

We describe our method for translation between a
high-resource (HMR) and a low-resource language
(LMR) using monolingual data in this section.

3.1 RE-LM

Our proposed approach consists of three steps, as
shown in Figure 1:
(A) We train a monolingual masked LM on the HMR

language, using all available HMR corpora. This
step needs to be performed only once for the HMR

language. Note that a publicly available pretrained
model could also be used.
(B) To fine-tune the pretrained LM on the LMR

language, we first need to overcome the vocabulary
mismatch problem. Fine-tuning without extending
the vocabulary is detrimental, as we will show later
in the analysis. We therefore extend the vocabulary
of the pretrained model using our proposed method,
described in §3.2.
(C) Finally, we initialize an encoder-decoder UNMT

system with the fine-tuned LM. The UNMT model
is trained using denoising auto-encoding and online
back-translation for the HMR-LMR language pair.

Figure 2: Segmentations of Albanian (Sq). We observe
that splitting Sq using En BPEs (BPEHMR) results in
heavily segmented tokens. This problem is alleviated
using BPEjoint tokens, learned on both languages.
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3.2 Vocabulary Extension
We propose a novel method that enables adapting a
pretrained monolingual LM to an unseen language.
We consider the case of an LM pretrained on an
HMR language. The training data is split using
Byte-Pair-Encoding (BPE) (Sennrich et al., 2016b).
We denote these BPE tokens as BPEHMR and the
resulting vocabulary as VHMR. We aim to fine-tune
the trained LM to an unseen LMR language. Split-
ting the LMR language with BPEHMR tokens would
result in heavy segmentation of LMR words (Figure
2). To counter this, we learn BPEs on the joint
LMR and HMR corpus (BPEjoint). We then use
BPEjoint tokens to split the LMR data, resulting in
a vocabulary VLMR. This technique increases the
number of shared tokens and enables cross-lingual
transfer of the pretrained LM. The final vocabulary
is the union of the VHMR and VLMR vocabularies.
We extend the input and output embedding layer
to account for the new vocabulary items. The new
parameters are then learned during fine-tuning.

4 Experimental Setup

Datasets. We experiment with two setups. In the
first synthetic setup we use En-De. We sample 8M
En sentences from NewsCrawl. To simulate an
LMR language, we gradually sample 0.05M, 0.5M
and 1M De sentences. We use the WMT dev/test
sets (Bojar et al., 2016). The second, real-world
setup is En-Mk, En-Sq. We use 68M En sentences
from NewsCrawl. For Mk and Sq, we use 2.4M Mk
and 4M Sq, obtained from OSCAR2 (Ortiz Suárez
et al., 2019) and Wikipedia. We randomly select
3K sentences from SETIMES3 as dev and 3K as
test set. We tokenize data with standard Moses
(Koehn et al., 2006) scripts. For the low-resource
supervised case, we sample 10K, 100K, and 200K
parallel sentences from SETIMES for Mk and Sq.
Preprocessing. We train a standard XLM model
(Lample and Conneau, 2019) as a baseline using
32K BPE merge operations, learned on the concate-
nation of sentences sampled randomly from the
corpora of each language pair with α = 0.5. For
RE-LM, we learn 32K BPEs on the HMR corpus
and extract the initial vocabulary (VHMR). Then,
we learn 32K BPEs on the joint LMR and HMR

corpus (BPEjoint). We extend the initial VHMR vo-
cabulary by the amount of LMR vocabulary items
that are not already present in VHMR. To identify

2https://oscar-corpus.com/
3http://opus.nlpl.eu/SETIMES.php

whether a smaller number of BPE merges would be
useful for splitting the LMR language, we conduct
experiments varying their number in the analysis.
Model Configuration. RE-LM is built using the
XLM codebase4. Each masked LM has a Trans-
former architecture with 1024 hidden units, 6 lay-
ers and 8 attention heads. Each NMT model is a
6-layer encoder-decoder Transformer with 1024
hidden units and 8 heads. Each LM is trained us-
ing Adam (Kingma and Ba, 2015) with learning
rate 10−4 and masking follows Devlin et al. (2019).
During UNMT and supervised NMT training, Adam
with inverse square root scheduling and a learning
rate of 10−4 is used. We evaluate NMT models on
the dev set every 3000 updates using greedy de-
coding. The En LM and each XLM are trained on
8 NVIDIA GTX 11 GB GPUs for 1 week, with a
per-GPU batch size of 32. LM fine-tuning and NMT

training models are computationally efficient, using
just 1 GPU and 32 batch size. We assume that by
fine-tuning the LM on 8 GPUs, we could get even
better results. Final translations are generated us-
ing beam search of size 5. We report de-tokenized
BLEU using SacreBLEU (Post, 2018)5.
Experiments. For unsupervised translation, we
train a randomly initialized UNMT model for each
language pair as a first baseline. As a transfer learn-
ing baseline, we use XLM (Lample and Conneau,
2019), trained on the two languages and transferred
to a UNMT model. The UNMT models are trained
using monolingual data. For supervised transla-
tion, NMT training is performed using only par-
allel corpora, without offline back-translation of
monolingual data. The first baseline is a randomly
initialized NMT system. The second baseline is
an NMT model initialized with XLM. We compare
them to our proposed approach, RE-LM. Both XLM

and RE-LM are trained on the monolingual corpora
of both languages of interest. In the analysis, we
add adapters (Rebuffi et al., 2018) of hidden size
256 after each self-attention and each feed-forward
layer of the pretrained monolingual LM. We freeze
the parameters of the pretrained LM and fine-tune
only the adapters and the embedding layer.

5 Results and Analysis

5.1 Unsupervised Translation
Table 1 presents our UNMT results, comparing ran-
dom initialization, XLM and RE-LM.

4github.com/facebookresearch/XLM/
5Signature “BLEU+c.mixed+#.1+s.exp+tok.13a+v.1.4.9”

https://oscar-corpus.com/
http://opus.nlpl.eu/SETIMES.php
https://github.com/facebookresearch/XLM/
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HMR-LMR language pair En-De En-De En-De En-Mk En-Sq
size of LMR language 0.05M 0.5M 1M 2.4M 4M

← → ← → ← → ← → ← →

random 3.9 4.9 3.4 2.6 4.2 4.1 3.5 3.0 6.6 5.6
XLM 8.1 6.4 19.8 16.0 21.7 18.1 12.2 12.8 16.3 18.8
RE-LM 10.7 7.5 22.6 19.0 24.3 21.9 22.0 21.1 27.6 28.1

Table 1: UNMT BLEU scores. The first column indicates the pretraining method used. Left arrow (←) refers to
translation from the LMR language to En, while right arrow (→) refers to translation from En to the LMR language.

Synthetic setup. We observe that RE-LM consis-
tently outperforms XLM. Using 50K De sentences,
RE-LM has small gains over XLM (+1.1 BLEU in
En→De). However, when we scale to slightly more
data (500K), the performance of RE-LM is clearly
better than the one of XLM, with +3 En→De BLEU

gains. With 1M De data, our model surpasses the
XLM by more than 2.6 BLEU in both directions.
Real-world setup. Our approach surpasses XLM

in both language pairs. We observe that RE-LM

achieves at least +8.3 BLEU over XLM for En-Mk.
Our model was first pretrained on En and then
fine-tuned on both En and Mk. Therefore, it has
processed all En and Mk sentences, obtaining a
good cross-lingual representation. However, XLM

is jointly trained on En and Mk. As a result, it
overfits Mk before processing all En data. RE-
LM is similarly effective for En-Sq, achieving an
improvement of at least +9.3 BLEU over XLM.
Synthetic vs Real-world setup. The effectiveness
of RE-LM is pronounced in the real-world setup.
We identify two potential reasons. First, for En-
De, 8M En is used for LM pretraining, while for
En-Mk and En-Sq, 68M En is used. When XLM is
trained on imbalanced HMR-LMR data, it overfits
the LMR language. This is more evident for the En-
Mk (or En-Sq) than for the En-De XLM, perhaps
due to the larger data imbalance. Second, in En-
De, we use high-quality corpora for both languages
(NewsCrawl), whereas Mk and Sq are trained on
low-quality CommonCrawl data. The fact that RE-
MLM outperforms XLM for Mk and Sq shows that
it is more robust to noisy data than the XLM.

5.2 Low-Resource Supervised Translation

We sample 10K, 100K and 200K of En-Mk and En-
Sq bi-text and train supervised NMT systems. We
compare XLM, RE-LM and random, an NMT model
trained from scratch. We observe (Table 2) that RE-
LM consistently outperforms the baselines when
trained on 100K or less for En-Mk and En-Sq. Us-
ing 200K, though, RE-LM yields the same results
as XLM. We hypothesize that this happens because

parallel languages En-Mk En-Sq
direction ← → ← →

10K
random 23.4 23.7 25.5 18.9
XLM 38.7 38.7 44.7 41.4
RE-LM 40.1 38.9 45.7 42.8

100K
random 48.4 48.2 51.8 37.4
XLM 53.7 53.2 57.1 52.0
RE-LM 54.8 53.4 58.1 52.9

200K
random 51.3 51.2 55.6 51.4
XLM 55.0 55.5 60.9 55.1
RE-LM 55.2 55.3 61.1 54.8

Table 2: BLEU scores on the dev set using increasing
amounts of parallel data. We show in bold the models
that achieve at least +1 BLEU compared to XLM.

SETIMES is a homogeneous domain. Thus, train-
ing an NMT model with 200K is sufficient for com-
petitive results, so both pretraining models provide
similar improvements over random.

5.3 Analysis

We experiment with different fine-tuning schemes
and show results in Table 3. Then, we vary the
number of BPE merges used to split the LMR lan-
guage using the vocabulary extension method and
also show experiments where this method is not
used at all. The results are presented in Table 4.
RE-LM. In Table 3, we compare fine-tuning an
LM only on the LMR language to fine-tuning it on
both the HMR and LMR language (rows 1 and 2).
Fine-tuning only on the LMR language provides
worse BLEU scores because of catastrophic forget-
ting. The negative effect is clear for Mk and Sq,
where fine-tuning only on the LMR results in worse
BLEU scores than random initialization, shown in
Table 1. For De, the effect is smaller, perhaps be-
cause En and De are very similar languages.
Adapters. We insert adapters to the pretrained LM

and fine-tune only the adapter and embedding layer.
We use the fine-tuned LM to initialize a UNMT sys-
tem. Adapters are used for both translation direc-
tions during UNMT training. Results are presented
in Table 3. Fine-tuning the LM only on the LMR

language yields at least +3.9 BLEU for En-Sq com-
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HMR-LMR language pair En-De En-De En-De En-Mk En-Sq
size of LMR language 0.05M 0.5M 1M 2.4M 4M

← → ← → ← → ← → ← →

LM

ft on LMR 9.4 7.3 20.4 16.8 20.6 17.8 2.7 2.4 4.7 4.7
ft on LMR & HMR (RE-LM) 10.7 7.5 22.6 19.0 24.3 21.9 22.0 21.1 27.6 28.1
+ adapters ft on LMR (adapter RE-LM) 9.8 7.5 21.3 18.3 23.7 20.0 21.6 19.0 30.2 29.4
+ adapters ft on LMR & HMR 9.2 7.1 20.6 18.0 23.4 19.9 21.6 20.3 24.6 25.5

Table 3: Comparison of UNMT BLEU scores obtained using different fine-tuning schemes of the pretrained mono-
lingual LM. LM refers to the pretrained LM (on HMR data), while ft refers to fine-tuning.

pared to fine-tuning on both (rows 3, 4). En and
Sq are not similar languages and their embeddings
also differ. Thus, fine-tuning on both is not help-
ful. By contrast, fine-tuning only on Sq preserves
the pretrained model’s knowledge, while adapters
are trained to encode Sq. For En-De and En-Mk,
both approaches provide similar results. En and
Mk do not share an alphabet, so their embeddings
do not overlap and both fine-tuning methods are
equally effective. In En-De, fine-tuning only on De
is marginally better than fine-tuning on both. We
highlight that adapters allow parameter-efficient
fine-tuning. Adapter RE-LM reaches almost the
same results as RE-LM, using just a fraction of the
RE-LM parameters while fine-tuning. Details can
be found in the appendix.

En-De En-Mk En-Sq
BPEjoint 0.5M 2.4M 4M
merges → ← → ← → ←

- 8.1 8.0 6.1 6.4 7.2 7.6

8K 8.3 10.2 14.3 17.3 18.1 16.4
16K 8.7 14.6 14.9 20.2 27.1 25.5
32K 22.6 19.0 22.0 21.1 27.6 28.1

Table 4: UNMT BLEU scores obtained with RE-LM,
with (rows 2-4) and without (row 1) extending the vo-
cabulary of the pretrained LM (VHMR). When extend-
ing the vocabulary, we vary the number of BPEjoint

merges used to split the LMR data. We note that 32K
BPEs are used to split the HMR data (BPEHMR).

BPEjoint new vocabulary items
merges Mk Sq De

8K 5K 5K 0.6K
16K 10K 10K 2K
32K 19K 20K 19K

Table 5: Statistics of the vocabulary extension method.
We split the LMR corpus using 8K, 16K, or 32K BPE
merges and report the number of new vocabulary items.

Vocabulary Extension. In order to use RE-LM,
we extend the vocabulary of each language, as de-
scribed in §3.2. The intuition is that, since the
pretrained monolingual LM uses BPEs learned ex-

clusively on the HMR language, these BPEs would
not split the LMR corpus in a meaningful way. We
conduct experiments to clarify the contribution of
the vocabulary extension, presented in Table 4. In
Table 5, we present the amount of vocabulary items
added for each of our experimental setups.

Without vocabulary extension, the results are
poor. This is expected, as in the case of Mk for ex-
ample, the HMR language (En) uses Latin alphabet,
whereas Mk uses Cyrillic. If the vocabulary of Mk
is not taken into account, the UNMT model cannot
provide accurate results. The same applies for Sq
and De. We hypothesize that, even though these
languages use Latin script, a lot of their words do
not appear in En, therefore extending the initial
vocabulary to include them is crucial. Using vocab-
ulary extension, we experiment with learning 8K,
16K or 32K BPEs on the joint corpus. We then use
them to split the LMR data. We observe in Table
4 that even using only 8K BPEs, there is a large
improvement in Mk and Sq (more than +8 BLEU).
For En-De, the improvement is negligible. This
might be the case because, as Table 5 shows, using
8K merges, only 600 items are added to the initial
vocabulary, which are not sufficient for represent-
ing De language. This setup for En-De is in fact
very similar to not employing vocabulary extension.
We notice that adding more vocabulary items (us-
ing more BPE merge operations) is helpful for all
language pairs, providing improved BLEU scores.

6 Conclusions

Training competitive unsupervised NMT models
for HMR-LMR scenarios is important for many real
low-resource languages. We proposed RE-LM, a
novel approach that fine-tunes a high-resource LM

on a low-resource language and initializes an NMT

model. RE-LM outperformed a strong baseline in
UNMT, while also improving translations on a low-
resource supervised setup. In future work, we will
apply our method to languages with corpora from
diverse domains and also to other languages.
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A Appendix

A.1 Vocabulary Extension

We provide more examples of different segmenta-
tions of Sq, De and Mk using either the BPEHMR or
the BPEjoint tokens in Figure 3. We observe that,
as expected, the Mk sentence is split to the charac-
ter level, as it uses a different alphabet (Cyrillic)
than the one that the BPEHMR tokens were learned
on (Latin).

Figure 3: Segmentation of Sq, De and Mk using
BPEHMR or BPEjoint tokens. Using BPEHMR tokens
results in heavily split words.

A.2 Datasets

We report that we remove sentences longer than
100 words after BPE splitting. We split the data
using the fastBPE codebase6.

A.3 Model Configuration

We tie the embedding and output (projection) lay-
ers of both LM and NMT models (Press and Wolf,
2017). We use a dropout rate of 0.1 and GELU acti-
vations (Hendrycks and Gimpel, 2017). We use the
default parameters of Lample and Conneau (2019)
in order to train our models unless otherwise spec-
ified. We do not tune the hyperparameters. The
code was built with PyTorch (Paszke et al., 2019)
on top of the XLM implementation7. This code was
used for LM pretraining, LM fine-tuning, UNMT

training, and NMT training.

LM configuration and training details. RE-LM

approach pretrains a monolingual language model
whereas the XLM approach pretrains a bilingual
language model. We obtain a checkpoint every
200K sentences processed by the model. We train

6https://github.com/glample/fastBPE
7https://github.com/facebookresearch/XLM/

each LM using as criterion the validation perplexity
on the LMR language, with a patience of 10.

The training details of the two pretraining meth-
ods are presented here:

• The monolingual LM pretraining required 1
week, 8 GPUs and had 137M parameters.

• The XLM pretraining required 1 week, in 8
GPUs. The total number of trainable parame-
ters is 138M.

Our approach also requires an LM fine-tuning step.
The runtimes, parameters and GPU details are
shown in Table 6 under RE-LM ft column. The
runtimes mentioned refer to the En-Mk language
pair. We note that the LM fine-tuning step is a lot
faster than performing XLM pretraining for each
language pair (note that pretraining ran on 8 GPUs,
whereas fine-tuning on a single GPU).

NMT configuration and training details. The
parameters and runtimes of the UNMT models we
used are shown in Table 6 under UNMT columns.
Likewise, the details of supervised NMT models are
shown under sup NMT columns. We get a check-
point every 50K sentences processed by the model.
Regarding the adapter RE-LM training procedure,
we note that, different from Houlsby et al. (2019);
Bapna and Firat (2019), we also freeze the layer
normalization (Ba et al., 2016) parameters, without
introducing new ones.

A.4 Validation Scores of Results
In Tables 7 and 8 we show the dev scores of the
main results of our proposed approach (RE-LM)
compared to the baselines. These Tables extend
Table 1 of the main paper.

In Tables 9 and 10, we show the dev scores of
the extra fine-tuning experiments we did for the
analysis. The Tables correspond to Table 3 of the
main paper.

We note that the dev scores are obtained using
greedy decoding, while the test scores are obtained
with beam search of size 5. We clarify that we
train each NMT model using as training criterion
the validation BLEU score of the LMR→HMR di-
rection, with a patience of 10. We specifically use
multi-bleu.perl script from Moses.
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XLM RE-LM adapter RE-LM random
UNMT sup NMT ft UNMT sup NMT ft UNMT UNMT sup NMT

params 223M 223M 156M 258M 258M 88M 270M 258M 258M
runtime 48h 10h 60h 72h 10h 44h 20h 18h 15h

Table 6: Parameters and training runtimes used for each experiment. We note that each of the experiments ran on
a single GPU. ft refers to the fine-tuning of the pretrained monolingual LM. Adapter RE-LM refers to the addition
of adapters to the LM and the UNMT model.

languages En-De
size of LMR 0.05M 0.5M 1M

← → ← → ← →
dev test dev test dev test dev test dev test dev test

random 3.2 3.9 4.1 4.9 2.5 3.4 2.3 2.6 3.7 4.2 3.5 4.1
XLM 5.6 8.1 4.8 6.4 14.5 19.8 12.0 16.0 17.4 21.7 14.6 18.1
RE-LM 7.4 10.7 4.1 7.5 16.2 22.6 13.8 19.0 17.8 24.3 16.3 21.9

Table 7: Unsupervised NMT results with dev scores. The first column indicates the pretraining method used.
Random refers to random initialization, while XLM refers to the method of Lample and Conneau (2019) and RE-
LM to our proposed approach.

size of LMR 2.4M 4M
Mk→En En→Mk Sq→En En→Sq

dev test dev test dev test dev test

random 3.1 3.5 3.0 3.0 5.8 6.6 5.6 5.6
XLM 11.8 12.2 12.6 12.8 15.5 16.3 17.3 18.8
RE-LM 22.0 22.0 19.5 21.1 27.2 27.6 27.6 28.1

Table 8: Unsupervised NMT BLEU scores with corresponding dev scores for En-Mk, En-Sq.

languages En-De
size of LMR 0.05M 0.5M 1M

← → ← → ← →
dev test dev test dev test dev test dev test dev test

LM

ft LMR 6.8 9.4 5.2 7.3 15.1 20.4 12.9 16.8 15.3 20.6 13.3 17.8
ft both (RE-LM) 7.4 10.7 4.1 7.5 16.2 22.6 13.8 19.0 17.8 24.3 16.3 21.9
+ adapter RE-LM 6.8 9.8 4.8 7.5 15.1 21.3 13.4 18.3 16.9 23.7 15.2 20.0
+ adapters ft both 6.7 9.2 4.1 7.1 14.8 20.6 13.0 18.0 17.1 23.4 15.0 19.9

Table 9: Comparison of UNMT BLEU scores obtained using different fine-tuning schemes of the pretrained mono-
lingual LM with corresponding dev scores for En-De. LM refers to the pretrained LM, trained on HMR data, while
ft refers to fine-tuning. ft both means fine-tuning on the LMR and the HMR language.

size of LMR 2.4M 4M
Mk→En En→Mk Sq→En En→Sq

dev test dev test dev test dev test

LM

ft LMR 2.6 2.7 2.3 2.4 4.4 4.7 4.2 4.7
ft both (RE-LM) 22.0 22.0 19.5 21.1 27.2 27.6 27.6 28.1
+ adapter RE-LM 21.4 21.6 20.0 19.0 29.8 30.2 29.3 29.4
+ adapters ft both 22.7 21.6 22.2 20.3 24.4 24.6 25.4 25.5

Table 10: Comparison of UNMT BLEU scores obtained using different fine-tuning schemes of the pretrained mono-
lingual LM with corresponding dev scores for En-Mk and En-Sq. LM refers to the pretrained LM, trained on HMR
data, while ft refers to fine-tuning. ft both means fine-tuning on the LMR and the HMR language.


