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Abstract

Neural machine translation (NMT) has
achieved great success due to the ability to
generate high-quality sentences. Compared
with human translations, one of the drawbacks
of current NMT is that translations are not
usually faithful to the input, e.g., omitting
information or generating unrelated fragments,
which inevitably decreases the overall quality,
especially for human readers. In this paper,
we propose a novel training strategy with
a multi-task learning paradigm to build a
faithfulness enhanced NMT model (named
FENMT). During the NMT training process,
we sample a subset from the training set and
translate them to get fragments that have
been mistranslated. Afterward, the proposed
multi-task learning paradigm is employed
on both encoder and decoder to guide NMT
to correctly translate these fragments. Both
automatic and human evaluations verify that
our FENMT could improve translation quality
by effectively reducing unfaithful translations.

1 Introduction

Neural machine translation (NMT) based on the
encoder-decoder framework (Sutskever et al., 2014;
Cho et al., 2014; Bahdanau et al., 2014; Luong
et al., 2015b) has obtained state-of-the-art per-
formance on many language pairs (Wu et al.,
2019; Wei et al., 2020). Various neural archi-
tectures have been explored for modeling NMT
under this framework, such as recurrent neural
network (RNN) (Bahdanau et al., 2014; Luong
et al., 2015b, RNNSearch), convolutional neu-
ral network (CNN) (Gehring et al., 2016, Conv-
S2S) and self-attention network (Vaswani et al.,
2017, Transformer). Compared with human trans-
lations or traditional statistical machine translation
(SMT) (Koehn et al., 2007b; Chiang, 2007), NMT

*Work done during the internship at Alibaba Group.

can generate high-quality sentences that are very
close to natural language. However, it usually ap-
pears some parts (e.g., phrase) from input sentences
cannot be correctly translated, leading to that the
translation is inadequate for direct using in some
scenarios. This phenomenon appeals that enhanc-
ing the faithfulness of translations is an important
aspect for further improving NMT.

We summarize three possible causes for the un-
faithfulness problem based on the encoder-decoder
framework: 1). Some parts from input sentences
are hard to encode, and thus cannot be translated
correctly. 2). The decoder cannot fetch the cor-
rect contextual representation from the encoder.
3).The dominant language model of NMT prompts
the decoder generates common words to make sure
outputs are fluent. Several recent studies are pro-
posed following one of the above perspectives and
have achieved considerable effects. Zheng et al.
(2019) proposed to divide the encoder output into
past and future parts to fine-grained modeling con-
textual representation. Feng et al. (2020) proposed
a faithfulness part to optimize the contextual rep-
resentation before feeding into the decoder. Kong
et al. (2019) proposed to use a coverage difference
ratio metric as a reward to train NMT.

In this paper, we propose a novel training strat-
egy with a multi-task learning paradigm, taking
into account the use of real translations for build-
ing a faithfulness enhanced NMT (named FENMT).
Firstly, we align source and target sentences in
the training set. Then, at each training epoch, we
sample a subset from the training set and translate
source sentences by the NMT in the this set. For
convenience, we simply define a mistranslated frag-
ment is a continues segment from a target sentence
which does not appear in the translation. So, we can
collect mistranslated fragments by comparing the
translation and reference, and get the correspond-
ing source words by the alignment relationship.
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Translation:

Target: Encrease] @ublic’g ﬁitigation] [exhaustion]
word alignment
Source:
Figure 1: The case of collecting mistranslated frag-

ments. “litigation exhaustion” is the mistranslated frag-
ment and “21f” is the corresponding source word.

After that, our multi-task learning paradigm (MTL)
is incorporated into the training process to learn to
correctly translate these mistranslated fragments.
To make the most of the collected mistranslated
fragments, the proposed MTL method considers all
sides of the above hypotheses.

Specifically, we employ a masked language
model task (Devlin et al., 2018) on the encoder
side to infer the input words didn’t be correctly
translated. This task can enhance the ability of
modeling the whole input sentence and give the
decoder accurate and complete representations. On
the decoder side, we use a word alignment task
to improve the alignment accuracy of the encoder-
decoder attention (or cross-attention) to help the
decoder to capture correct contextual representa-
tion. Furthermore, along with the NMT objective,
an auxiliary max-margin objective based on con-
trastive learning is introduced in all decoding time-
steps. The goal of this task is to avert the tendency
of translating frequent but unrelated words.

We implement the proposed approach based on
Transformer (Vaswani et al., 2017) and evaluate it
on WMT14 English to German (En—De), WMT17
Chinese to English (Zh—En) and WMT16 English
to Romania (En—Ro) machine translation tasks.
Both automatic and human evaluations show that
the proposed FENMT could substantially improve
the overall quality and faithfulness of translations.

2 The Proposed Approach

We will introduce the whole procedure of the
proposed FENMT model based on the advanced
Transformer (Vaswani et al., 2017). We firstly
show the details of how to collect mistranslated
fragments and the multi-task learning paradigm at
section 2.1 and 2.2, respectively. Then, the overall
training strategy of our approach is represented at
section 2.3.

2.1 Collecting Mistranslated Fragments

Given a parallel training set B3, we achieve the
alignment matrix set A through a word alignment
model trained by the parallel training set, and get
the phrase table P according to the word align-
ment (Koehn et al., 2003).

At the tth training epoch of NMT, we sample
a subset By from the B. Given a sentence pair
{x,y} from the 3%, where x is the source sequence
(x1, -, -+ ,x7) and y is the target sequence
(y1,-++,¥j, -+ ,y7s), I and J are the length of x
and y, respectively. The alignment matrix A €
R7*! of {x,y} can be obtained from A, in which
a;; = 1 means y; aligns x;. We then translate the
source sentence by y = fp, , (x), where fy, ,(-) is
the NMT model, which parameters are ¢ and has
been trained after ¢ — 1 epochs. ¥ is composed of
(91, , Uk, -+ UK ), K is the sentence length.

We define that a fragment in y is mistranslated
when it does not appear in y but is contained in
‘P. Subsequently, we randomly sample consecutive
parts from y included in P and compare them with
¥y to achieve mistranslated fragments. We denote
a subsequence y” of y containing all words mis-
translated, y; ; is the tth word of y! whose position
in the y is 7. Afterward, we can get the aligned
source words of y’ by using the alignment rela-
tionship. For a word y; ;, we collect source words
when a;. = 1. We denote the sequence having all
aligned source words as xM | in which ZTm,; 1s the
mth word of x* whose position in the x is i. A
shortly case is shown in Figure 1.

2.2 Multi-task Learning Paradigm

Masked language model task for the encoder.
The first hypothesis mentioned above is that the
encoder cannot model mistranslated parts well,
which leads to the subsequent module cannot trans-
late them correctly. Here, we introduce a masked
language model task (MLM) to further model these
source words. Specifically, before feeding into the
decoder, we ask for the source representation pre-
dicts mistranslated words which are masked at the
input sentence (see Figure 2).!

Formally, given the input sentence x from B}
and the mistranslated subsequence x . We define
a sequence x*, which likes x but the words in the
x™ will be replaced as a special <MASK> token
with the probability of 80%, and as a random word

"We also implement the MLM task though randomly sam-
pling tokens in sentences, but it doesn’t work well.
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Figure 2: The overview of the masked language model
task. M means the masked source word.

or keep unchanged with the probability of 10%
individually. This procedure is the same as Devlin
et al. (2018). The encoder with the MLM task
maximizes the conditional probability defined as:

P(x,,;]x™) = softmax(FEN(rf)), (1)
R” = Encoder(x%), (2)

where RP € Rhinpuxdmodel js the output hidden states
of the encoder, and riE € Rmodel ig jth hidden state
of R, linput 18 the length of the input sentence and
dmodel 18 the dimension of hidden state. Finally, the
objective of the masked language model is

Lm = —Exreps [E,,, .exv[log P(,,:x™)]].

3)

Word alignment task for the cross attention.
After getting a better source contextual representa-
tion, i.e., the RY , Whether the decoder can get the
correct representation for each output word is an-
other factor determining translation faithfulness.
The cross-attention is the single connection be-
tween the encoder and decoder. A natural intuition
is that improving the accuracy of cross-attention
is helpful for getting faithful translations. Thus,
we introduce a word alignment task for the cross-
attention here (see Figure 3).

Specifically, given the target sentence y, we de-
fine the cross-attention weight matrix as C € R7/*/,
the vector ¢; from C is the weight of jth decoder
hidden state to the encoder representation. We then
define the alignment label as B € R7*!. Given
the word y; in the y’, the corresponding alignment
label vector b; is computed by:

b; = softmax(a;), 4)

¥ al,' Aip 413 Gy dis dig ‘
I ] o
ay6 |

D1 oy By Gy ds
22T
aAﬁ| | $
] =
dse

X1 X2 X3 X4 X5 Xe6

M L ay 33 O3y Oas

a1 Quo Q43 Quy Ay

Ys %1 92 Gs3 G54 Gss

Figure 3: The overview of the word alignment objec-
tive. The word has superscript M is mistranslated.

where a; is from the alignment matrix A. Note that
when using subword (Sennrich et al., 2015; Devlin
et al., 2018) as input, alignment probability will be
divided into the corresponding tokens equally (e.g.,
if a word is divided into two tokens, the probability
for each token is 0.5).

Generally, the decoder has IV block and the cross
attention from each block has H heads (Vaswani
et al., 2017). We randomly choose two heads at
each blocks to employ the word alignment ob-
jective. We define the selected attention weight
matrix setas C = {Cy,--+,Cg,- - ,Ck}, where
K = 2% N. Then, the word alignment objective is

La = —Ec,ec[En,ec;ec,[bjloge;]]l.  (5)

This objective is used to guide the cross-attention to
capture correct contextual information rather than
only learn the word alignment information. So
we only employing it on parts of attention head to
avoid “overfitting” to the alignment task.

Max-margin task for the decoder. Empirically,
the language model in current NMT is more
stronger than the translation model, so the NMT
model tends to translate common words even un-
related to the source sentence (Kong et al., 2019).
Only using cross-entropy objective isn’t enough
to keep translations faithful. Here, we introduce a
max-margin objective based on contrastive learn-
ing to suppress the tendency of NMT to generate
common but unfaithful words.

Specifically, given the target sentence y and the
translation y, the max-margin loss is defined as
Lc = Z}Ll L, where L; is computed by

max (0, mg — P(y;|y1:5,X)
+ P(?Jj)‘gl:jax)) yYtg € yT
0 7yt,j ¢ yT

L=
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Figure 4: Overview of the training strategy of the pro-
posed FENMT. MTL: multi-task learning.

where the mg is the margin, we empirically set to
0.2. The cross-entropy objective with this objec-
tive can prompt the decoder to translate fluent and
faithful sentences.

2.3 The Overall Training Strategy

The standard NMT training objective is to mini-
mize the negative log-likelihood by:

Lt = _E{x,y}eB IOgP(y|X) (6)

And the final training objective of our proposed
approach is:

Lr=Lr+a-Lm+B-La+v-Le, ()

where «, 8 and +y are used to balance the preference
among the external losses, which are empirically
set to 0.3 individually. Note that due to the different
inputs, Ly should be computed separately.

The training strategy as follows: at the {th NMT
training epoch, we are going to sample part of the
sentences from the training set, the sampling ratio
is computed by:

ratio = max(d® V) « 20%, 5%), (8)

where d is the decay rate, we set as 0.9 here. To
avoid decreasing training efficiency, the sampled
data will be translated by fy, () at the ¢th epoch
and used at the ¢ + 1th epoch. And the first epoch
will not use this method as a warm-up.

The overview of the training strategy is shown in
Figure 4 The NMT will begin to translate sampled
sentences at the end of the ¢th epoch, which is

synchronous with the training process. Then, when
both of the training process and translation process
are finished, the multi-task learning paradigm will
be employed to continue train the NMT model.

3 Experiment

3.1 Implementation Detail

We conduct experiments on the WMT data-sets?,
including WMT17 Chinese to English CWMT part
(Zh—En), WMT 14 English to German (En—De)
and English to Romanian (En—Ro). On the
Zh—En, our training set has about 7.5M sentence
pairs. We use newsdev2017 as dev set which has
2002 sentence pairs, and newstest2017 as test
set which has 2001 sentence pairs. On the En—De,
our training set has about 4.5M sentence pairs. We
use newstest2013 as dev set which has 3000
sentence pairs, and newstest2014 as test set,
which has 3003 sentence pairs. On the En—Ro,
our training set has about 0.6M sentence pairs. We
use newstest2015 as dev set which has 2000
sentence pairs, and newstest2016 as test set
which has 2000 sentence pairs. We apply the byte
pair encoding (BPE) (Sennrich et al., 2015) to all
language pairs and limit the vocabulary to 32K. All
out-of-vocabulary words were mapped to the UNK
token. The same training sets were used to train
a word alignment model using fast_align®. Then,
the bilingual phrase table is extracted by Koehn
et al. (2003, 2007a). We limit the length of phrase
is 2-4, and finally 6.7M, 3.4M and 0.2M phrases
are extracted from Zh—En, En—De and En—Ro.

Following Transformer-Base and Transformer-
Big settings, we set the dimension of the input
and output of all layers as 512/768, and that of the
feed-forward layer to 2048/3072. We employ 8/12
parallel attention heads. The number of layers for
the encoder and decoder are 6. Sentence pairs are
batched together by approximate sentence length.
Each batch has approximately 25000 source and
25000 target tokens. We use label smoothing with
value 0.1 and dropout with a rate of 0.1. We use
the Adam (Kingma and Ba, 2014) with the learning
rate of 1e-3, 81 = 0.9, B2 = 0.98, and it was varied
under the warm-up with 4000 steps. Other settings
of Transformer follow Vaswani et al. (2017).

We use beam search for heuristic decoding, and
the size is set to 4. We use the sacreBLEU* to calcu-

Zhttp://www.statmt.org/wmt17/translation-task.html
3https://github.com/clab/fast_align
*https://github.com/mjpost/sacreBLEU
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# Model #Param. Zh—En En—De En—Ro
1  Transformer-Base 62M 2441 27.37 32.23
2 Transformer-Big 207M 24.72 28.47 —

3 Transformer-Base* (Vaswani et al., 2017) 65M — 27.3 —

4  Transformer-Base® (Hassan et al., 2018) — 24.13 — —

5 Transformer-Base* (Gu et al., 2017) — — 27.02 31.91
6  Transformer-Big* (Vaswani et al., 2017) 213M - 27.3 —

7  (Feng et al., 2020) — — 27.55 —

8 AOL* (Kong et al., 2019) — — 28.01 —

9 AOL*(Big) (Kongetal.,2019) — — 28.99 —
10 Dynamic Past&Future® (Zheng et al., 2019) 54M — 28.10 32.96
11  Reorder Embedding® (Chen et al., 2019) 107M — 28.22 —
12 Deliberation Network*(Big) (Wang et al., 2019)  372M - 29.11 —
13 Self-supervised Learning 62M 24.39 27.50 31.98
14 MRT (Shen et al., 2016) 62M — 27.71 —
15 Knowledge Distillation 62M 24.55 27.93 —
16 FENMT 65M 2547 28257 33.43%
17 FENMT (Big) 211IM  26.161  29.36¢ —

Table 1: The comparison of our FENMT, Transformer baselines and related work on the WMT17 Chinese to
English (Zh—En), WMT14 English to German (En—De), and WMT16 English to Romania (En—Ro) tasks (*
indicates the results came from their paper, /1 indicate significantly better than the baseline (p < 0.05/0.01)).

late case-sensitive BLEU (Papineni et al., 2002) as
the automatic metric. We implement the proposed
approach with the implementation of Transformer

derived from the fensor2tensor’.

3.2 Automatic Evaluation

Translation quality. The results are summarized
in Table 1. We implement the Transformer-
Base and Transformer-Big as our baselines. Sev-
eral Transformer systems with the same set-
tings (Vaswani et al., 2017; Hassan et al., 2018; Gu
et al., 2017) are reported as a comparison (line 1-
6). Then, several related researches about improve
faithfulness of NMT (Kong et al., 2019; Zheng
et al., 2019; Chen et al., 2019; Feng et al., 2020)
or exploiting translations for improving NMT (Xia
et al., 2017; Wang et al., 2019) also be reported
(line 7-12). We implement three comparable ap-
proaches on our Transformer baseline, including:
1). self-supervised learning: we use the transla-
tions of training data as a self-supervision signal
to fine tune the NMT model; 2). minimum risk
training (MRT): we implement the MRT following
Shen et al. (2016); 3). Knowledge Distillation: we
adopt the KL divergence to distill knowledge from
Transformer-Big to Transformer-Base (line 13-15).

>https://github.com/tensorflow/tensor2tensor

The results on the ZH—EN task are shown in the
third column of Table 1. The improvement of our
model (FENMT) could be up to 1.03 based on the
Transformer-Base baseline (line 16 vs. line 1), and
1.44 base on the Transformer-Big baseline (line 17
vs. line 2). Then, the results on the En—De task
are shown in the fourth column. On this task, the
proposed model with base and big settings could at-
tain 28.25 BLEU (+0.88) and 29.36 BLEU (+0.89),
which outperforms all previous studies. We also
experiment our method on low resource language
pair of the En—Ro. Results are shown in the last
column. The improvement is 1.20 BLEU on the
base setting, which is a material improvement in
low resource scenario.

Experimental results on three machine transla-
tion tasks show that the proposed approach can
improve translation quality which is not limited by
the language or size of training data. Moreover, our
method is more effect on Zh—En than De—En,
which may appeal the unfaithful problem is more
serious on the language pair which have a larger
difference in morphology.

Model size and efficiency. The number of pa-
rameters is shown in Table 1, our work only adds
3M/4AM parameters on the Base/Big settings. The
training efficiency of our FENMT based on the base
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Model Degree Addition Omission Grammar Style Others Total
Minor 0 0 50 15 3 68

Baseline  Major 6 54 3 0 0 63
Critical 0 5 0 0 1 6
Minor 0 0 41 12 8 61(-10.3%)

FENMT  Major 1 43 4 0 0 48(-23.8%)
Critical 0 3 0 0 0 3(-50.0%)

Table 2: Human evaluation on 100 sentences sampled from Zh—En test set. We divide mistranslations into several
types: Addition includes repetitive and useless translation, Omission means a consecutive part is not be translated
correctly (miss or wrong), Grammar includes word order, word form, function word, etc. Critical, Major and
Minor mean the degree of errors. We invite a professional translator to label errors in the sampled sentences.

Quality Baseline FENMT
Incomprehensible (1) 0 0

Bad (2) 7 3(-57.1%)
Understandable (3) 43 29(-32.6%)
Good (4) 42 54(4+28.6%)
Excellent (5) 8 14(+75.0%)
Overall score 3.51 3.79

Table 3: Human evaluation on 100 sentences sampled
from Zh—En test set. We divide translation quality into
5 levels and give score 1 to 5 (larger is better). We ask a
professional translator to score them. The overall score
is the weighted average of above categories.

Model BLEU A

Baseline 27.37 —

FENMT-Base 28.25 +0.88
wloLg4 wlo Lo  28.00 +0.63
w/o Ly wlo Lo 2770 +0.33
wio Ly wloLy 2789 +0.42
w/o Lo 28.14  +0.77
w/o L 4 28.10 +0.73
w/o Ly 27.86  +0.49

Table 4: Ablation study on the En—De task.

setting is 0.86x compared with Transformer-Base,
and based on the big setting is 0.94x compared
with Transformer-Big.® Our approach only influ-
ence the training process of NMT, so the inference
efficiency will not be affected.

3.3 Human Evaluation

The automatic metric, i.e., BLEU, sometimes can’t
accurately evaluate translation quality. For exam-
ple, the sentence missing content words has de-

8 All comparisons here were on a single GPU (Tesla P100).

crease more on faithfulness than missing function
words, but the BLEU scores may be equal. So, we
make detailed human evaluations to see the varia-
tions of translation quality in the real environment.

Number of mistranslations. We divide mis-
translations into several types and each type has
three degrees. We sample 100 sentences from the
Zh—En test set, and invite a professional translator
to label errors contained in these translations.

The results are reported in Table 2. Our method
can reduce the number of mistranslations at the
most of categories. Typically, our approach signifi-
cantly reduce the number of the Omission, which
means a continue part from the input doesn’t be
translated correctly. At the Addition category, our
approach also achieves remarkable improvement
even it’s not a main error type in current NMT.
Omission and Addition are two serious error types
greatly hurting the faithfulness of translations. The
reduction of these errors will improve the faithful-
ness of translations obviously.

Translation quality ranking. Besides evaluat-
ing the error types in the sampled sentences, we
also evaluate the overall quality for each sentence.
Here, the translation quality is divided into 5 lev-
els and give score 1 to 5 (larger is better) and a
professional translator is invited to score them.

The results are shown in Table 3, the overall
score of the proposed method is better than baseline
(3.79 > 3.51). Specifically, the good (4) and ex-
cellent(5) translations from our approach are more
than baseline (+75.0% and + 28.6%) by revising
the errors from the bad (2) and understandable
(3) translations (-57.1% and -32.6%). This results
show that the reduction of mistranslations really
improve the overall quality for human readers.
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Model Number of Phrases Accuracy
Reference 8082 —
Baseline 5676 70.2%
FENMT 6453 79.8%

Table 5: The accuracy of phrase translation on the
En—De task.

Model Sampling Rate  BLEU
5% 27.79

20% 28.27

FENMT 100% 28.39
ours (20%—5%) 28.25

Table 6: The effectiveness of different sampling rates
on the En—De task. ours: computed by Eq. 8.

3.4 Analysis

Ablation study. To further show the function of
each task in our approach, we make ablation study
in this section. Specifically, we investigate how
the masked language model objective, word align-
ment objective, and max-margin objective affect
the translation performance.

The results are shown in Table 4. Firstly, we anal-
ysis the effect of each task. The model achieves
0.63, 0.33 and 0.42 gains when only using masked
language model (Lyp), word alignment (L) and
max-margin (L¢) individually. Then, the results of
combining two of three tasks are shown in the sec-
ond part. The masked language model combines
word alignment or max-margin can get improve-
ments of 0.77 and 0.73, which are close to the best
performance. While the combination of word align-
ment and max-margin is not work well (+0.49).

The above experimental results show that each
task could get a decent improvement. But com-
pared with improving the ability of the decoder, the
high quality contextual representation learned from
the masked language model is more important.

Accuracy of phrase translation. We compute
the accuracy of phrase translation on the En—De
task to evaluate the proposed multi-task objective in
a fine-grained aspect. The result are shown in Table
5. The total number of phrases in the references
is 8082. Our approach successfully translate the
6453 (79.8%) and the baseline correctly translate
the 5676 (70.2%). The accuracy of our approach
largely improves 9.6% compared with the baseline.

32

4 Qurs 1+ Transformer-Base
Ours (Big) Transformer-Big
30
2
3
o 28
=
|
)
26
24
N N N © N S
Q- \\w Q«W QQ" \@ \;}Q* S

Source Sentence Length

Figure 5: Performance of translations with different
lengths of source sentences on the En—De task. “Ours”
means the proposed FENMT.

Analysis of different sampling rate. The re-
sults of the FENMT with different sampling rate
are shown in Table 6. When the sampling rate is
5%, the performance decreases 0.46 compared with
the rate computed by Eq. 8. When the sampling
rate is larger than 20%, the performance does not
change significantly. But the dynamical sampling
rate will reduce the number of sentences needed to
be translated, which can avoid dropping training
efficiency.

Analysis of sentence length. We group the
En—De test set by the length of source sentences,
and then re-evaluate the BLEU score of each group.
The test set is divided into 7 subsets. Figure 5
shows the results. We find that our model outper-
forms the baseline in all categories in both base
and big setting. The proposed model performs
better on long sentences (e.g., [30,60]). Because
long sentences are usually complex and difficult
to translate which causes the number of mistrans-
lations in them is more than short sentences. Our
approach can avoid these mistranslations compared
with baselines.

Case study. We show two cases from the
Zh—En task to see the difference between baseline
and our approach, which are shown in Table 7.
Our approach could learn how to translate the
difficult fragments in the input which are easier to
be mistranslated. For example, the idiom “turn the
table” in case 1 is translated to loss by the baseline,
which only observe the word “Ji{” in the input. In
case 2, the baseline makes a serious mistake at the
beginning of the sentence. The translation of “FA
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Input AT BT, RE SR, TR BRI RO -

Refer whether you’re approached from in front or behind, it will show you how to
' turn the tables on your mugger.

Baseline whether he comes from the front, or from the front, it will teach you how to lose.

FENMT  whether you’re approached from in front or back, it will show you how to turn the tables.

Input FATF N & S A NG SRR R, B EE LR — D E R .

Refer. asset custody mechanism is a major reason to explain the outbreak of risk events in private

equity funds and other sectors .
Baseline rrust is an important reason for the outbreak of risk events in private equity fund .
FENMT asset custody mechanism is an important reason for the outbreak of risk events in private

equity funds and other sectors .

Table 7: Translation cases from Transformer and FENMT on the Zh—En task. Words with Bold and blue fonts
are correct translations revised by our model. Words with Izalic and red fonts are mistranslations from baseline.
Words with underline are the corresponding parts in the reference.

B A4 is omitted. Our FENMT avoids this
kind of mistakes by specialized modeling mistrans-
lated parts in the NMT model.

4 Related Work

Enhancing faithfulness for NMT. Faithfulness
and Fluency are two fundamental factors of transla-
tion quality. NMT has been able to generate fluent
sentences. While translating faithful sentences is
an urgent problem to be solved. In the RNN-based
NMT, Tu et al. (2016) and Mi et al. (2016) proposed
a coverage mechanism to improve the accuracy of
translation outputs. Following this intuition, Zheng
et al. (2018) divided source representation into past
and future parts to fine-grained control translation
process. These studies focus on using source repre-
sentation effectively. On the other hand, improving
the ability of the decoder is another way. Tu et al.
(2017) proposed to introduce a reconstruction loss
to make translation can reconstruct the input sen-
tence. Weng et al. (2017) proposed a bag-of-words
loss to constrain decoding process. These methods
are similar to multi-task learning, but the motiva-
tion of them are different.

Recent studies found that Transformer also suf-
fer this problem even its translation quality is far
better than RNN model. Kong et al. (2019) pro-
posed a coverage difference ratio metric as a re-
ward to train the Transformer model. Weng et al.
(2020) proposed to model global representation in
the source side to improve the source representa-
tion. Zheng et al. (2019) proposed a capsule based
module to control the source representation dynam-
ically in the decoding process. Zhang et al. (2019),

Feng et al. (2020) and Garg et al. (2019) proposed
to introduce word alignment information in Trans-
former to improve translation accuracy. However,
they only focus on one side causing this problem
while don’t have an overall solution. Our study is
the first work to pay attention to using mistrans-
lations guides NMT model to avoid making these
mistakes again.

Multi-task learning in NMT. Multi-task learn-
ing has been widely used in NMT. Dong et al.
(2015) proposed to share an encoder between differ-
ent translation tasks to exploit multi lingual knowl-
edge. Luong et al. (2015a) proposed to jointly learn
the translation task for different languages, the
parsing task and the image captioning task, with a
shared encoder or decoder. Zhang and Zong (2016)
and Domhan and Hieber (2017) proposed to use
multi-task learning for incorporating source/target
side monolingual data in NMT. Zhou et al. (2019)
introduced noisy data with multi-task learning to
improve the robustness of NMT. Different from
these attempts, our approach wants to improve the
faithfulness of current NMT model, while learning
extra knowledge from other tasks.

5 Conclusion

In this paper, we address the problem that current
NMT can’t generate faithful translations which will
observably decrease translation quality. We pro-
pose a FENMT to learn the faithful translation from
mistranslated parts. We implement the proposed
method based on the Transformer model and evalu-
ate it on three translation tasks. Both the automatic
and human evaluations show that our approach can
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effectively improve the faithfulness of translations.
Our work can employ on different text generation
tasks, e.g., text summarization and dialogue, to en-
hance the key phrases (or terms) generation. In
the future, we will continue investigate the learn-
ing method for effectively utilizing self-generated
samples and expand to other text generation tasks.
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