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Abstract

This paper proposes a new pre-training
method, called Code-Switching Pre-training
(CSP for short) for Neural Machine Trans-
lation (NMT). Unlike traditional pre-training
method which randomly masks some frag-
ments of the input sentence, the proposed CSP
randomly replaces some words in the source
sentence with their translation words in the tar-
get language. Specifically, we firstly perform
lexicon induction with unsupervised word em-
bedding mapping between the source and tar-
get languages, and then randomly replace
some words in the input sentence with their
translation words according to the extracted
translation lexicons. CSP adopts the encoder-
decoder framework: its encoder takes the code-
mixed sentence as input, and its decoder pre-
dicts the replaced fragment of the input sen-
tence. In this way, CSP is able to pre-train
the NMT model by explicitly making the most
of the cross-lingual alignment information ex-
tracted from the source and target monolingual
corpus. Additionally, we relieve the pretrain-
finetune discrepancy caused by the artificial
symbols like [mask]. To verify the effective-
ness of the proposed method, we conduct ex-
tensive experiments on unsupervised and su-
pervised NMT. Experimental results show that
CSP achieves significant improvements over
baselines without pre-training or with other
pre-training methods.

1 Introduction

Neural machine translation (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Cho et al.,
2014; Bahdanau et al., 2015) which typically fol-
lows the encoder-decoder framework, directly ap-
plies a single neural network to transform the
source sentence into the target sentence. With

* indicates corresponding author.

tens of millions of trainable parameters in the
NMT model, translation tasks are usually data-
hungry, and many of them are low-resource or even
zero-resource in terms of training data. Follow-
ing the idea of unsupervised and self-supervised
pre-training methods in the NLP area (Peters
et al., 2018; Radford et al., 2018, 2019; Devlin
et al., 2019; Yang et al., 2019), some works are
proposed to improve the NMT model with pre-
training, by making full use of the widely avail-
able monolingual corpora (Lample and Conneau,
2019; Song et al., 2019b; Edunov et al., 2019;
Huang et al., 2019; Wang et al., 2019; Rothe
et al., 2019; Clinchant et al., 2019). Typically, two
different branches of pre-training approaches are
proposed for NMT: model-fusion and parameter-
initialization.

The model-fusion approaches seek to incorpo-
rate the sentence representation provided by the pre-
trained model, such as BERT, into the NMT model
(Yang et al., 2019b; Clinchant et al., 2019; Weng
et al., 2019; Zhu et al., 2020; Lewis et al., 2019; Liu
et al., 2020). These approaches are able to leverage
the publicly available pre-trained checkpoints in the
website but they need to change the NMT model
to fuse the sentence embedding calculated by the
pre-trained model. Large-scale parameters of the
pre-trained model significantly increase the stor-
age cost and inference time, which makes it hard
for this branch of approaches to be directly used
in production. As opposed to model-fusion ap-
proaches, the parameter-initialization approaches
aim to directly pre-train the whole or part of the
NMT model with tailored objectives, and then ini-
tialize the NMT model with pre-trained parameters
(Lample and Conneau, 2019; Song et al., 2019b).
These approaches are more production-ready since
they keep the size and structure of the model same
as standard NMT systems.

While achieving substantial improvements, these
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pre-training approaches have two main cons.
Firstly, as pointed out by Yang et al. (2019), the arti-
ficial symbols like [mask] used by these approaches
during pre-training are absent from real data at fine-
tuning time, resulting in a pretrain-finetune dis-
crepancy. Secondly, while each pre-training step
only involves sentences from the same language,
these approaches are unable to make use of the
cross-lingual alignment information contained in
the source and target monolingual corpus. We ar-
gue that, as a cross-lingual sequence generation
task, NMT requires a tailored pre-training objec-
tive which is capable of making use of cross-lingual
alignment signals explicitly, e.g., word-pair infor-
mation extracted from the source and target mono-
lingual corpus, to improve the performance.

To address the limitations mentioned above, we
propose Code-Switching Pre-training (CSP) for
NMT. We extract the word-pair alignment infor-
mation from the source and target monolingual
corpus automatically, and then apply the extracted
alignment information to enhance the pre-training
performance. The detailed training process of CSP
can be presented in two steps: 1) perform lexi-
con induction to get translation lexicons by unsu-
pervised word embedding mapping (Artetxe et al.,
2018a; Conneau et al., 2018); 2) randomly replace
some words in the input sentence with their transla-
tion words in the extracted translation lexicons and
train the NMT model to predict the replaced words.
CSP adopts the encoder-decoder framework: its en-
coder takes the code-mixed sentence as input, and
its decoder predicts the replaced fragments based
on the context calculated by the encoder. By pre-
dicting the sentence fragment which is replaced on
the encoder side, CSP is able to either attend to the
remaining words in the source language or to the
translation words of the replaced fragment in the
target language. Therefore, CSP trains the NMT
model to: 1) learn how to build the sentence repre-
sentation for the input sentence as the traditional
pre-training methods do; 2) learn how to perform
cross-lingual translation with extracted word-pair
alignment information. In summary, we mainly
make the following contributions:

• We propose the code-switching pre-training
for NMT, which makes full use of the cross-
lingual alignment information contained in
source and target monolingual corpus to im-
prove the pre-training for NMT.

• We conduct extensive experiments on super-

vised and unsupervised translation tasks. Ex-
perimental results show that the proposed ap-
proach consistently achieves substantial im-
provements.

• Last but not least, we find that CSP can suc-
cessfully handle the code-switching inputs.

2 Related works

Several approaches have been proposed to improve
NMT with pre-training. Edunov et al. (2019) pro-
posed to feed the last layer of ELMo to the encoder
of NMT and investigated several different ways to
add pre-trained language model representations to
the NMT model. Weng et al. (2019) proposed a
bi-directional self-attention language model to get
sentence representation and introduced two individ-
ual methods, namely weighted-fusion mechanism
and knowledge transfer paradigm, to enhance the
encoder and decoder. Yang et al. (2019b) proposed
a concerted training framework to make the most
use of BERT in NMT. Zhu et al. (2020) proposed
to fuse the representations from BERT with each
layer of the encoder and decoder of the NMT model
through attention mechanisms. Large-scale param-
eters of the pre-trained model in these approaches
discussed above significantly increase the storage
cost and inference time, which makes these ap-
proaches a little far from production.1 The other
branch of approaches aims to keep the structure
and size the same to the standard NMT system and
designs some pre-training objectives tailored for
NMT. Lample and Conneau (2019) proposed Cross-
Lingual Language Model (XLM) objective and
built a universal cross-lingual encoder. To improve
the cross-lingual pre-training, they introduced su-
pervised translation language modeling objective
relying on the parallel data available. Song et al.
(2019b) proposed the MASS objective to pre-train
the whole NMT model instead of only pre-training
the encoder by XLM. CSP builds on top of Lam-
ple and Conneau (2019) and Song et al. (2019b),
and it explicitly makes full use of the alignment
information extracted from the source and target
monolingual corpus to enhance pre-training.

There have also been works on applying pre-
specified translation lexicons to improve the perfor-
mance of NMT. Hokamp and Liu (2017) and Post

1To be used in production easily, these models need to be
distilled into a student model with the structure and size same
as standard NMT systems.
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and Vilar (2018) proposed an altered beam search
algorithm, which took target-side pre-specified
translations as lexical constraints during beam
search. Song et al. (2019a) investigated a data aug-
mentation method, making code-switched training
data by replacing source phrases with their target
translations according to the pre-specified transla-
tion lexicons. Recently, motivated by the success
of unsupervised cross-lingual embeddings, Artetxe
et al. (2018b), Lample et al. (2018a) and Yang et al.
(2018) applied the pre-trained translation lexicons
to initialize the word embeddings of the unsuper-
vised NMT model. Sun et al. (2019) applied trans-
lation lexicons to unsupervised domain adaptation
in NMT. In this paper, we apply the translation lexi-
cons automatically extracted from the monolingual
corpus to improve the pre-training of NMT.

3 CSP

In this section, we firstly describe how to build the
shared vocabulary for the NMT model; then we
present the way extracting the probabilistic transla-
tion lexicons; and we introduce the detailed training
process of CSP finally.

3.1 Shared sub-word vocabulary

This paper processes the source and target lan-
guages with the same shared vocabulary created
through the sub-word toolkits, such as Sentence-
Piece (SP) and Byte-Pair Encoding (BPE) (Sen-
nrich et al., 2016b). We learn the sub-word splits
on the concatenation of the sentences equally sam-
pled from the source and target corpus. The motiva-
tion behind is two-fold: Firstly, with processing the
source and target languages by the shared vocabu-
lary, the encoder of the NMT model is able to share
the same vocabulary with the decoder. Sharing the
vocabulary between the encoder and decoder makes
it possible for CSP to replace the source words in
the input sentence with their translation words in
the target language. Secondly, as pointed out by
Lample and Conneau (2019), the shared vocabu-
lary greatly improves the alignment of embedding
spaces.

3.2 Probabilistic translation lexicons

Recently, some works successfully learned trans-
lation equivalences between word pairs from two
monolingual corpus and extracted translation lexi-
cons (Artetxe et al., 2018a; Conneau et al., 2018).
Following Artetxe et al. (2018a), we utilize unsu-

pervised word embedding mapping to extract prob-
abilistic translation lexicons with monolingual cor-
pus only. The probabilistic translation lexicons in
this paper are defined as one-to-many source-target
word translations. Specifically, giving separate
source and target word embeddings, i.e., Xe and Ye
trained on source and target monolingual corpus X
and Y , unsupervised word embedding mapping uti-
lizes self-learning or adversarial-training to learn a
mapping function f(X) =WX , which transforms
source and target word embeddings to a shared em-
bedding space. With word embeddings in the same
latent space, we measure the similarities between
source and target words with the cosine distance
of word embeddings. Then, we extract the proba-
bilistic translation lexicons by selecting the top k
nearest neighbors in the shared embedding space.
Formally, considering the word xi in the source lan-
guage, its top k nearest neighbor words in the target
language, denoted as y

′
i1, y

′
i2, . . . , y

′
ik are extracted

as its translation words, and the corresponding nor-
malized similarities s

′
i1, s

′
i2, . . . , s

′
ik are defined as

the translation probabilities.

3.3 Training process of CSP
CSP only requires monolingual data to pre-train the
NMT model. Given an unpaired source sentence
x ∈ X , where x = (x1, x2, . . . , xm) is the source
sentence with m tokens, we denote x[u:v] as the
sentence fragment of x from u to v where 0 <
u < v < m, and denote x\u:v as modified version
of x where its fragment from position u to v are
replaced with their translation words according to
the probabilistic translation lexicons. Formally,
x\u:v is represented as:

x\u:v = (x1, . . . , xu−1, y
′
u, . . . , y

′
v, xv+1 . . . , xm)

(1)
where x\u:v[u:v] = (y

′
u, . . . , y

′
v) is sampled based on

the extracted probabilistic translation lexicons pre-
sented on Section 3.2. Here, we take the replacing
process from xu to y

′
u as an example. Consider-

ing the source word xu, its top k translation words
y
′
u1, y

′
u2, . . . , y

′
uk and the translation probabilities

s
′
u1, s

′
u2, . . . , s

′
uk, y

′
u is calculated as:

y
′
u = y

′
uj(1 ≤ j ≤ k) (2)

where y
′
uj is decided by performing multinomial

sampling on the distribution defined by translation
probabilities s

′
u1, s

′
u2, . . . , s

′
uk. With higher trans-

lation probability s
′
uj , the translation word y

′
uj is

more likely to be selected.
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Figure 1: The training example of our proposed CSP which randomly replaces some words in the source input with
their translation words based on the probabilistic translation lexicons. Identical to MAS, the token ‘-’ represents
the padding in the decoder. The attention module represents the attention between the encoder and decoder

Similar to Song et al. (2019b), CSP pre-trains a
sequence to sequence model by predicting the sen-
tence fragment x[u:v] with the modified sequence
x\u:v as input. With the log likelihood as the ob-
jective function, CSP trains the NMT model on the
monolingual corpora X as:

L(θ;X) = 1
|X|

∑
x∈X logP (x[u:v]|x\u:v; θ)

= 1
|X|

∑
x∈X log

v∏
t=u

P (xt|x<t, x
\u:v; θ)

(3)
Figure 1 shows an example for CSP train-
ing, where the original source sentence
(x1, x2, x3, x4, x5, x6, x7) with the fragment
(x3, x4, x5, x6) being replaced with their transla-
tion words, i.e., (y

′
3, y

′
4, y

′
5, y

′
6) sampled from the

extracted probabilistic translation lexicons. The
encoder takes the code-mixed source sentence as
input, and the decoder only predicts the replaced
fragment (x3, x4, x5, x6).

4 Experiments and Results

This section describes the experimental details
about CSP pre-training and fine-tuning on the su-
pervised and unsupervised NMT tasks. To test the
effectiveness and generality of CSP, we conduct ex-
tensive experiments on English-German, English-
French and Chinese-to-English translation tasks.

4.1 CSP pre-training
Model configuration We choose Transformer
as the basic model structure. Following the base
model in Vaswani et al. (2017), we set the dimen-
sion of word embedding as 512, dropout rate as 0.1
and the head number as 8. To be comparable with
previous works, we set the model as 4-layer en-
coder and 4-layer decoder for unsupervised NMT,
and 6-layer encoder and 6-layer decoder for super-
vised NMT. The encoder and decoder share the
same word embeddings.
Datasets and pre-processing Following the
work of Song et al. (2019b), we use the monolin-
gual data sampled from WMT News Crawl datasets
for English, German and French, with 50M sen-
tences for each language.2 For Chinese, we choose
10M sentences from the combination of LDC and
WMT2018 corpora. For each translation task, the
source and target languages are jointly tokenized
into sub-word units with BPE (Sennrich et al.,
2016b). The vocabulary is extracted from the to-
kenized corpora and shared by the source and tar-
get languages. For English-German and English-
French translation tasks, we set the vocabulary size
as 32k. For Chinese-English, the vocabulary size is
set as 60k since few tokens are shared by Chinese

2In this paper, we lower-cased all of the case-sensitive
languages by default, such as English, German and French.
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System en-de de-en en-fr fr-en zh-en

Yang et al. (2018) 10.86 14.62 16.97 15.58 14.52
Lample et al. (2018b) 17.16 21.0 25.14 24.18 -

Lample and Conneau (2019) 27.0 34.3 33.4 33.3 -
Song et al. (2019b) 28.1 35.0 37.5 34.6 -

Lample and Conneau (2019) (our reproduction) 27.3 33.8 32.9 33.5 22.1
Song et al. (2019b) (our reproduction) 27.9 34.7 37.3 34.1 22.8

CSP and fine-tuning (ours) 28.7 35.7 37.9 34.5 23.9

Table 1: The translation performance of the fine-tuned unsupervised NMT models. To reproduce the results of
Lample and Conneau (2019) and Song et al. (2019b), we directly run their released codes on the website.3

and English. To extract the probabilistic translation
lexicons, we utilize the monolingual corpora de-
scribed above to train the embeddings for each lan-
guage independently by using word2vec (Mikolov
et al., 2013) . We then apply the public implementa-
tion of the method proposed by Artetxe et al. (2017)
to map the source and target word embeddings to a
shared-latent space.4

Training details We replace the consecutive to-
kens in the source input with their translation words
sampled from the probabilistic translation lexicons,
with random start position u. Following Song et al.
(2019b), the length of the replaced fragment is em-
pirically set as roughly 50% of the total number
of tokens in the sentence, and the replaced tokens
in the encoder will be the translation tokens 80%
of the time, a random token 10% of the time and
an unchanged token 10% of the time. 5 In the ex-
tracted probabilistic translation lexicons, we only
keep top three translation words for each source
word and also investigate how the number of trans-
lation words produces an effect on the training
process. All of the models are implemented on
Py-Torch and trained on 8 P40 GPU cards.6 We
use Adam optimizer with a learning rate of 0.0005
for pre-training.

4.2 Fine-tuning on unsupervised NMT
In this section, we describe the experiments on the
unsupervised NMT, where we only utilize mono-
lingual data to fine-tune the NMT model based on

3https://github.com/facebookresearch/
XLM
https://github.com/microsoft/MASS

4The configuration we used to run these open-source tool
kits can be found in appendix A.

5We test different length of the replaced segment and report
the results in the appendix B. We find similar results to Song
et al. (2019b).

6The code we used can be found in the attached file.

the pre-trained model.
Experimental settings For the unsupervised
English-German and English-French translation
tasks, we take the similar experimental settings to
Lample and Conneau (2019); Song et al. (2019b).
Specifically, we randomly sample 5M monolingual
sentences from the monolingual data used during
pre-training and report BLEU scores on WMT14
English-French and WMT16 English-German. For
fine-tuning on the unsupervised Chinese-to-English
translation task, we also randomly sample 1.6M
monolingual sentences for Chinese and English re-
spectively similar to Yang et al. (2018). We take
NIST02 as the development set and report the
BLEU score averaged on the test sets NIST03,
NIST04 and NIST05. To be consistent with the
baseline systems, we apply the script multi-bleu.pl
to evaluate the translation performance for all of
the translation tasks.
Baseline systems We take the following four
strong baseline systems. Lample et al. (2018b)
achieved state-of-the-art (SOTA) translation per-
formance on unsupervised English-German and
English-French translation tasks, by utilizing cross-
lingual vocabulary, denoising auto-encoding and
back-translation. Yang et al. (2018) proposed
the weight-sharing architecture for unsupervised
NMT and achieved SOTA results on unsupervised
Chinese-to-English translation task. Lample and
Conneau (2019) and Song et al. (2019b) are among
the first endeavors to apply pre-training to unsuper-
vised NMT, and both of them achieved substantial
improvements compared to the methods without
utilizing pre-training.
Results Table 1 shows the experimental results
on the unsupervised NMT. From Table 1, we can
find that the proposed CSP outperforms all of the
previous works on English-to-German, German-to-

https://github.com/facebookresearch/XLM
https://github.com/facebookresearch/XLM
https://github.com/microsoft/MASS
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System en-de en-fr zh-en

Vaswani et al. (2017) 27.3 38.1 -

Vaswani et al. (2017) (our reproduction) / + BT 27.0 / 28.6 37.9 / 39.3 42.1 / 43.7
Lample and Conneau (2019) (our reproduction) / + BT 28.1 / 29.4 38.3 / 39.6 42.0 / 43.7

Song et al. (2019b) (our reproduction) / + BT 28.4 / 29.6 38.4 / 39.6 42.5 / 44.1

CSP and fine-tuning (ours) / + BT 28.9 / 30.0 38.8 / 39.9 43.2 / 44.6

Table 2: The translation performance of supervised NMT on English-German, English-French and Chinese-to-
English test sets. (+ BT: trains the model with back-translation method.)

English, English-to-French and Chinese-to-English
unsupervised translation tasks, with as high as
+0.7 BLEU points improvement in German-to-
English translation task. In French-to-English
translation direction, CSP also achieves compa-
rable results with the SOTA baseline of Song et al.
(2019b). In Chinese-to-English translation task,
CSP even achieves +1.1 BLEU points improvement
compared to the reproduced result of Song et al.
(2019b). These results indicate that fine-tuning un-
supervised NMT on the model pre-trained by CSP
consistently outperforms the previous unsupervised
NMT systems with or without pre-training.

4.3 Fine-tuning on supervised NMT

This section describes our experiments on super-
vised NMT where we fine-tune the pre-trained
model with bilingual data.
Experimental settings For supervised NMT,
we conduct experiments on the publicly available
data sets, i.e., WMT14 English-French, WMT14
English-German and LDC Chinese-to-English cor-
pora, which are used extensively as benchmarks for
NMT systems. We use the full WMT14 English-
German and WMT14 English-French corpus as
our training sets, which contain 4.5M and 36M sen-
tence pairs respectively. For Chinese-to-English
translation task, our training data consists of 1.6M
sentence pairs randomly extracted from LDC cor-
pora.7 All of the sentences are encoded with the
same BPE codes utilized in pre-training.
Baseline systems For supervised NMT, we con-
sider the following three baseline systems. 8 The
first one is the work of Vaswani et al. (2017),

7LDC2002L27,LDC2002T01,LDC2002E18,LDC2003E07,
LDC2004T08,LDC2004E12,LDC2005T10

8Since model-fusion approaches incorporate too much ex-
tra parameters, it is not fair to take them as baselines here.
We leave the comparison between CSP and mode-fusion ap-
proaches in the appendix C.

which achieves SOTA results on WMT14 English-
German and English-French translation tasks. The
other two baseline systems are proposed by Lample
and Conneau (2019) and Song et al. (2019b), both
of which fine-tune the supervised NMT tasks on the
pre-trained models. Furthermore, we compare with
the back-translation method which has shown its
great effectiveness on improving NMT model with
monolingual data (Sennrich et al., 2016a). Specif-
ically, for each baseline system, we translate the
target monolingual data used during pre-training
back to the source language by a reversely-trained
model, and get the pseudo-parallel corpus by com-
bining the translation with its original data. 9 At
last, the training data which includes pseudo and
parallel sentence pairs is shuffled and used to train
the NMT system.
Results The experimental results on supervised
NMT are presented at Table 2. We report the BLEU
scores on English-to-German, English-to-French
and Chinese-to-English translation directions. For
each translation task, we report the BLEU scores
for the standard NMT model and the model trained
with back-translation respectively. As shown in
Table 2, compared to the baseline system without
pre-training (Vaswani et al., 2017), the proposed
model achieves +1.6 and +0.7 BLEU points im-
provements on English-to-German and English-to-
French translation directions respectively. Even
compared to stronger baseline system with pre-
training (Song et al., 2019b), we also achieve +0.5
and +0.4 BLEU points improvements respectively
on these two translation directions. On Chinese-
to-English translation task, the proposed model
achieves +0.7 BLEU points improvement com-
pared to the baseline system of Song et al. (2019b).
With back-translation, the proposed model still out-
performs all of the baseline systems. Experimental
results above show that fine-tuning the supervised
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Figure 2: The performance of CSP with the probabilistic translation lexicons keeping different translation words
for each source word, which includes: (a) the PPL score of the pre-trained English-to-German model; (b) the PPL
score of the pre-trained English-to-French model; (c) the BLEU score of the fine-tuned unsupervised English-to-
German NMT model; (d)the BLEU score of the fine-tuned unsupervised English-to-French NMT model.

NMT on the model pre-trained by CSP achieves
substantial improvements over previous supervised
NMT systems with or without pre-training. Ad-
ditionally, it has been verified that CSP is able to
work together with back-translation.

5 Analysis

5.1 Study the number of translation words
In CSP, the probabilistic translation lexicons only
keep the top k translation words for each source
word. For each word in the translation lexicons,
the number of translation words k is viewed as an
important hyper-parameter and can be set carefully
during the process of pre-training. A natural ques-
tion is that how much of translation words do we
need to keep for each source word? Intuitively, if
k is set as a small number, the model may lose
its generality since each source word can be re-
placed with only a few translation words, which
severely limits the diversity of the context. And
if otherwise, the accuracy of the extracted proba-
bilistic translation lexicons may get significantly
diminished, which shall introduce too much noise
for pre-training. Therefore, there is a trade-off
between the generality and accuracy. We investi-
gate this problem by studying the translation per-
formance of unsupervised NMT with different k,
where we vary k from 1 to 10 with the interval

9We randomly select the target monolingual data with the
same size to the bilingual data.

2. We observe both the performance of CSP after
pre-training and the translation performance after
fine-tuning on the unsupervised NMT tasks, includ-
ing the English-to-German and English-to-French
translation directions. For each translation direc-
tion, we firstly present the perplexity (PPL) score of
the pre-trained model averaged on the monolingual
validation sets of the source and target languages.10

And then we show the BLEU score of the fine-
tuned model on the bilingual validation set. Figure
2 (a) and (c) illustrate the PPL score of the pre-
trained model and BLEU score of the fine-tuned
unsupervised NMT model respectively on English-
to-German translation. Figure 2 (b) and (d) present
the PPL and BLEU score respectively for English-
to-French translation. From Figure 2, it can be seen
that, when k is set around 3, the pre-trained model
achieves the best validation PPL scores on both
of the English-to-German and English-to-French
translation directions. Similarly, CSP also achieves
the best BLEU scores on the unsupervised transla-
tion tasks when k is set around 3.

5.2 Ablation study

To understand the importance of different compo-
nents of the model pre-trained by CSP, we perform
an ablation study by training multiple versions of

10For English-German translation, the monolingual valida-
tion set for English is built by including all English sentences
in the bilingual English-German validation set, and the mono-
lingual validation set for German is built in the same way.
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the supervised NMT model with some components
initialized randomly: the word embeddings, the
encoder, the attention module between the encoder
and decoder, and the decoder. Experiments are
conducted on English-to-German and English-to-
French translation tasks. All models are trained
without back-translation and results are reported in
Table 3. We can find that the two most critical com-
ponents are the pre-trained encoder and attention
module. It shows that CSP enhances NMT not only
on the ability of building sentence representation
for the input sentence, but also on the ability of
aligning the source and target languages with the
help of word-pair alignment information. Addi-
tionally, the experimental results indicate that the
pre-trained decoder shows little effect on the trans-
lation performance. This is mainly because the
decoder only predicts the source-side words during
pre-training but predicts the target-side words dur-
ing fine-tuning. This pretrain-finetune mismatch
makes the pre-trained decoder less helpful for per-
formance improvement.

System en-de en-fr

No pre-trained embeddings 28.4 38.5
No pre-trained encoder 27.9 38.2

No pre-trained attention module 28.1 38.3
No pre-trained decoder 28.8 38.8

Full model pre-trained by CSP 28.9 38.8

Table 3: Ablation study on English-German and
English-French translation tasks. The embeddings in-
clude the source-side and target-side word embeddings.

5.3 Code-switching translation

Code-switching, which contains words from dif-
ferent languages in single input, has aroused more
and more attention in NMT (Johnson et al., 2017;
Menacer et al., 2019). In this section, we show that
the proposed CSP is able to enhance the ability of
the fine-tuned NMT model on handling the code-
switching input. To present quantitative results,
we build two test sets for the supervised Chinese-
to-English translation task to evaluate the perfor-
mance of the translation model on handling code-
switching inputs. We randomly select 200 Chinese-
English sentence pairs from NIST02, based on
which we build two code-switching test sets. The
first test set, referred to as test A, is built by ran-
domly replacing some phrases in each Chinese
sentence with their counterpart English phrases,

where the English phrase is the translation result
by feeding the corresponding Chinese phrase to
the Google Chinese-to-English translator; The sec-
ond test set, referred to as test B, is constructed
by randomly replacing parts of the words in each
Chinese sentence with their nearest target words
in the shared latent embedding space (the same
way used by CSP in Section 3.2). Table 4 shows
the translation performance of NMT systems on
the two code-switching test sets.11 Besides the
baseline systems mentioned in section 4.3, we also
train a Chinese-English multi-lingual system (John-
son et al., 2017) based on Transformer, which has
shown the ability of handling code-switching in-
puts. From Table 4, We can find that the proposed
approach achieves significant improvements over
previous works. Compared to multi-lingual system,
we achieve +2.3 and +3.0 BLEU points improve-
ments respectively on test A and test B. The case
study can be found in appendix D.

System test A test B

Vaswani et al. (2017) 28.17 32.51
Lample and Conneau (2019) 28.82 32.90

Song et al. (2019b) 28.70 33.21
Multi-lingual system 30.51 35.10

CSP and fine-tuning 32.84 38.17

Table 4: The performance of Chinese-to-English trans-
lation on in-house code-switching test sets.

6 Conclusions and Future work

This work proposes a simple yet effective pre-
training approach, i.e., CSP for NMT, which ran-
domly replaces some words in the source sentence
with their translation words in the probabilistic
translation lexicons extracted from monolingual
corpus only. To verify the effectiveness of CSP, we
investigate two downstream tasks, supervised and
unsupervised NMT, on English-German, English-
French and Chinese-to-English translation tasks.
Experimental results show that the proposed ap-
proach achieves substantial improvements over
strong baselines consistently. Additionally, we
show that CSP is able to enhance the ability of
NMT on handling code-switching inputs. There
are two promising directions for the future work.
Firstly, we are interested in applying CSP to other

11The two in-house code-switching test sets can be found
in the attached files.
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related NLP areas for code-switching problems.
Secondly, we plan to investigate the pre-training
objectives which are more effective in utilizing the
cross-lingual alignment information for NMT.

Acknowledgement

We sincerely thank the anonymous reviewers for
their thorough reviewing and valuable suggestions.

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2017.

Learning bilingual word embeddings with (almost)
no bilingual data. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 451–462,
Vancouver, Canada. Association for Computational
Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. A robust self-learning method for fully un-
supervised cross-lingual mappings of word embed-
dings. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 789–798, Melbourne,
Australia. Association for Computational Linguis-
tics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural ma-
chine translation. In 6th International Conference
on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Confer-
ence Track Proceedings.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
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Word translation without parallel data. In 6th Inter-
national Conference on Learning Representations,

ICLR 2018, Vancouver, BC, Canada, April 30 - May
3, 2018, Conference Track Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sergey Edunov, Alexei Baevski, and Michael Auli.
2019. Pre-trained language model representations
for language generation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 4052–4059, Minneapolis, Minnesota.
Association for Computational Linguistics.

Chris Hokamp and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1535–1546,
Vancouver, Canada. Association for Computational
Linguistics.

Luyao Huang, Chi Sun, Xipeng Qiu, and Xuanjing
Huang. 2019. GlossBERT: BERT for word sense
disambiguation with gloss knowledge. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 3509–3514, Hong
Kong, China. Association for Computational Lin-
guistics.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2017. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
Transactions of the Association for Computational
Linguistics, 5:339–351.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1700–1709, Seattle,
Washington, USA. Association for Computational
Linguistics.

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947.

Guillaume Lample and Alexis Conneau. 2019. Cross-
lingual language model pretraining. In neural in-
formation processing systems (2019), pages 7057–
7067.

https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P17-1042
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.18653/v1/P18-1073
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1409
https://doi.org/10.18653/v1/N19-1409
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/P17-1141
https://doi.org/10.18653/v1/D19-1355
https://doi.org/10.18653/v1/D19-1355
https://www.aclweb.org/anthology/D19-1355.pdf
https://www.aclweb.org/anthology/D19-1355.pdf
https://www.aclweb.org/anthology/D13-1176
https://www.aclweb.org/anthology/D13-1176


2633

Guillaume Lample, Ludovic Denoyer, and
Marc’Aurelio Ranzato. 2018a. Unsupervised
machine translation using monolingual corpora
only. In International Conference on Learning
Representations.

Guillaume Lample, Myle Ott, Alexis Conneau, Lu-
dovic Denoyer, and Marc’Aurelio Ranzato. 2018b.
Phrase-based & neural unsupervised machine trans-
lation. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 5039–5049, Brussels, Belgium. Association
for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. arXiv
preprint arXiv:2001.08210.

Mohamed Amine Menacer, David Langlois, Denis
Jouvet, Dominique Fohr, Odile Mella, and Kamel
Smaı̈li. 2019. Machine translation on a parallel
code-switched corpus. In Canadian Conference on
Artificial Intelligence, pages 426–432. Springer.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Matt Post and David Vilar. 2018. Fast lexically con-
strained decoding with dynamic beam allocation for
neural machine translation. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 1314–1324, New Orleans, Louisiana.
Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL
https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Sascha Rothe, Shashi Narayan, and Aliaksei Sev-
eryn. 2019. Leveraging pre-trained checkpoints
for sequence generation tasks. arXiv preprint
arXiv:1907.12461.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Kai Song, Yue Zhang, Heng Yu, Weihua Luo, Kun
Wang, and Min Zhang. 2019a. Code-switching for
enhancing NMT with pre-specified translation. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 449–459,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019b. Mass: Masked sequence to se-
quence pre-training for language generation. arXiv
preprint arXiv:1905.02450.

Haipeng Sun, Rui Wang, Kehai Chen, Masao Utiyama,
Eiichiro Sumita, and Tiejun Zhao. 2019. Unsuper-
vised bilingual word embedding agreement for unsu-
pervised neural machine translation. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 1235–1245, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
Advances in neural information processing systems,
pages 3104–3112.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Liang Wang, Wei Zhao, Ruoyu Jia, Sujian Li, and
Jingming Liu. 2019. Denoising based sequence-
to-sequence pre-training for text generation. In
Proceedings of the 2019 Conference on Empirical

https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/D18-1549
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/N18-1119
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/N19-1044
https://doi.org/10.18653/v1/N19-1044
https://doi.org/10.18653/v1/P19-1119
https://doi.org/10.18653/v1/P19-1119
https://doi.org/10.18653/v1/P19-1119
https://doi.org/10.18653/v1/D19-1412
https://doi.org/10.18653/v1/D19-1412


2634

Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4003–
4015, Hong Kong, China. Association for Computa-
tional Linguistics.

Rongxiang Weng, Heng Yu, Shujian Huang, Weihua
Luo, and Jiajun Chen. 2019. Improving neural
machine translation with pre-trained representation.
arXiv preprint arXiv:1908.07688.

Jiacheng Yang, Mingxuan Wang, Hao Zhou, Chengqi
Zhao, Yong Yu, Weinan Zhang, and Lei Li. 2019b.
Towards making the most of bert in neural machine
translation. arXiv preprint arXiv:1908.05672.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu.
2018. Unsupervised neural machine translation with
weight sharing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 46–55, Mel-
bourne, Australia. Association for Computational
Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237.

Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin,
Wengang Zhou, Houqiang Li, and Tie-Yan Liu.
2020. Incorporating bert into neural machine trans-
lation. arXiv preprint arXiv:2002.06823.

A The configurations for the open-source
toolkit

A.1 Get word embeddings with word2vec
We train the word embedding use the following
script:

1 word2vec − t r a i n t e x t −o u t p u t
embedding . t x t −cbow 0 −s i z e
512 −window 10 −n e g a t i v e 10 −
hs 0 −sample 1e− − t h r e a d s 50 −
b i n a r y 0 −min−c o u n t 5 − i t e r 10

A.2 Word embedding mapping with Vecmap
After we get the embeddings for both the source
and target languages, namely s embedding.txt and
t embedding.txt, we use the open-source Vecmap
to map these embeddings to a shared-latent space
with the following scripts:12

1 py thon n o r m a l i z e e m b e d d i n g s . py
u n i t c e n t e r − i s embedd ing . t x t
−o s embedd ing . n o r m a l i z e d . t x t

1 py thon n o r m a l i z e e m b e d d i n g s . py
u n i t c e n t e r − i t e m b e d d i n g . t x t
−o t e m b e d d i n g . n o r m a l i z e d . t x t

1 py thon map embeddings . py −
o r t h o g o n a l s embedd ing .
n o r m a l i z e d . t x t t e m b e d d i n g .
n o r m a l i z e d . t x t

2 s embedd ing . mapped . t x t
t e m b e d d i n g . mapped . t x t −
n u m e r a l s − s e l f l e a r n i n g −v

B Study of different length of the
replaced segment

The length of the replaced fragment is an hyper-
parameter which can be set by the user before-
hand. We are curious to know how the length of
the replaced fragment shows effect on CSP. In this
section, we study the performance of CSP with dif-
ferent length of the replaced fragment, where we
set the length of the replaced fragment from 10%
to 90% percentage of the sentence length with a
step size of 10%. Similar to section 5.1, we re-
port both the performance of CSP after pre-training
and the translation performance after fine-tuning
on the unsupervised NMT tasks, including the
English-to-German and English-to-French trans-
lation directions. For each translation direction, we
firstly present the perplexity (PPL) score of the pre-
trained model averaged on the monolingual valida-
tion sets of the source and target languages. And
then we show the BLEU score of the fine-tuned
model on the bilingual validation set. Figure 3 (a)
and (c) illustrate the PPL score of the pre-trained
model and BLEU score of fine-tuned unsupervised
NMT model respectively on English-to-German
translation direction. Figure 3 (b) and (d) present
the PPL and BLEU score respectively for English-
to-French translation direction. We can find that
when the length of the replaced fragment is set
nearly 50% of the sentence length, CSP achieves
best performance not only on the pre-training task
but also on the downstream unsupervised NMT
task. Therefore, we set the length of the replaced
fragment as 50% of the sentence length in our ex-
periments.

12https://github.com/artetxem/vecmap
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Figure 3: The performance of CSP with different length of the replaced fragment, which includes: (a) the PPL
score of the pre-trained English-to-German model; (b) the PPL score of the pre-trained English-to-French model;
(c) the BLEU score of the fine-tuned unsupervised English-to-German NMT model; (d)the BLEU score of the
fine-tuned unsupervised English-to-French NMT model.

System en-de en-fr zh-en

Zhu et al. (2020) 29.2 39.1 43.8
+Knowledge Distillation 28.7 38.5 43.4

CSP and fine-tuning (ours) 28.9 38.8 43.2

Table 5: The comparison between CSP and model-
fusion approaches. We get the translation result of Zhu
et al. (2020) by directly running their released codes on
the website.13

C Compared to model-fusion approaches

In this section, we compare the proposed CSP
with model-fusion approaches. We conduct ex-
periments on supervised NMT where we fine-tune
the pre-trained model with bilingual data. Experi-
mental settings are identical to the settings in sec-
tion 4.3. We report the performance of English-
to-German, English-to-French and Chinese-to-
English translation tasks. Since Zhu et al. (2020)
released their code which makes their results re-
producible, we take their system as the baseline.
To make the comparison more fair, we distill the
model of Zhu et al. (2020) to a student model which
has the same size and structure to standard NMT
model. For knowledge distillation, we utilized the

sequence-level knowledge distillation proposed by
Kim and Rush (2016). 14 Experimental results are
presented in Table 5. We can find that, compared
to the distilled student model of Zhu et al. (2020),
CSP achieves better translation performance on
two of three translation tasks.

D Case study for code-switching

In this section, we compare the performance of dif-
ferent NMT systems by case study. We randomly
select some examples of the code-switching inputs
and get the outputs by feeding the code-switching
inputs into different NMT systems. The results
are presented in Table 6. We can find that, for the
two code-switching input sentences in Table 6, the
standard Transformer and the multi-lingual system
are both easily to give insufficient translations with
some semantic contents untranslated. We assume
that this is mainly because these systems are weak
in encoding the full context of the code-switching
input. Compared to the baseline systems, our sys-
tem gives more sufficient and fluent translations.
This shows that CSP enhances the model’s ability

13https://github.com/bert-nmt/bert-nmt
14While variant distillation methods have been proposed

recently, we only test the most simple and standard one.

https://github.com/bert-nmt/bert-nmt
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Source sentence
切尼在访问所有海湾国家以后星期一到科威特，But even
this most loyalUS ally is opposed to attacking Baghdad.

Output of Transformer cheney arrived kuwait after visiting all Gulf, But even this most employed US

Output of Multi-lingual system
Cheney arrived in Kuwait after visiting, but even this most
loyal is opposed to attacking Baghdad.

Output of our system
Cheney arrived in Kuwait on Monday after visiting all Gulf countries,
but even the most loyal US ally is opposed to attacking Baghdad.

Reference
cheney arrived kuwait on monday after visiting all other gulf states.
however , even this most loyal ally to u.s. opposes an attack on baghdad .

Source sentence
对于日本《朝日新闻》报道说Megawati will send a personal letter
from Kim Dae Jung to Kim Jong Il，韩国政府方面则予以否认。

Output of Transformer
as japan says, Megawati send a personal letter to Kim Jong, the south
korea denied.

Output of Multi-lingual system
as for the news released in japan asahi that megawati will hand a letter from
kim dae jung in his own handwriting to kim, the south korea denied this .

Output of our system
as for the news released in the japanese newspaper asahi that will hand a
personal letter from kim dae jung in his own handwriting to kim jong , the
south korean government denied .

Reference
as for the news released in the japanese newspaper asahi that megawati will
hand a personal letter from kim dae jung in his own handwriting to kim jong
- il , the south korean government denied this .

Table 6: Examples of the code-switching inputs and outputs of different NMT systems.

on encoding code-switching inputs.


