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Abstract

Applying the Transformer architecture on the
character level usually requires very deep ar-
chitectures that are difficult and slow to train.
These problems can be partially overcome by
incorporating a segmentation into tokens in
the model. We show that by initially train-
ing a subword model and then finetuning it
on characters, we can obtain a neural machine
translation model that works at the charac-
ter level without requiring token segmentation.
We use only the vanilla 6-layer Transformer
Base architecture. Our character-level models
better capture morphological phenomena and
show more robustness to noise at the expense
of somewhat worse overall translation quality.
Our study is a significant step towards high-
performance and easy to train character-based
models that are not extremely large.

1 Introduction

State-of-the-art neural machine translation (NMT)
models operate almost end-to-end except for input
and output text segmentation. The segmentation
is done by first employing rule-based tokenization
and then splitting into subword units using statis-
tical heuristics such as byte-pair encoding (BPE;
Sennrich et al., 2016) or SentencePiece (Kudo and
Richardson, 2018).

Recurrent sequence-to-sequence (S2S) models
can learn translation end-to-end (at the character
level) without changes in the architecture (Cherry
etal., 2018), given sufficient model depth. Training
character-level Transformer S2S models (Vaswani
et al., 2017) is more complicated because the self-
attention size is quadratic in the sequence length.

In this paper, we empirically evaluate Trans-
former S2S models. We observe that training a
character-level model directly from random initial-
ization suffers from instabilities, often preventing
it from converging. Instead, we propose finetun-
ing subword-based models to get a model without

explicit segmentation. Our character-level models
show slightly worse translation quality, but have
better robustness towards input noise and better
capture morphological phenomena. Our approach
is important because previous approaches have re-
lied on very large transformers, which are out of
reach for much of the research community.

2 Related Work

Character-level decoding seemed to be rela-
tively easy with recurrent S2S models (Chung
et al., 2016). But early attempts at achieving
segmentation-free NMT with recurrent networks
used input hidden states covering a constant char-
acter span (Lee et al., 2017). Cherry et al. (2018)
showed that with a sufficiently deep recurrent
model, no changes in the model are necessary, and
they can still reach translation quality that is on par
with subword models. Luong and Manning (2016)
and Ataman et al. (2019) can leverage character-
level information but they require tokenized text as
an input and only have access to the character-level
embeddings of predefined tokens.

Training character-level transformers is more
challenging. Choe et al. (2019) successfully trained
a character-level left-to-right Transformer language
model that performs on par with a subword-level
model. However, they needed a large model with
40 layers trained on a billion-word corpus, with
prohibitive computational costs.

In the most related work to ours, Gupta et al.
(2019) managed to train a character-level NMT
with the Transformer model using Transparent At-
tention (Bapna et al., 2018). Transparent attention
attends to all encoder layers simultaneously, mak-
ing the model more densely connected but also
more computationally expensive. During training,
this improves the gradient flow from the decoder to
the encoder. Gupta et al. (2019) claim that Trans-
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tokeni- The cat sleeps on a mat.
zation _The _cat _sleeps _on _a _mat .
32k _The _cat sle eps _on _a _mat .
8k  _The c at _s le eps -on _a _m at .
500 _The cat sleeps on _a _m at.
0 _The_cat_sleeps_on _,
a_mat.

Table 1: Examples of text tokenization and subword
segmentation with different numbers of BPE merges.

parent Attention is crucial for training character-
level models, and show results on very deep net-
works, with similar results in terms of translation
quality and model robustness to ours. In contrast,
our model, which is not very deep, trains quickly.
It also supports fast inference and uses less RAM,
both of which are important for deployment.

Gao et al. (2020) recently proposed adding a
convolutional sub-layer in the Transformer layers.
At the cost of a 30% increase of model param-
eter count, they managed to narrow the gap be-
tween subword- and character-based models by
half. Similar results were also reported by Banar
et al. (2020), who reused the convolutional prepro-
cessing layer with constant step segments Lee et al.
(2017) in a Transformer model.

3 Our Method

We train our character-level models by finetuning
subword models, which does not increase the num-
ber of model parameters. Similar to the transfer
learning experiments of Kocmi and Bojar (2018),
we start with a fully trained subword model and
continue training with the same data segmented
using only a subset of the original vocabulary.

To stop the initial subword models from rely-
ing on sophisticated tokenization rules, we opt for
the loss-less tokenization algorithm from Senten-
cePiece (Kudo and Richardson, 2018). First, we
replace all spaces with the _ sign and do splits be-
fore all non-alphanumerical characters (first line of
Table 1). In further segmentation, the special space
sign _ is treated identically to other characters.

We use BPE (Sennrich et al., 2016) for subword
segmentation because it generates the merge op-
erations in a deterministic order. Therefore, a vo-
cabulary based on a smaller number of merges is
a subset of a vocabulary based on more merges
estimated from the same training data. Examples

# merges segm./ segm./ avg. unit size
sent.  token en de
32k 28.4 1.3 437 451
16k 31.8 14 395 398
8k 36.2 1.6 346 3.50
4k 41.5 1.9 3.03 304
2k 474 2.1 2.66 2.67
1k 54.0 24 232 236
500 61.4 27 203 2.08
0 126.1 5.6 1.00  1.00

Table 2: Statistics of English-German parallel data un-
der different segmentations.

of the segmentation are provided in Table 1. Quan-
titative effects of different segmentation on the data
are presented in Table 2, showing that character
sequences are on average more than 4 times longer
than subword sequences with 32k vocabulary.

We experiment both with deterministic seg-
mentation and stochastic segmentation using BPE
Dropout (Provilkov et al., 2020). At training time,
BPE Dropout randomly discards BPE merges with
probability p, a hyperparameter of the method. As a
result of this, the text gets stochastically segmented
into smaller units. BPE Dropout increases transla-
tion robustness on the source side but typically has
a negative effect when used on the target side. In
our experiments, we use BPE Dropout both on the
source and target side. In this way, the character-
segmented inputs will appear already at training
time, making the transfer learning easier.

We test two methods for finetuning subword
models to reach character-level models: first, direct
finetuning of subword models, and second, itera-
tively removing BPE merges in several steps in a
curriculum learning setup (Bengio et al., 2009). In
both cases we always finetune models until they
are fully converged, using early stopping.

4 Experiments

To cover target languages of various morphological
complexity, we conduct our main experiments on
two resource-rich language pairs, English-German
and English-Czech; and on a low-resource pair,
English-Turkish. Rich inflection in Czech, com-
pounding in German, and agglutination in Turkish
are examples of interesting phenomena for char-
acter models. We train and evaluate the English-
German translation using the 4.5M parallel sen-

2573



From random initialization

Direct finetuning from

In steps
32k 16k 8k 4k 2k 1k 500 0 500 1k 2k

BLEU 26.9 26.9 26.7 26.4 26.4 26.1 25.8 22.6 252 25.0 25.0 24.6

0.03 * 0.20 0.47 0.50 0.78 1.07 4.29 1.657-0.58 1.88/-1.10 1.857-0.78 2.23/-1.16
'lq?) chrF .569 .568 .568 .568 .564 .564 .561 .526 .559 .559 .559 .556
§ METEOR 47.7 48.0 47.9 47.8 479 47.7 47.6 45.0 46.5 46.4 46.4 46.3
Noise sens. | -1.07 -1.06 -1.05 -1.03 -1.01 -1.02 -1.00 -0.85 -0.99 -0.99 -0.99 -0.88
MorphEval | 90.0 89.5 89.4 89.6 89.8 90.0 89.2 89.2 89.9 90.3 89.3 90.1
BLEU 29.8 30.1 29.6 29.3 28.6 28.5 28.1 26.6 28.2 28.4 27.7 28.2

g 0.34 * 0.53 0.83 1.62 1.67 1.99 3.51 1.947+0.05 1.76 /-0.10 2.52/-0.90 1.897+0.10
_qé chrF .570 .573 .568 .567 .562 .558 .558 .543 .562 564 .559 .563
METEOR 37.1 374 37.2 37.2 36.9 37.2 36.9 35.1 36.4 36.4 36.0 36.4
Noise sens. | -0.45 -0.43 -0.41 -0.42 -0.43 -0.42 -0.41 -0.30 -0.37 -0.37 -0.37 -0.36
BLEU 21.1 20.8 20.9 20.6 20.1 20.0 19.5 18.2 19.2 19.3 19.4 19.3

* -0.25 -0.13 -0.46 -0.96 -1.05 -1.54 2.82 1.817-0.27 1.737-0.68 1.647-0.68 1.817-0.27
chrF 489 488 490 487 483 482 478 465 477 476 478 AT
E METEOR 26.0 25.8 26.0 25.8 25.7 25.7 254 24.6 252 252 25.2 25.1
® Noise sens. | -1.03 -1.01 -1.01 -1.01 -0.94 -0.93 -0.91 -0.79 -0.82 -0.84 -0.87 -0.82
MorphEval | 83.9 84.6 83.7 83.9 84.3 84.4 84.7 82.1 84.7 84.1 81.9 81.3
BLEU 12.6 13.1 12.7 12.8 12.5 12.3 12.2 124 12.0 12.6 12.3 11.6

‘z -0.48 * -0.36 -0.29 -0.58 -0.77 0.86 -0.73 1.087-0.22 0.857-0.08 0.82/-0.53 1.547-0.68
o  chrF 455 462 459 456 457 457 455 461 456 460 459 450
Noise sens. | -0.99 -0.91 -0.90 -0.87 -0.85 -0.83 -0.79 -0.62 -0.66 -0.66 -0.66 -0.68

Table 3: Quantitative results of the experiments with deterministic segmentation. The left part of the table shows
subword-based models trained from random initialization, the right part shows character-level models trained by
finetuning. The yellower the background color, the better the value. Small numbers denote the difference from the
best model, * is the best model. For finetuning experiments (on the right) we report both difference from the best
model and from the parent model. Validation BLEU score are in in the Appendix.

tences of the WMT14 data (Bojar et al., 2014).
Czech-English is trained on 15.8M sentence pairs
of the CzEng 1.7 corpus (Bojar et al., 2016) and
tested on WMT 18 data (Bojar et al., 2018). English-
to-Turkish translation is trained on 207k sentences
of the SETIMES? corpus (Tiedemann, 2012) and
evaluated on the WMT18 test set.

We follow the original hyperparameters for the
Transformer Base model (Vaswani et al., 2017),
including the learning rate schedule. For finetun-
ing, we use Adam (Kingma and Ba, 2015) with a
constant learning rate 10~°. All models are trained
using Marian (Junczys-Dowmunt et al., 2018). We
also present results for character-level English-
German models having about the same number of
parameters as the best-performing subword models.
In experiments with BPE Dropout, we set dropout
probability p = 0.1.

We evaluate the translation quality using BLEU
(Papineni et al., 2002), chrF (Popovié, 2015), and
METEOR 1.5 (Denkowski and Lavie, 2014). Fol-
lowing Gupta et al. (2019), we also conduct a noise-
sensitivity evaluation to natural noise as introduced
by Belinkov and Bisk (2018). With probability p

words are replaced with their variants from a mis-
spelling corpus. Following Gupta et al. (2019),
we assume the BLEU scores measured with input
can be explained by a linear approximation with
intercept o and slope (8 using the noise probability
p: BLEU ~ Bp 4 «. However, unlike them, we
report the relative translation quality degradation
B/« instead of only 3. Parameter 3 corresponds
to absolute BLEU score degradation and is thus
higher given lower-quality systems, making them
seemingly more robust.

To look at morphological generalization, we
evaluate translation into Czech and German using
MorphEval (Burlot and Yvon, 2017). MorphE-
val consists of 13k sentence pairs that differ in
exactly one morphological category. The score is
the percentage of pairs where the correct sentence
is preferred.

5 Results

The results of the experiments are presented in
Table 3. The translation quality only slightly de-
creases when drastically decreasing the vocabu-
lary. However, there is a gap between the character-
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o Determ. BPE  BPE Dropout
Direction

BLEU chrF BLEU chrF

en-de 252 559 249 .560

de-en 28.2 562 285 .564

en-cs 19.3 447 19.5 480

en-tr 12.0 456 12.3 460

Table 4: BLEU scores of character-level models trained
by finetuning of the systems with 500 token vocabu-
laries using deterministic BPE segmetnation and BPE
dropout.

vocab. architecture #param. BLEU
BPE 16k Base 42.6M 26.86
char. Base 35.2M 25.21
char. Base + FF dim. 2650  42.6M 25.37

Table 5: Effect of model size on translation quality for
Engslih-to-German translation.

level and subword-level model of 1-2 BLEU points.
With the exception of Turkish, models trained by
finetuning reach by a large margin better translation
quality than character-level models trained from
scratch.

In accordance with Provilkov et al. (2020), we
found that BPE Dropout applied both on the source
and target side leads to slightly worse translation
quality, presumably because the stochastic segmen-
tation leads to multimodal target distributions. The
detailed results are presented in Appendix A. How-
ever, for most language pairs, we found a small
positive effect of BPE dropout on the finetuned
systems (see Table 4).

For English-to-Czech translation, we observe
a large drop in BLEU score with the decreasing
vocabulary size, but almost no drop in terms of
METEOR score, whereas for other language pairs,
all metrics are in agreement. The differences be-
tween the subword and character-level models are
less pronounced in the low-resourced English-to-
Turkish translation.

Whereas the number of parameters in trans-
former layers in all models is constant at 35 million,
the number of parameters in the embeddings de-
creases 30x from over 15M to only slightly over
0.5M, with overall a 30% parameter count reduc-
tion. However, matching the number of parameters
by increasing the model capacity narrows close the
performance gap, as shown in Table 5.

In our first set of experiments, we finetuned the

25 1
20 A
15 A

BLEU %

5_

T T
0.0 0.2 0.4 0.6 0.8 1.0
Noise probability

Figure 1: Degradation of the translation quality of
the subword (gray, the darker the color, the smaller
the vocabulary) and character-based systems (red) for
English-German translation with increasing noise.

model using the character-level input directly. Ex-
periments with parent models of various vocabu-
lary sizes (column “Direct finetuning” in Table 3)
suggest the larger the parent vocabulary, the worse
the character-level translation quality. This result
led us to hypothesize that gradually decreasing the
vocabulary size in several steps might lead to better
translation quality. In the follow-up experiment,
we gradually reduced the vocabulary size by 500
and always finetuned until convergence. But we
observed a small drop in translation quality in every
step, and the overall translation quality was slightly
worse than with direct finetuning (column “In steps”
in Table 3).

With our character-level models, we achieved
higher robustness towards source-side noise (Fig-
ure 1). Models trained with a smaller vocabulary
tend to be more robust towards source-side noise.

Character-level models tend to perform slightly
better in the MorphEval benchmark. Detailed re-
sults are shown in Table 6. In German, this is
due to better capturing of agreement in coordina-
tion and future tense. This result is unexpected
because these phenomena involve long-distance
dependencies. On the other hand, the character-
level models perform worse on compounds, which
are a local phenomenon. Ataman et al. (2019) ob-
served similar results on compounds in their hy-
brid character-word-level method. We suspect this
might be caused by poor memorization of some
compounds in the character models.

In Czech, models with a smaller vocabulary bet-
ter cover agreement in gender and number in pro-
nouns, probably due to direct access to inflective
endings. Unlike German, character-level models
capture worse agreement in coordinations, presum-
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en-de en-cs
BPEl16k char BPE16k char
Adj. strong 95.5 97.2 — —
Comparative 93.4 91.5 78.0 78.2
Compounds 63.6 60.4 — —
Conditional 92.7 92.3 45.8 47.6

Coordverb-number 96.2 98.1 83.0 78.8

Coordverb-person 96.4 98.1 83.2 78.6
Coordverb-tense 96.6 97.8 79.2 74.8
Coref. gender 94.8 92.8 74.0 75.8
Future 82.1 89.0 84.4 83.8
Negation 98.8 98.4 96.2 98.0
Noun Number 65.5 66.6 78.6 79.2
Past 89.9 90.1 88.8 87.4
Prepositions — — 91.7 94.1
Pronoun gender — — 92.6 92.2
Pronoun plural 98.4 98.8 90.4 92.8
Rel. pron. gender 71.3 71.3 74.8 80.1
Rel. pron. number 71.3 71.3 76.6 80.9
Superlative 98.9 99.8 92.0 92.0
Verb position 95.4 94.2 — —

Table 6: MorphEval Results for English to German and
English to Czech.

32k 16k 8k 4k 2k 1k 500 0

T 1297 1378 1331 1151 1048 903 776 242
I 218 183 172 123 123 88 73 39

B 269 269 267 264 264 261 258 252

Table 7: Training (T) and inference (I) speed in sen-
tences processed per second on a single GPU (GeForce
GTX 1080 Ti) compared to BLEU scores (B) for
English-German translation.

ably due to there being a longer distance in charac-
ters.

Training and inference times are shown in Ta-
ble 7. Significantly longer sequences also manifest
in slower training and inference. Table 7 shows
that our character-level models are 5-6x slower
than subword models with 32k units. Doubling
the number of layers, which had a similar effect
on translation quality as the proposed finetuning
(Gupta et al., 2019), increases the inference time
approximately 2-3x in our setup.

6 Conclusions

We presented a simple approach for training
character-level models by finetuning subword mod-
els. Our approach does not require computa-
tionally expensive architecture changes and does
not require dramatically increased model depth.
Subword-based models can be finetuned to work
on the character level without explicit segmentation
with somewhat of a drop in translation quality. The

models are robust to input noise and better capture
some morphological phenomena. This is important
for research groups that need to train and deploy
character Transformer models without access to
very large computational resources.
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A Effect of BPE Dropout

We discussed the effect of BPE dropout in Sec-
tion 3. Table 8 shows the comparison of the main
quantitative results with and without BPE dropout.

B Notes on Reproducibility

The training times were measured on machines
with GeForce GTX 1080 Ti GPUs and with Intel
Xeon E5-2630v4 CPUs (2.20GHz). The parent
models were trained on 4 GPUs simultaneously,
the finetuning experiments were done on a single
GPU.

We used model hyperparameters used by pre-
vious work and did not experiment with the hy-
perparameters of the architecture and training of
the initial models. The only hyperparameter that
we tuned was the learning rate of the finetuning.
We set the value to 1077 after several experiments
with English-to-German translation with values be-
tween 10~7 and 10~ based on the BLEU score on
validation data.

We downloaded the training data from the
official WMT web (http://www.statmt.org/
wnt18/).The test and validation sets were
downloaded using SacreBleu (https://github.
com/mipost/sacreBLEU). The BPE segmenta-
tion is done using FastBPE (https://github.
com/glample/fastBPE). For BPE Dropout,
we used YouTokenToMe (https://github.com/
VKCOM/YouTokenToMe). A script that downloads
and pre-processes the data is attached to the source
code. It also includes generating the noisy syn-
thetic data (using https://github.com/ybisk/
charNMT-noise) and preparing data and tools

required by MorphEval (https://github.com/
franckbrl/morpheval).

The models were trained and evaluated with Mar-
ian v1.7.0 (https://github.com/marian—-nmt/

marian/releases/tag/1.7.0).

Validation BLEU scores are tabulated in Table 9.
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From random initialization Direct finetuning from

32k 16k 8k 4k 2k 1k 500 0 500 1k 2k

BLEU 22,6
257 263 259 262 256 257 253 249 243 247
O - — — — | __ o e _______l______________
he}
5 chiF
o o 563 565 565 568 561 561 559 20 | se0 553 557
METEOR 45.0
470 478 474 480 475 478 477 465 461 463
BLEU 26.6
298 293 288 295 287 288 286 285 279 285
o - -l
g chrF 543
573 570 569 571 565 566  .566 s64 561 565
METEOR 35.1
570 EfEl Besl BBl BiGl B7o B 365 363 365
BLEU 182
207 207 207 203 200 200 197 195 190 197
z
o chrF 465
488 489 488 486 484 482 480 480 475 482
METEOR 24.6
257 258 259 257 256 257 257 251 248 251
BLE
5 v 107 116 122 127 126 125 125 2* | 13 122 126
oo oo Fea M B B B | B B B
chrF 461
436 446 457 461 464 461 459 460 461 464

Table 8: Comparison of the trasnaltion quality without (gray numbers) and with BPE Dropout (with the same color
coding as in Table 3).

From random initialization Direct finetuning from

32k 16k 8k 4k 2k 1k 500 0 500 1k 2k
en-de 29.07 29.76 28.6 287 2811 27.61 27.66 26.09 |28.04 2789 2787 | 27.75
de-en 35.05 3526 3434 3534 3437 3484 3383 2796 | 32.61 3347 33.68 | 32.44
en-cs 2247 2245 2253 2229 2194 21.78 2149 2026 | 22.03 2131 214 | 21.14
en-tr 1340 14.18 1425 14.11 14.05 13.72 1394 1455 | 12.02 1225 1228 | 11.56

In steps

Table 9: BLEU scores on the validation data: WMT13 test set for English-German in both directions, WMT17 test
set for English-Czech and English-Turkish directions.
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