Pre-Training Transformers as Energy-Based Cloze Models

Kevin Clark! Minh-Thang Luong?

gvl@google.com,

Abstract

We introduce Electric, an energy-based cloze
model for representation learning over text.
Like BERT, it is a conditional generative
model of tokens given their contexts. How-
ever, Electric does not use masking or output a
full distribution over tokens that could occur
in a context. Instead, it assigns a scalar en-
ergy score to each input token indicating how
likely it is given its context. We train Electric
using an algorithm based on noise-contrastive
estimation and elucidate how this learning ob-
jective is closely related to the recently pro-
posed ELECTRA pre-training method. Elec-
tric performs well when transferred to down-
stream tasks and is particularly effective at
producing likelihood scores for text: it re-
ranks speech recognition n-best lists better
than language models and much faster than
masked language models. Furthermore, it of-
fers a clearer and more principled view of what
ELECTRA learns during pre-training.

1 Introduction

The cloze task (Taylor, 1953) of predicting the iden-
tity of a token given its surrounding context has
proven highly effective for representation learn-
ing over text. BERT (Devlin et al., 2019) imple-
ments the cloze task by replacing input tokens with
[MASK], but this approach incurs drawbacks in
efficiency (only 15% of tokens are masked out at
a time) and introduces a pre-train/fine-tune mis-
match where BERT sees [MASK] tokens in train-
ing but not in fine-tuning. ELECTRA (Clark et al.,
2020) uses a different pre-training task that allevi-
ates these disadvantages. Instead of masking to-
kens, ELECTRA replaces some input tokens with
fakes sampled from a small generator network. The
pre-training task is then to distinguish the original
vs. replaced tokens. While on the surface it ap-
pears quite different from BERT, in this paper we
elucidate a close connection between ELECTRA

285

Quoc V. Le¢?
IStanford University
kevclark@cs.stanford.edu,

Christopher D. Manning'
2Google Brain
thangluong@google.com

manning@cs.stanford.edu

and cloze modeling. In particular, we develop a
new way of implementing the cloze task using an
energy-based model (EBM). Then we show the re-
sulting model, which we call Electric, is closely
related to ELECTRA, as well as being useful in its
own right for some applications.'

EBMs learn an energy function that assigns low
energy values to inputs in the data distribution and
high energy values to other inputs. They are flex-
ible because they do not have to compute normal-
ized probabilities. For example, Electric does not
use masking or an output softmax, instead produc-
ing a scalar energy score for each token where a low
energy indicates the token is likely given its context.
Unlike with BERT, these likelihood scores can be
computed simultaneously for all input tokens rather
than only for a small masked-out subset. We pro-
pose a training algorithm for Electric that efficiently
approximates a loss based on noise-contrastive esti-
mation (Gutmann and Hyvirinen, 2010). Then we
show that this training algorithm is closely related
to ELECTRA; in fact, ELECTRA can be viewed
as a variant of Electric using negative sampling
instead of noise-contrastive estimation.

We evaluate Electric on GLUE (Wang et al.,
2019) and SQuAD (Rajpurkar et al., 2016),
where Electric substantially outperforms BERT
but slightly under-performs ELECTRA. However,
Electric is particularly useful in its ability to effi-
ciently produce pseudo-likelihood scores (Salazar
et al., 2020) for text: Electric is better at re-ranking
the outputs of a speech recognition system than
GPT-2 (Radford et al., 2019) and is much faster at
re-ranking than BERT because it scores all input
tokens simultaneously rather than having to be run
multiple times with different tokens masked out. In
total, investigating Electric leads to a more princi-
pled understanding of ELECTRA and our results

!Code is available at https://github.com/
google—research/electra

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 285-294,
November 16-20, 2020. (©)2020 Association for Computational Linguistics

https://github.com/google-research/electra
https://github.com/google-research/electra

the—>, Pe(dog | the __ barked)
[MASK]-> BERT F><{ Polcat|the __ barked)
pg (the |the __ barked)

barked =, ...

the > > g (the | __ dog barked)
dog—> Electric >ps(dog|the __ barked)

barked —>f > g (barked | the dog __)

Figure 1: Comparison of BERT and Electric. Both model the probability of a token given its surrounding context,
but BERT produces a full output distribution over tokens only for masked positions while Electric produces un-
normalized probabilities (but no full distribution) for all input tokens.

suggest that EBMs are a promising alternative to
the standard generative models currently used for
language representation learning.

2 Method

BERT and related pre-training methods (Baevski
et al., 2019; Liu et al., 2019; Lan et al., 2020) train
a large neural network to perform the cloze task.
These models learn the probability pga. (¢]m\t) of
a token z; occurring in the surrounding context
T\y = [T1,00 Te—1, Tys1, o5 Tn). Typically the
context is represented as the input sequence with
x; replaced by a special [MASK]placeholder to-
ken. This masked sequence is encoded into vector
representations by a transformer network (Vaswani
et al., 2017). Then the representation at position ¢
is passed into a softmax layer to produce a distribu-
tion over tokens py(z¢|x\,) for the position.

2.1 The Electric Model

Electric also models pgara (2¢|2\;), but does not use
masking or a softmax layer. Electric first maps
the unmasked input © = [x1, ..., z,,] into contextu-
alized vector representations h(x) = [hy, ..., hy]
using a transformer network. The model assigns a
given position ¢ an energy score

E(z); = wlh(x),

using a learned weight vector w. The energy func-
tion defines a distribution over the possible tokens
at position ¢ as

po(ze|T\¢) = exp (—E(x)¢)/Z(2\¢)

exp (—E(x))
> ey exp (—E(REPLACE(x, t,2'))¢)

where REPLACE(x, ¢, z") denotes replacing the to-
ken at position ¢ with 2" and V is the vocabulary, in
practice usually word pieces (Sennrich et al., 2016).
Unlike with BERT, which produces the probabili-
ties for all possible tokens z’ using a softmax layer,
a candidate x’ is passed in as input to the trans-
former. As a result, computing py is prohibitively

286

expensive because the partition function Zp(x\;)
requires running the transformer |V| times; unlike
most EBMs, the intractability of Zg(x\;) is due to
the expensive scoring function rather than having a
large sample space.

2.2 NCE Loss

As computing the exact likelihood is intractable,
training energy-based models such as Electric
with standard maximum-likelihood estimation is
not possible. Instead, we use (conditional)
Noise-Contrastive Estimation (NCE) (Gutmann
and Hyvirinen, 2010; Ma and Collins, 2018),
which provides a way of efficiently training an un-
normalized model that does not compute Zp(x\;).
NCE learns the parameters of a model by defin-
ing a binary classification task where samples from
the data distribution have to be distinguished from
samples generated by a noise distribution g(x|x\;).
First, we define the un-normalized output

Po(xi|x\) = exp (—E(x);)
Operationally, NCE can be viewed as follows:

e A positive data point is a text sequence x from
the data and position in the sequence t.

e A negative data point is the same except x,
the token at position , is replaced with a noise
token z; sampled from gq.

e Define a binary classifier D that estimates the
probability of a data point being positive as
n 'ﬁ9($t|$\t>
n - Po(ze|Tn) + K - q(ae|eyy)
o The binary classifier is trained to distinguish
positive vs negative data points, with k nega-
tives sampled for every n positive data points.

Formally, the NCE loss £(0) is

[n - po(xe|T\)]
n-E |—log y
x,t n - Po(we|@yy) + k- q(2e]2)0)
k-q(z
P [_ log ——_ q(Ze|2\¢)]]
Ex n - Po(Te|2\g) + K - q(Te]2\4)
Te~vq

This loss is minimized when py matches the data
distribution pga, (Gutmann and Hyvérinen, 2010).
A consequence of this property is that the model
learns to be self-normalized such that Zp(x\;) = 1.

2.3 Training Algorithm

To minimize the loss, the expectations could be ap-
proximated by sampling as shown in Algorithm 1.
Taking the gradient of this estimated loss produces

Algorithm 1 Naive NCE loss estimation

Given: Input sequence x, number of negative
samples k, noise distribution ¢, model pg.

1. Injtialize the lgs(s |as)
n _ NPo (Tt |T\¢
2= (~log n-ﬁe<m|w\t>+k-q<zt|w\t>)'

2. Sample k negative samples according to t ~
unif{1,n}, &; ~ q(z|2\s)-
3. For each negative sample, add to the loss
o k-q(Z¢|xy,)

& 7o (@elaye)+h-q(Ze|eng)

an unbiased estimate of VL (6). However, this al-
gorithm is computationally expensive to run, since
it requires k + 1 forward passes through the trans-
former to compute the pgs (once for the positive
samples and once for each negative sample). We
propose a much more efficient approach that re-
places k input tokens with noise samples simul-
taneously shown in Algorithm 2. It requires just

Algorithm 2 Efficient NCE loss estimation

Given: Input sequence x, number of negative
samples k, noise distribution ¢, model py.

1. Pick k£ unique random positions R =
{r1,...,r;} whereeach r; is 1 < r; < n.

2. Replace the k& random positions with negative
samples: #; ~ q(zi|x\;) fori € R,

x5 — REPLACE(&, R, X).

3. For each position ¢ = 1 to n: add to the loss

k"](it‘m\t) .

— - ift
(n—F) o (e[) +h-q(Eelar) € R
noiscd)

('I’L—k) 'ﬁ@ (wt ‘m\t
(=) P e) (el

—log

otherwise

—log

one pass through the transformer for %k noise sam-
ples and n — k data samples. However, this pro-
cedure only truly minimizes £ if pg(z¢|z\¢) =
ﬁg(xt|w‘\‘§ised). To apply this efficiency trick we
are making the assumption they are approximately
equal, which we argue is reasonable because (1) we
choose a small k of [0.15n] and (2) ¢ is trained to

be close to the data distribution (see below). This

efficiency trick is analogous to BERT masking out
multiple tokens per input sequence.

2.4 Noise Distribution

The noise distribution ¢ comes from a neural net-
work trained to match pgaa. NCE commonly em-
ploys this idea to ensure the classification task is
sufficiently challenging for the model (Gutmann
and Hyvirinen, 2010; Wang and Ou, 2018). In
particular, we use a two-tower cloze model as pro-
posed by Baevski et al. (2019), which is more ac-
curate than a language model because it uses con-
text to both sides of each token. The model runs
two transformers 711z and Tyrp over the input se-
quence. These transformers apply causal masking
so one processes the sequence left-to-right and the
other operates right-to-left. The model’s predic-
tions come from a softmax layer applied to the

concatenated states of the two transformers:

ﬁ = TLTR<x)7 % = TRTL(iU)

%
g(xe|z\,) = softmax(W [k 1, b p41])a,

The noise distribution is trained simultaneously
with Electric using standard maximum likelihood
estimation over the data. The model producing the
noise distribution is much smaller than Electric to
reduce the computational overhead.

2.5 Connection to ELECTRA

Electric is closely related to the ELECTRA pre-
training method. ELECTRA also trains a binary
classifier (the “discriminator”) to distinguish data
tokens from noise tokens produced by a “generator”
network. However, ELECTRA’s classifier is simply
a sigmoid layer on top of the transformer: it models
the probability of a token being negative (i.e., as
replaced by a noise sample) as o(E(x);) where o
denotes the sigmoid function. Electric on the other
hand models this probability as

k- q(zley) _
n-exp(—E(x)) + k- Q(x’w\t)

o (st 10 (110

While ELECTRA learns whether a token is more
likely to come from the data distribution pga, or
noise distribution g, Electric only learns pga, be-
cause ¢ is passed into the model directly. This
difference is analogous to using negative sampling
(Mikolov et al., 2013) vs. noise-contrastive estima-
tion (Mnih and Kavukcuoglu, 2013) for learning
word embeddings.

287

Model MultiNLI SQuAD 2.0 GLUE Avg.
BERT 84.3 73.7 82.2
XLNet 85.8 78.5 -
ELECTRA 86.2 80.5 85.1
Electric 85.7 80.1 84.1

Table 1: Dev-set scores of pre-trained models on down-
stream tasks. To provide direct comparisons, we only
show base-sized models pre-trained on WikiBooks.

A disadvantage of Electric compared to ELEC-
TRA is that it is less flexible in the choice of noise
distribution. Since ELECTRA’s binary classifier
does not need to access g, its ¢ only needs to be
defined for negative sample positions in the in-
put sequence. Therefore ELECTRA can use a
masked language model rather than a two-tower
cloze model for q. An advantage of Electric is that
it directly provides (un-normalized) probabilities
pg for tokens, making it useful for applications
such as re-ranking the outputs of text generation
systems. The differences between ELECTRA and
Electric are summarized below:

Model Noise Dist. Binary Classifier
. Two-Tower k-q(z|®y\¢)
Electric Cloze Model ? (E(w)t + log (ﬁ))

ELECTRA Masked LM o(E(x):)

3 Experiments

We train two Electric models the same size as
BERT-Base (110M parameters): one on Wikipedia
and BooksCorpus (Zhu et al., 2015) for compari-
son with BERT and one on OpenWebTextCorpus
(Gokaslan and Cohen, 2019) for comparison? with
GPT-2. The noise distribution transformers 7 tx
and Ty, are 1/4 the hidden size of Electric. We do
no hyperparameter tuning, using the same hyper-
parameter values as ELECTRA. Further details on
training are in the appendix.

3.1 Transfer to Downstream Tasks

We evaluate fine-tuning the Electric model on the
GLUE natural language understanding benchmark
(Wang et al., 2019) and the SQuAD 2.0 question
answering dataset (Rajpurkar et al., 2018). We re-
port exact-match for SQuAD, average score® over

>The original GPT-2 dataset is not public, so we use a
public re-implementation.

3Matthews correlation coefficient for CoLA, Spearman
correlation for STS, accuracy for the other tasks.

288

the GLUE tasks®, and accuracy on the multi-genre
natural language inference GLUE task. Reported
scores are medians over 10 fine-tuning runs with
different random seeds. We use the same fine-
tuning setup and hyperparameters as ELECTRA.
Results are shown in Table 1. Electric scores bet-
ter than BERT, showing the energy-based formula-
tion improves cloze model pre-training. However,
Electric scores slightly lower than ELECTRA. One
possible explanation is that Electric’s noise distri-
bution is worse because a two-tower cloze model is
less expressive than a masked LM. We tested this
hypothesis by training ELECTRA with the same
two-tower noise model as Electric. Performance
did indeed go down, but it only explained about half
the gap. The surprising drop in performance sug-
gests that learning the difference between the data
and generations from a low-capacity model leads
to better representations than only learning the
data distribution, but we believe further research is
needed to fully understand the discrepancy.

3.2 Fast Pseudo-Log-Likelihood Scoring

An advantage of Electric over BERT is that it can
efficiently produce pseudo-log-likelihood (PLL)
scores for text (Wang and Cho, 2019). PLLs for

Electric are
n

n
PLL(z) = Y log(pg(zelmy)) = > —E();
t=1 t=1

PLLs can be used to re-rank the outputs of an NMT
or ASR system. While historically log-likelihoods
from language models have been used for such re-
ranking, recent work has demonstrated that PLLs
from masked language models perform better (Shin
et al., 2019). However, computing PLLs from a
masked language model requires n passes of the
transformer: once with each token masked out.
Salazar et al. (2020) suggest distilling BERT into a
model that uses no masking to avoid this cost, but
this model considerably under-performed regular
LMs in their experiments.

Electric can produce PLLs for all input tokens in
a single pass like a LM while being bidirectional
like a masked LM. We use the PLLs from Electric
for re-ranking the 100-best hypotheses of a 5-layer
BLSTMP model from ESPnet (Watanabe et al.,
2018) on the 960-hour LibriSpeech corpus (Panay-
otov et al., 2015) following the same experimental
setup and using the same n-best lists as Salazar

4We exclude WNLL, for which models do not outperform
the majority baseline.

et al. (2020). Given speech features s and speech
recognition model f the re-ranked output is
argmax f(x|s) + A\PLL(x)
zEn-best(f,s)

where n-best(f, s) consists of the top n (we use
n = 100) predictions from the speech recognition
model found with beam search, f(x|s) is the score
the speech model assigns the candidate output se-
quence x. We select the best A on the dev set out of
[0.05,0.1, ...,0.95, 1.0], with different s selected
for the “clean” and “other” portions of the data.

We compare Electric against GPT-2 (Radford
et al., 2019), BERT (Devlin et al., 2019), and two
baseline systems that are bidirectional while only
requiring a single transformer pass like Electric.
TwoTower is a two-tower cloze model similar to
Electric’s noise distribution, but of the same size as
Electric. ELECTRA-TT is identical to ELECTRA
except it uses a two-tower noise distribution rather
than a masked language model.> The noise distri-
bution probabilities and binary classifiers scores
of ELECTRA can be combined to assign proba-
bilities for tokens as shown in Appendix G of the
ELECTRA paper.

Results are shown in Table 2. Electric scores
better than GPT-2 when trained on comparable
data. While scoring worse than BERT, Electric
is much faster to run. It also slightly outperforms
ELECTRA-TT, which is consistent with the finding
from Labeau and Allauzen (2018) that NCE outper-
forms negative sampling for training language mod-
els. Furthermore, Electric is simpler and faster than
ELETRA-TT in that it does not require running the
generator to produce PLL scores. TwoTower scores
lower than Electric, presumably because it is not a
“deeply” bidirectional model and instead just con-
catenates forward and backward hidden states.

4 Related Work

Language modeling (Dai and Le, 2015; Radford
et al., 2018; Peters et al., 2018) and cloze modeling
(Devlin et al., 2019; Baevski et al., 2019; Liu et al.,
2019) have proven to be effective pre-training tasks
for NLP. Unlike Electric, these methods follow
the standard recipe of estimating token probabili-
ties with an output softmax and using maximum-
likelihood training.

Energy-based models have been widely explored
in machine learning (Dayan et al., 1995; LeCun

SWith ELECTRA’s original masked LM generator, it
would be impossible to score all tokens in a single pass.

289

Pre-train Clean Other .
Model Data WER WER Runtime
None - 7.26 20.37 0
BERT WikiBooks 5.41 17.41 n
Electric WikiBooks 5.65 17.42 1
GPT-2 OWT 5.64 17.60 1
TwoTower OWT* 5.32 17.25 1
ELECTRA-TT OWT* 522 17.01 1
Electric OWT#* 5.18 16.93 1

Table 2: Test-set word error rates on LibriSpeech after
rescoring with base-sized models. None, GPT-2, and
BERT results are from Salazar et al. (2020). Runtime
is measured in passes through the transformer. “Clean”
and “other” are easier and harder splits of the data. *We
use a public re-implementation of OpenWebText.

et al., 2007). While many training methods in-
volve sampling from the EBM using gradient-
based MCMC (Du and Mordatch, 2019) or Gibbs
sampling (Hinton, 2002), we considered these ap-
proaches too slow for pre-training because they
require multiple passes through the model per sam-
ple. We instead use noise-contrastive estimation
(Gutmann and Hyvirinen, 2010), which has widely
been used in NLP for learning word vectors (Mnih
and Kavukcuoglu, 2013) and text generation mod-
els (Jean et al., 2014; Jézefowicz et al., 2016).
While EBMs have previously been applied to left-
to-right (Wang et al., 2015) or globally normal-
ized (Rosenfeld et al., 2001; Deng et al., 2020)
text generation, they have not previously been ap-
plied to cloze models or for pre-training NLP mod-
els. Several papers have pointed out the connec-
tion between EBMs and GANs (Zhao et al., 2016;
Finn et al., 2016), which is similar to the Elec-
tric/ELECTRA connection.

5 Conclusion

We have developed an energy-based cloze model
we call Electric and designed an efficient training
algorithm for Electric based on noise-contrastive
estimation. Although Electric can be derived solely
from the cloze task, the resulting pre-training
method is closely related to ELECTRA’s GAN-
like pre-training algorithm. While slightly under-
performing ELECTRA on downstream tasks, Elec-
tric is useful for its ability to quickly produce
pseudo-log-likelihood scores for text. Furthermore,
it offers a clearer and more principled view of the
ELECTRA objective as a “negative sampling” ver-
sion of cloze pre-training.

Acknowledgements

We thank John Hewitt, Yuhao Zhang, Ashwin
Paranjape, Sergey Levine, and the anonymous re-
viewers for their thoughtful comments and sug-
gestions. Kevin is supported by a Google PhD
Fellowship.

References

Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke
Zettlemoyer, and Michael Auli. 2019. Cloze-driven
pretraining of self-attention networks. In EMNLP.

Daniel M. Cer, Mona T. Diab, Eneko Agirre, Ihigo
Lopez-Gazpio, and Lucia Specia. 2017. Semeval-
2017 task 1: Semantic textual similarity multilin-
gual and crosslingual focused evaluation. In Se-
mEval@ACL.

Kevin Clark, Minh-Thang Luong, Urvashi Khandel-
wal, Christopher D. Manning, and Quoc V. Le. 2019.
BAM! Born-again multi-task networks for natural
language understanding. In ACL.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training text encoders as discriminators rather than
generators. In ICLR.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In NeurIPS.

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal,
and Richard S. Zemel. 1995. The Helmholtz ma-
chine. Neural Computation, 7:889-904.

Yuntian Deng, Anton Bakhtin, Myle Ott, and Arthur
Szlam. 2020. Residual energy-based models for text
generation. In ICLR.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali
Farhadi, Hannaneh Hajishirzi, and Noah Smith.
2020. Fine-tuning pretrained language models:
Weight initializations, data orders, and early stop-
ping. arXiv preprint arXiv:2002.06305.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In IWP@IJCNLP.

Yilun Du and Igor Mordatch. 2019. Implicit generation
and generalization in energy-based models. arXiv
preprint arXiv:1903.08689.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and
Sergey Levine. 2016. A connection between gen-
erative adversarial networks, inverse reinforcement
learning, and energy-based models. In NeurlPS
2016 Workshop on Adversarial Training.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan,
and William B. Dolan. 2007. The third pascal
recognizing textual entailment challenge. In ACL-
PASCAL@ACL.

Aaron Gokaslan and Vanya Cohen. 2019. Openweb-
text corpus. http://Skylion007.github.
io/OpenWebTextCorpus.

Michael Gutmann and Aapo Hyvérinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In AISTATS.

Geoffrey E. Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural Com-
putation, 14:1771-1800.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai.
2017. First Quora dataset release: Question pairs.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large tar-
get vocabulary for neural machine translation. In
ACL.

Rafal Jézefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410.

Matthieu Labeau and Alexandre Allauzen. 2018.
Learning with noise-contrastive estimation: Easing
training by learning to scale. In COLING.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A lite BERT for self-supervised
learning of language representations. In ICLR.

Yann LeCun, Sumit Chopra, Raia Hadsell,
Marc’ Aurelio Ranzato, and Fu Jie Huang. 2007.
A tutorial on energy-based learning. In Gokhan
Bakir, Thomas Hofmann, Bernhard Scholkopf,
Alexander J. Smola, Ben Taskar, and S. V. N.
Vishwanathan, editors, Predicting Structured Data,
pages 191-246. MIT Press, Cambridge, MA.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Zhuang Ma and Michael Collins. 2018. Noise con-
trastive estimation and negative sampling for condi-
tional models: Consistency and statistical efficiency.
In EMNLP.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In NeurIPS.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In NeurIPS.

290

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An asr cor-
pus based on public domain audio books. ICASSP.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In NAACL-HLT.

Jason Phang, Thibault Févry, and Samuel R Bow-
man. 2018. Sentence encoders on STILTSs: Supple-
mentary training on intermediate labeled-data tasks.
arXiv preprint arXiv:1811.01088.

Alec Radford, Karthik Narasimhan, Tim Salimans,
and Ilya Sutskever. 2018. Improving lan-
guage understanding by generative pre-training.
https://blog.openai.com/language-unsupervised.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal Report.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuUAD. In NAACL-HLT.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy S. Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In EMNLP.

Nils Reimers and Iryna Gurevych. 2018. Why com-
paring single performance scores does not allow
to draw conclusions about machine learning ap-
proaches. arXiv preprint arXiv:1803.09578.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin Zhu.
2001. Whole-sentence exponential language mod-
els: A vehicle for linguistic-statistical integration.
Comput. Speech Lang., 15:55-73.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In ACL.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In NAACL-HLT.

Joonbo Shin, Yoonhyung Lee, and Kyomin Jung. 2019.
Effective sentence scoring method using bert for
speech recognition. In Asian Conference on Ma-
chine Learning, pages 1081-1093.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

291

Wilson L. Taylor. 1953. “Cloze procedure”: a new tool
for measuring readability. Journalism & Mass Com-
munication Quarterly, 30:415-433.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Alex Wang and Kyunghyun Cho. 2019. BERT has
a mouth, and it must speak: BERT as a markov
random field language model. arXiv preprint
arXiv:1902.04094.

Alex Wang, Amapreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In /CLR.

Bin Wang and Zhijian Ou. 2018. Learning neural trans-
dimensional random field language models with
noise-contrastive estimation. /CASSP.

Bin Wang, Zhijian Ou, and Zhiqgiang Tan. 2015. Trans-
dimensional random fields for language modeling.
In ACL.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2018. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471.

Shinji Watanabe, Takaaki Hori, Shigeki Karita, Tomoki
Hayashi, Jiro Nishitoba, Yuya Unno, Nelson En-
rique Yalta Soplin, Jahn Heymann, Matthew Wies-
ner, Nanxin Chen, Adithya Renduchintala, and
Tsubasa Ochiai. 2018. Espnet: End-to-end speech
processing toolkit. In INTERSPEECH.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus
for sentence understanding through inference. In
NAACL-HLT.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le. 2019.
XLNet: Generalized autoregressive pretraining for
language understanding. In NeurIPS.

Junbo Zhao, Michael Mathieu, and Yann LeCun. 2016.
Energy-based generative adversarial network. arXiv
preprint arXiv:1609.03126.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watching
movies and reading books. ICCV.

A Pre-Training Details

The neural architectures of our models are identi-
cal to BERT-Base (Devlin et al., 2019), although
we believe incorporating additions such as relative
position encodings (Shaw et al., 2018) would im-
prove results. Our pre-training setup is the same

as ELECTRA’s (Clark et al., 2020), which adds
some additional ideas from Liu et al. (2019) on
top of the BERT codebase, such as dynamic mask-
ing and removing the next-sentence prediction task.
We use the weight sharing trick from ELECTRA,
where the transformers producing the proposal dis-
tribution and the main transformer share token em-
beddings. We do not use whole-word or n-gram
masking, although we believe it would improve
results too.

We did no hyperparameter tuning, directly us-
ing the hyperparameters from ELECTRA-Base for
Electric and our baselines. These hyperparameters
are slightly modified from the ones used in BERT;
for completeness, we show these values in Table 3.
The hidden sizes, feed-forward hidden sizes, and
number of attention heads of the two transformers
Tirr and Ty used to produce the proposal distri-
bution are 1/4 the size of Electric. We chose this
value because it keeps the compute comparable
to ELECTRA; running two 1/4-sized transformers
takes roughly the same compute as running one 1/3-
sized transformer, which is the size of ELECTRA’s
generator. To make the compute exactly equal, we
train Electric for slightly fewer steps than ELEC-
TRA. This same generator architecture was used
for ELECTRA-TT. The TwoTower baseline con-
sists of two transformers 2/3 the size of BERTs,
which takes approximately the same compute to
run. The Electric models, ELECTRA-Base, and
BERT-Base all use the same amount of pre-train
compute (e.g., Electric is trained for fewer steps
than BERT due to the extra compute from the pro-
posal distribution), which equates to approximately
three days of training on 16 TPUv2s.

B Fine-Tuning Details

We use ELECTRA’s top-level classifiers and hy-
perparameter values for fine-tuning as well. For
GLUE tasks, a simple linear classifier is added on
top of the pre-trained transformer. For SQuAD, a
question answering module similar XL.Net’s (Yang
et al., 2019) is added on top of the transformer,
which is slightly more sophisticated than BERT’s
in that it jointly rather than independently predicts
the start and end positions and has an “answerabil-
ity” classifier added for SQuAD 2.0. ELECTRA’s
hyperparameters are similar to BERT’s, with the
main difference being the addition of a layer-wise
learning rate decay where layers of the network
closer to the output have a higher learning rate.

Following BERT, we submit the best of 10 mod-
els fine-tuned with different random seeds to the
GLUE leaderboard for test set results.

C Dataset Details

We provide details on the fine-tuning datasets
below. All datasets are in English. GLUE
data can be downloaded at https://
gluebenchmark.com/ and SQuAD data can
be downloaded at
github.io/SQuAD-explorer/.

https://rajpurkar.

e CoLA: Corpus of Linguistic Acceptability
(Warstadt et al., 2018). The task is to deter-
mine whether a given sentence is grammat-
ical or not. The dataset contains 8.5k train
examples from books and journal articles on
linguistic theory.

e SST: Stanford Sentiment Treebank (Socher
et al., 2013). The tasks is to determine if the
sentence is positive or negative in sentiment.
The dataset contains 67k train examples from
movie reviews.

o MRPC: Microsoft Research Paraphrase Cor-
pus (Dolan and Brockett, 2005). The task is
to predict whether two sentences are semanti-
cally equivalent or not. The dataset contains
3.7k train examples from online news sources.

e STS: Semantic Textual Similarity (Cer et al.,
2017). The tasks is to predict how seman-
tically similar two sentences are on a 1-5
scale. The dataset contains 5.8k train exam-
ples drawn from new headlines, video and im-
age captions, and natural language inference
data.

e QQP: Quora Question Pairs (Iyer et al., 2017).
The task is to determine whether a pair of ques-
tions are semantically equivalent. The dataset
contains 364k train examples from the com-
munity question-answering website Quora.

e MNLI: Multi-genre Natural Language Infer-
ence (Williams et al., 2018). Given a premise
sentence and a hypothesis sentence, the task
is to predict whether the premise entails the
hypothesis, contradicts the hypothesis, or nei-
ther. The dataset contains 393k train examples
drawn from ten different sources.

292

https://gluebenchmark.com/
https://gluebenchmark.com/
https://rajpurkar.github.io/SQuAD-explorer/
https://rajpurkar.github.io/SQuAD-explorer/

Hyperparameter Pre-Training Fine-Tuning
Number of layers 12

Hidden Size 768

FFN inner hidden size 3072

Attention heads 12

Attention head size 64

Embedding Size 768

Proposal Transformer Size 1/4 NA
Negative sample percent 15 NA
Learning Rate Decay Linear

Warmup steps 10000 First 10%
Learning Rate Se-4 le-4
Layerwise LR decay None 0.8
Adam € le-6

Adam £ 0.9

Adam (2 0.999

Attention Dropout 0.1

Dropout 0.1

Weight Decay 0.01 0

Batch Size 256 32

Train Steps 700K 10 epochs for RTE and STS

2 for SQuAD, 3 for other tasks

Table 3: Hyperparameters for Electric; the values are identical to ELECTRA’s other than the train steps and
different-sized proposal network (see text), but we include them here for completeness. If not shown, the fine-
tuning hyperparameter is the same as the pre-training one.

e QNLI: Question Natural Language Inference;
constructed from SQuAD (Rajpurkar et al.,
2016). The task is to predict whether a con-
text sentence contains the answer to a question
sentence. The dataset contains 108k train ex-
amples from Wikipedia.

o RTE: Recognizing Textual Entailment (Gi-
ampiccolo et al., 2007). Given a premise sen-
tence and a hypothesis sentence, the task is
to predict whether the premise entails the hy-
pothesis or not. The dataset contains 2.5k
train examples from a series of annual textual
entailment challenges.

e SQuAD 1.1: Stanford Question Answering
Dataset (Rajpurkar et al., 2016). Given a con-
text paragraph and a question, the task is to
select the span of text in the paragraph an-
swering the question. The dataset contains
88k train examples from Wikipedia.

e SQuAD 2.0: Stanford Question Answering
Dataset version 2.0 (Rajpurkar et al., 2018).
This task adds addition questions to SQuAD
whose answer does not exist in the context;
models have to recognize when these ques-
tions occur and not return an answer for them.
The dataset contains 130k train examples,

We report Spearman correlation for STS,

293

Matthews correlation coefficient (MCC) for CoLA,
exact match for SQuAD, and accuracy for the other
tasks. We use the provided evaluation script for
SQuAD®, scipy to compute Spearman scores’, and
sklearn to compute MCC®. We use the standard
train/dev/test splits.

D Detailed Results

We show detailed results on GLUE and SQuAD
in Table 4 and detailed results on LibriSpeech re-
ranking in Table 5. Following BERT, we do not
show results on the WNLI GLUE task, as it is
difficult to beat even the majority classifier using
a standard fine-tuning-as-classifier approach. We
show dev rather than test results on GLUE in the
main paper because they are more reliable; the
performance of fine-tuned models varies substan-
tially based on the random seed (Phang et al., 2018;
Clark et al., 2019; Dodge et al., 2020), but GLUE
only supports submitting a single model rather than

getting a median score of multiple models. While

6 https://worksheets.
codalab.org/rest/bundles/
0x6b567e1cf2e041ec80d7098£031c5¢c9e/
contents/blob/

7 https://docs.scipy.org/doc/
scipy/reference/generated/scipy.stats.
spearmanr.html

8 https://scikit-learn.org/stable/
modules/generated/sklearn.metrics.
matthews_corrcoef.html

https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html

Model CoLA SST MRPC STS QQP MNLI QNLI RTE SQuAD 1.1 SQuAD 2.0

MCC Acc Acc Spear Acc Acc Acc Acc EM EM
Dev set results
BERT 58.4 92.8 86.0 87.8 90.8 84.5 88.6 68.5 80.8 73.7
XLNet - 934 - - - 85.8 - - - 78.5
ELECTRA 65.8 924 879 89.1 909 86.2 924 763 84.5 80.5
Electric 61.8 919 88.0 89.4 90.6 85.7 92.1 734 84.5 80.1
Test set results
BERT 52.1 93.5 84.8 85.8 89.2 84.6 90.5 664 — -
ELECTRA 59.7 93.4 86.7 87.7 89.1 85.8 92.7 73.1 - -
Electric 61.5 932 854 869 89.2 852 91.8 673 - -

Table 4: GLUE scores pre-trained models on downstream tasks. To provide direct comparisons, we only show
base-sized models pre-trained on WikiBooks and fine-tuned with standard single-task training.

Rescoring Model Pre-Training Dev Test Transformer
escoring Yiode Data clean other clean other Passes

None - 7.17 19.79 7.26 20.37

BERT WikiBooks 5.17 16.44 541 17.41 n
Electric Wikibooks 5.47 16.56 5.65 17.42 1
GPT-2 OpenWebText 5.39 16.81 5.64 17.61 1
TwoTower OpenWebText 5.12 16.37 532 17.25 1
ELECTRA-TT OpenWebText 5.05 1627 522 17.01 1
Electric OpenWebText 4.97 16.23 5.18 16.93 1

Table 5: Word error rates on LibriSpeech after rescoring with base-sized models. None, GPT-2, and BERT results
are from Salazar et al. (2020). Runtime is measured in passes through the transformer and data indicates the pre-
training dataset. “Clean” and “other” are easier and harder splits of the data. *We use a public re-implementation
of OpenWebText.

using dev-set model selection to choose the test
set submission may alleviate the high variance of
fine-tuning to some extent, such model selection is
still not sufficient for reliable comparisons between
methods (Reimers and Gurevych, 2018).

294

