Neural Deepfake Detection with Factual Structure of Text
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Abstract

Deepfake detection, the task of automatically
discriminating machine-generated text, is in-
creasingly critical with recent advances in nat-
ural language generative models. Existing ap-
proaches to deepfake detection typically rep-
resent documents with coarse-grained repre-
sentations. However, they struggle to cap-
ture factual structures of documents, which
is a discriminative factor between machine-
generated and human-written text according
to our statistical analysis. To address this,
we propose a graph-based model that utilizes
the factual structure of a document for deep-
fake detection of text. Our approach repre-
sents the factual structure of a given document
as an entity graph, which is further utilized
to learn sentence representations with a graph
neural network. Sentence representations are
then composed to a document representation
for making predictions, where consistent re-
lations between neighboring sentences are se-
quentially modeled. Results of experiments
on two public deepfake datasets show that our
approach significantly improves strong base
models built with RoBERTa. Model analy-
sis further indicates that our model can dis-
tinguish the difference in the factual structure
between machine-generated text and human-
written text.

1 Introduction

Nowadays, unprecedented amounts of online mis-
information (e.g., fake news and rumors) spread
through the internet, which may misinform peo-
ple’s opinions of essential social events (Faris et al.,
2017; Thorne et al., 2018; Goodrich et al., 2019;
Kryscinski et al., 2019). Recent advances in neural
generative models, such as GPT-2 (Radford et al.,

* Work done while this author was an intern at Microsoft
Research.
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Figure 1: An example of machine-generated fake news.
We can observe that the factual structure of entities ex-
tracted by named entity recognition is inconsistent.

2019), make the situation even severer as their abil-
ity to generate fluent and coherent text may enable
adversaries to produce fake news. In this work,
we study deepfake detection of text, to automat-
ically discriminate machine-generated text from
human-written text.

Previous works on deepfake detection of text are
dominated by neural document classification mod-
els (Bakhtin et al., 2019; Zellers et al., 2019; Wang
et al., 2019; Vijayaraghavan et al., 2020). They
typically tackle the problem with coarse-grained
document-level evidence such as dense vectors
learned by neural encoder and traditional features
(e.g., TF-IDF, word counts). However, these coarse-
grained models struggle to capture the fine-grained
factual structure of the text. We define the factual
structure as a graph containing entities mentioned
in the text and the semantically relevant relations
among them. As shown in the motivating exam-
ple in Figure 1, even though machine-generated
text seems coherent, its factual structure is incon-
sistent. Our statistical analysis further reveals the
difference in the factual structure between human-
written and machine-generated text (detailed in
Section 3). Thus, modeling factual structures is
essential for detecting machine-generated text.

Based on the aforementioned analysis, we pro-
pose FAST, a graph-based reasoning approach uti-
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lizing FActual Structure of Text for deepfake detec-
tion. With a given document, we represent its fac-
tual structure as a graph, where nodes are automat-
ically extracted by named entity recognition. Node
representations are calculated not only with the in-
ternal factual structure of a document via a graph
convolution network, but also with external knowl-
edge from entity representations pre-trained on
Wikipedia. These node representations are fed to
produce sentence representations which, together
with the coherence of continuous sentences, are
further used to compose a document representation
for making the final prediction.

We conduct experiments on a news-style dataset
and a webtext-style dataset, with negative instances
generated by GROVER (Zellers et al., 2019) and
GPT-2 (Radford et al., 2019) respectively. Exper-
iments show that our method significantly outper-
forms strong transformer-based baselines on both
datasets. Model analysis further indicates that our
model can distinguish the difference in the fac-
tual structure between machine-generated text and
human-written text. The contributions are summa-
rized as follows:

e We propose a graph-based approach, which
models the fine-grained factual structure of a
document for deepfake detection of text.

e We statistically show that machine-generated
text differs from human-written text in terms
of the factual structures, and injecting factual
structures boosts detection accuracy.

e Results of experiments on news-style and
webtext-style datasets verify that our approach
achieves improved accuracy compared to
strong transformer-based pre-trained models.

2 Task Definition

We study the task of deepfake detection of text
in this paper. This task discriminates machine-
generated text from human-written text, which can
be viewed as a binary classification problem. We
conduct our experiments on two datasets with dif-
ferent styles: a news-style dataset with fake text
generated by GROVER (Zellers et al., 2019) and a
large-scale webtext-style dataset with fake text gen-
erated by GPT-2 (Radford et al., 2019). The news-
style dataset consists of 25,000 labeled documents,
and the webtext-style dataset consists of 520,000
labeled documents. With a given document, sys-
tems are required to perform reasoning about the

content of the document and assess whether it is
“human-written” or “machine-generated”.

3 Factual Consistency Verification

In this part, we conduct a statistical analysis to re-
veal the difference in the factual structure between
human-written and machine-generated text. Specif-
ically, we study the difference in factual structures
from a consistency perspective and analyze entity-
level and sentence-level consistency.

Through data observation, we find that human-
written text tends to repeatedly mention the same
entity in continuous sentences, while machine-
written continuous sentences are more likely to
mention irrelevant entities. Therefore, we define
entity consistency count (ECC) of a document
as the number of entities that are repeatedly men-
tioned in the next w sentences, where w is the sen-
tence window size. Sentence consistency count
(SCC) of a document is defined as the number of
sentences that mention the same entities with the
next w sentences. For instance, if entities men-
tioned in three continuous sentences are “A and B;
A; B” and w = 2, then ECC = 2 because two
entities A and B are repeatedly mentioned in the
next 2 sentences. SCC' = 1 because only the first
sentence has entities mentioned in the next 2 sen-
tences. We use all 5,000 pairs of human-written
and machine-generated documents from the news-
style dataset and each pair of documents share the
same metadata (e.g., title) for statistical analysis.
We plot the kernel density distribution of these two
types of consistency count with sentence window
sizew = {1, 2}.

As shown in Figure 2, human-written documents
are more likely to have higher entity-level and
sentence-level consistency count. This analysis in-
dicates that human-written and machine-generated
text are different in the factual structure, thus mod-
eling consistency of factual structures is essential
in discriminating them.

4 Methodology

In this section, we present our graph-based reason-
ing approach, which considers factual structures of
documents, which is used to guide the reasoning
process for the final prediction.

Figure 3 gives a high-level overview of our ap-
proach. With a document given as the input, our
system begins by calculating the contextual word
representations by RoBERTa (§ 4.1). Then, we
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Figure 2: Statistical analysis about entity-level and
sentence-level consistency. Orange curve and blue
curve indicate kernel density estimation curve for
human-written document and machine-generated doc-
ument respectively. X-axis indicates the value of con-
sistency count and y-axis indicates probability density.

build a graph for capturing the internal factual
structure of the whole document (§ 4.2). With the
constructed graph, we initialize node representa-
tions utilizing internal and external factual knowl-
edge and propagate and aggregate information by a
graph neural network to learn graph-enhanced sen-
tence representations (§ 4.3). Then, to model the
consistent relations of continuous sentences and
compose a document representation for making
the final prediction, we employ a sequential model
with help of coherence scores from a pre-trained
next sentence prediction (NSP) model (§ 4.4).

4.1 Word Representation

In this part, we present how to calculate contextual
word representations by a transformer-based model.
In pratice, we employ RoBERTa (Liu et al., 2019).

Taking a document d as the input, we employ
RoBERTa to learn contextual semantic represen-
tations for words !. RoBERTa encoder B maps
document & with length |x| into a sequence of fol-
lowing hidden vectors.

h(z) = [h(z)1, h(x)2, - ,h(Z)z] (1)

where each h(x); indicates the contextual repre-
sentation of word ¢

4.2 Graph Construction

In this part, we present how to construct a graph
to reveal the internal factual structure of a docu-

'In practice, “words” may indicate tokens or token-pieces,
we use “words” for a better illustration here.

ment. In practice, we observe that selecting enti-
ties, the core participants of events, as arguments
to construct the graph leads to less noise to the rep-
resentation of the factual structure. Therefore, we
employ a named entity recognition (NER) model to
parse entities mentioned in each sentence. Specifi-
cally, taking a document as the input, we construct
a graph in the following steps.

e We parse each sentence to a set of entities
with an off-the-shelf NER toolkit built by Al-
lenNLP 2, which is an implementation of Pe-
ters et al. (2017). Each entity is regarded as a
node in the graph.

e We establish links between inner-sentence and
inter-sentence entity node pairs to capture the
structural relevance. We add inner-sentence
edges to entity pairs in the same sentence for
they are naturally relevant to each other. More-
over, we add inter-sentence edges to literally
similar inter-sentence entity pairs for they are
likely to be the same entity.

After this process, the graph reveals the fine-
grained factual structure of a document.

4.3 Graph Neural Network

In this part, we introduce how to initialize node
representations and exploit factual structure utiliz-
ing multi-layer graph convolution network (GCN)
to propagate and aggregate information and finally
produce sentence representations.

4.3.1 Node Representation Initialization

We initialize node representations with contextual
word representations learnt by RoBERTa and exter-
nal entity representations pre-trained on Wikipedia.

Contextual Representation Since each entity
node is naturally a span of words mentioned in
the document, we calculate the contextual repre-
sentation of each node by the contextual words
representations h(x). Supposing an entity e con-
sists of m words, then the contextual representation
ep is calculated with the following formula:

1 n
e = ReLU(Wp— h(x),: 2
B (Ws - Z (®)e) @)
=0
where Wj is a weight metric, e’ is the absolute
position in the document of the 7*" word in the span
of entity e, and ReLU is an activation function.

https://demo.allennlp.org/
named-entity-recognition
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Figure 3: An overview of our approach. Taking a document as the input, we first calculate contextual word
representations via ROBERTa (§ 4.1) and represent the factual structure as a graph (§ 4.2). After that, we employ
graph neural network to learn sentence representations (§ 4.3). Then, sentence representations are composed to a
document representation considering coherence of continuous sentences before making the final prediction (§ 4.4).

Wikipedia-based Entity Representation To
model external factual knowledge about entities
in the knowledge base, we further represent entity
e with a projected wikipedia2vec entity represen-
tation (Yamada et al., 2018), which embeds words
and entities on Wikipedia pages in a common space.
The Wikipedia-based entity representation €, is :

3)

where v, is the wikipedia2vec representation of
entity e and W, is a weight metric.

ew = ReLU (W ,v,)

The initial representation H, éo) € R? of entity
node e is the concatenation of contextual represen-
tation e and Wikipedia-based entity representa-
tion €,,, with dimension d.

4.3.2 Multi-layer GCN

In order to propagate and aggregate information
through multihop neighbouring nodes, we employ
multi-layer Graph Convolution Network (GCN)
(Kipf and Welling, 2016).

Formally, we denote the constructed graph as
G and representation of all nodes as H € R4,
where IV denote the number of nodes. Each row
H, € RYin H indicates a representation of node
e. We denote the adjacency matrix of graph G as
A and degree matrix as D. We further calculate
A= D_%AD_%. Then, the formula of multi-
layer GCN is described as follows:

HT = o(AHPW;) 4)

where H, éi) denotes the representation of node e
calculated by i layer of GCNs, W; is the weight
matrix of layer 7. o is an activation function. Spe-
cially, H ,EO) is the initialized node representations.

Finally, through m layers of GCN, we obtain the
graph-enhanced node representations based on the
structure of the factual graph.

4.3.3 Sentence Representation

According to compositionality, we believe that
global representation should come from partial rep-
resentations. Therefore, we calculate sentence-
level representations based on graph-enhanced
node representations. Supposing sentence ¢ has
N; corresponding entities, we calculate the repre-
sentation y; of sentence ¢ as follows:

N;

Yi= Z o(WsH; jy + bs)
i 520

6))

where o is an activation function, W is a weight
matrix, b, is a bias vector and H; ;) indicates
the representation of j*" node in sentence i. The
compositionality can also be implemented in other
ways, which we leave to future work.

4.4 Aggregation to Document Representation

In this part, we present how to compose a docu-
ment representation for the final prediction utiliz-
ing graph-enhanced sentence representations and
coherence score calculated by a pre-trained next
sentence prediction (NSP) model.

Coherence Tracking LSTM With graph-
enhanced sentence representations given as the
input, the factual consistency of continuous
sentences is automatically modeled by a sequential
model. Specifically, We employ LSTM to track the
consistent relations and produce representations y;
for sentence ¢

Yi = LSTM([yi]) (6)
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Next Sentence Prediction Model In order to fur-
ther model contextual coherence of neighbouring
sentence pairs as an additional information, we
pre-train an NSP model to calculate the contextual
coherence score for each neighbouring sentence
pair. We employ RoBERTa (Liu et al., 2019) as the
backbone, which receives pairs of sentences as the
input and assesses whether the second sentence is
a subsequent sentence of the first. Further training
details are explained in Appendix A. The outputs
S are described as follows.

S = [S(O,l)v e S(sfl,s)] (7)

where s+ 1 is the number of sentences in document
x and each S(;_ ;) is the positive probability score
for sentence pair (¢ — 1, ¢), which indicates how
likely it is that sentence 7 is a subsequent sentence
of sentence 7 — 1.

Prediction with NSP Score We generate a
document-level representation by composing sen-
tence representations before making the final pre-
diction. To achieve this, we take NSP scores as
weights and calculate the weighted sum of repre-
sentations of sentence pairs with the assumption
that sentence pairs with higher contextual coher-
ence score should also carry more importance in
making the final prediction. The final document
representation D is calculated as follows.

D =" S;1j) *[Gj-1,9)] (8)
j=1

Finally, we make the final prediction by feeding
the combination of D and the last hidden vector
h([CLS]) from RoBERTa through an classifica-
tion layer. The goal of this operation is to maintain
the complete contextual semantic meaning of the
whole document because some linguistic clues are
left out during graph construction.

S Experiment

5.1 Experiment Settings

In this paper, we evaluate our system on the follow-
ing two datasets:

o News-style GROVER-generated dataset pro-
vided by Zellers et al. (2019). The human-
written instances are collected from Real-
News, and machine-generated instances are
generated by GROVER-Mega, a large state-
of-the-art transformer-based generative model

developed for neural fake news. We largely
follow the experimental settings as described
by Zellers et al. (2019) and adopt two evalua-
tion metrics: paired accuracy and unpaired
accuracy. In the paired setting, the system
is given human-written news and machine-
generated news with the same meta-data. The
system needs to assign higher machine prob-
ability to the machine-generated news than
the human-written one. In the unpaired set-
ting, the system is provided with single news
document and states whether the document is
human-written or machine-generated.

o Webtext-style GPT2-generated dataset pro-
vided by OpenAI’. The human-written in-
stances are collected from WebText. Machine-
generated instances are generated by GPT-2
XL-1542M (Radford et al., 2019), a powerful
transformer-based generative model trained
on a corpus collected from popular webpages.
For this dataset, we adopt binary classification
accuracy as the evaluation metric.

We set nucleus sampling with p = 0.96 as the
sampling strategy of generator for both datasets,
which leads to better generated text quality (Zellers
et al., 2019; Ippolito et al., 2019). The statistics of
the two datasets are shown in the Table 1.

Dataset Train Valid Test Set
Unpaired Paired

News-style 10,000 3,000 8,000 8,000

Webtext-style 500,000 10,000 10,000 -

Table 1:
datasets.

Statistics of news-style and webtext-style

Furthermore, we adopt RoBERTa-Base (Liu
et al., 2019) as the direct baseline for our exper-
iments because RoOBERTa achieves state-of-the-art
performance on several benchmark NLP tasks. The
hyper-parameters and training details of our model
are described in Appendix B.

5.2 Model Comparison

Baseline Settings We compare our system with
transformer-based baselines for DeepFake detec-
tion, including three powerful transformer-based
pre-trained models: BERT (Devlin et al., 2018),
XLNet (Yang et al., 2019) and RoBERTa (Liu

*https://github.com/openai/
gpt—-2-output-dataset
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Size  Model Unpaired Acc  Paired Acc
Chance 50.0% 50.0%
GROVER-Large 80.8% 89.0%

355M BERT-Large 73.1% 84.1%
GPT2 70.1% 78.8%
GROVER-Base 70.1% 717.5%
BERT-Base 67.2% 80.0%
GPT2 66.2% 72.5%

124M XLNet 77.1% 88.6%
RoBERTa 80.7% 89.2%
FAST 84.9% 93.5%

Table 2: Performance on the test set of news-style
dataset in terms of unpaired and paired accuracy. Our
model is abbreviated as FAST. Size indicates approx-
imate model size. The performance of GROVER,
BERT, and GPT?2 are reported by Zellers et al. (2019)

et al., 2019), which are large bidirectional trans-
formers achieving strong performance on multi-
ple benchmark NLP tasks. These baselines add a
simple classification layer on top of them and are
fine-tuned with standard cross-entropy loss on the
binary classification.

For the news-style dataset, we further com-
pare our model with GPT-2 (Radford et al,
2019) and GROVER (Zellers et al., 2019). The
GROVER-based discriminator is a fine-tuned ver-
sion of generator GROVER, which has three model
sizes: GROVER-Base (124 million parameters),
GROVER-Large (335 million parameters), and
GROVER-Mega (1.5 billion parameters). Our
model is not comparable with GROVER-Mega for
the following reasons. Firstly, GROVER-Mega is
the fake news generator, and it has a strong induc-
tive bias (e.g., data distribution and sampling strat-
egy) as the discriminator (Zellers et al., 2019). Sec-
ondly, GROVER-Mega has a much larger model
size (1.5 billion parameters) than our model.

For the webtext-style dataset, we compare with
the baselines we trained with the same hyper-
parameters. We don’t compare with GPT-2 because
it’s the generator for machine-generated text.

Results and Analysis In Table 2, we compare
our model with baselines on the test set of news-
style dataset with negative instances generated
by GROVER-Mega. As shown in the table, our
model significantly outperforms our direct baseline
RoBERTa with 4.2% improvements on unpaired
accuracy and 4.3% improvements on paired accu-
racy. Our model also significantly outperforms
GROVER-Large and other strong transformer-
based baselines (i.e., GPT2, BERT, XLNet).

Model Development Acc  Test Acc
Random 50.00% 50.00%
BERT 85.32% 85.10%
XLNet 88.79% 88.56%
RoBERTa 90.46% 90.10%
FAST 93.10% 93.17%

Table 3: Performance on the development and test set
of webtext-style dataset in terms of binary classifica-
tion accuracy. Our model is abbreviated as FAST.

In Table 3, we compare our model with baselines
on the development set and the test set of webtext-
style dataset. Our model significantly outperforms
strongest transformer-based baseline ROBERTa by
2.64% on the development set and 3.07% on the
test set of webtext-style GPT2-generated dataset.

This observation indicates that modeling fine-
grained factual structures empower our system to
discriminate the difference between human-written
text and machine-generated text.

5.3 Ablation Study

Moreover, we also conduct ablation studies to eval-
uate the impact of each component by conducting
experiments about direct baseline RoOBERTa-Base
and four variants of our full model.

o RoBERTa-Base is our direct baseline without
considering any structural information.

o FAST (GCN) calculate a global document
representation by averaging node representa-
tions after representation learning by GCN.

o FAST (GCN w/o wiki) The node represen-
tations eliminate entity representations from
wikipedia2vec and the rest are the same as
FAST (GCN).

e FAST (GCN + LSTM) takes the final hidden
state from coherence tracking LSTM (§ 4.4)
as the final document-level representation.

e FAST (GCN + LSTM + NSP) is the full
model introduced in this paper.

As shown in Figure 4, adding GCN improve per-
formance on the development the set of news-style
dataset and webtext-style dataset. This verifies that
incorporating fine-grained structural information
is beneficial for detecting generated text. Elimi-
nating wikipedia-based entity representation from
FAST (GCN) drops performance, which indicates

2466



News-style Dataset

89
87.97

88
87.07 ==

87

86 85.46 81 -

85

84 sa&r -

83

82

81

RoBERTa FAST(GCN w/o FAST (GCN)  FAST (GCN+LSTM)
wiki) GCN+LSTM+NSP)

mDev. Acc

Webtext-style Dataset

92. 67 petas

_931
9219 I I
FAST(GCN w/o FAST (GCN)  FAST (GCN+LSTM)

wiki) GCN+LSTM+NSP)

92 91.78
90. 46

- .
89
RoBERTa

mDev. Acc

Figure 4: Ablation studies on the the development set of the two datasets in terms of binary classification accuracy.

that incorporating external knowledge is also bene-
ficial. Moreover, incorporating coherence tracking
LSTM brings further improvement on two datasets,
which indicates that modeling consistency of fac-
tual structure of continuous sentences is better than
simply using global structural information of the
document, like the setting in FAST (GCN). Lastly,
results also show that incorporating semantic coher-
ence score of pre-trained NSP model is beneficial
for discriminating generated text.

5.4 Case Study

As shown in Figure 5, we conduct a case study by
giving an example. This example shows human-
written news and machine-generated news with the
same metadata (i.e., title). The veracity of both
documents are correctly predicted by our model.
With the given document, our system constructs
a factual graph and makes the correct predictions
by reasoning over the constructed graph. We can
observe that although the continuous sentences in
the machine-generated news look coherent, their
factual structure is not consistent as they describe
events about irrelevant entities. Instead, the human-
written news has a more consistent factual structure.
However, without utilizing factual structure infor-
mation, RoBERTa fails to discriminate between
these two articles. This observation reflects that our
model can distinguish the difference in the factual
consistency of machine-generated text and human-
written text.

5.5 Error Analysis

To explore further directions for future studies, we
randomly select 200 instances and manually sum-
marize representative error types.

The primary type of errors is those caused by
failing to extract core entities of sentences. The

quality of a constructed graph is somehow limited
by the performance of the NER model. This limita-
tion leaves further exploratory space for extraction
of internal factual structure. The second type of er-
rors is caused by the weakness in the mathematical
calculation of the model. For instance, a document
describes that “a smaller $5 million one-off was
seized in 2016 and the National Bank of Antigua
and Barbuda reclaimed $30 million stolen in the
2015 heist last year. $100 million, it was a massive
amount. But now we are talking of $50 million, this
is extremely conservative... ”. Humans can eas-
ily observe that the mentioned numbers are highly
inconsistent in the generated text. A machine strug-
gles to discern that. This error type calls for the
development of a machine’s mathematical calcu-
lation abilities. The third error type is caused by
failing to model commonsense knowledge. For ex-
ample, a famous generated document mentioned
“In a shocking finding, scientist discovered a herd
of unicorns living in a remote, previously unex-
plored valley, in the Andes Mountains. ... These
four-horned, silver-white unicorns were previously
unknown to science.”. Although the text looks co-
herent, it is still problematic in terms of common-
sense knowledge that “unicorn has only one horn”.
This leaves space for further research on exploring
commonsense knowledge in deepfake detection.

6 Related Work

Recently, fake news detection has attracted grow-
ing interest due to the unprecedented amount of
fake contents propagating through the internet
(Vosoughi et al., 2018). Spreading of fake news
arises public concerns (Cooke, 2018) as it may
influence essential public events like politic elec-
tions (Allcott and Gentzkow, 2017). Online re-
views can also be generated by machines, and
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Figure 5: A case study of our approach. Continuous words in orange indicate a entity node extracted by our system.
Each green solid box indicates a sub-graph corresponding to a sentence, and a blue dashed line indicates an edge
between semantically relevant entity pairs. Numbers in orange and blue indicate probability for the human-written
document and the machine-generated document respectively.

can even be as fluent as human-written text (Ade-
lani et al., 2020). This situation becomes even
more serious when recent development of large
pre-trained language models (Radford et al., 2019;
Zellers et al., 2019) are capable of generating co-
herent, fluent and human-like text. Two influen-
tial works are GPT-2 (Radford et al., 2019) and
GROVER (Zellers et al., 2019), The former is an
open-sourced, large-scale unsupervised language
model learned on web texts, while the latter is par-
ticularly learned for news. In this work, we study
the problem of discriminating machine-generated
and human-written text, and evaluate on datasets
produced by both GPT-2 and GROVER.

Advances in generative models have promoted
the development of detection methods. Previous
studies in the field of DeepFake detection of gener-
ated text are dominated by deep-learning based doc-
ument classification models and studies about dis-
criminating features of generated text. GROVER
(Zellers et al., 2019) detects generated text by a
fine-tuned model of the generative model itself. Ip-
polito et al. (2019) fine-tune the BERT model for
discrimination and explore how sampling strate-
gies and text excerpt length affect the detection.
GLTR (Gehrmann et al., 2019) develops a statisti-
cal method of computing per-token likelihoods and
visualizes histograms over them to help deepfake
detection. Badaskar et al. (2008) and Pérez-Rosas
et al. (2017) study language distributional features
including n-gram frequencies, text coherence and
syntax features. Vijayaraghavan et al. (2020) study
the effectiveness of different numeric representa-
tions (e.g., TFIDF and Word2Vec) and different

neural networks (e.g., ANNs, LSTMs) for detec-
tion. Bakhtin et al. (2019) tackle the problem as a
ranking task and study about the cross-architecture
and cross-corpus generalization of their scoring
functions. Schuster et al. (2019) indicate that sim-
ple provenance-based detection methods are insuf-
ficient for solving the problem and call for devel-
opment of fact checking systems. However, exist-
ing approaches struggle to capture fine-grained fac-
tual structures among continuous sentences, which
in our observation is essential in discriminating
human-written text and machine-generated text.
Our approach takes a step towards modeling fine-
grained factual structures for deepfake detection of
text.

7 Conclusion

In this paper, we present FAST, a graph-based
reasoning approach utilizing fine-grained factual
knowledge for DeepFake detection of text. We
represent the factual structure of a document as a
graph, which is utilized to learn graph-enhanced
sentence representations. Sentence representations
are further composed through document-level ag-
gregation for the final prediction, where the con-
sistency and coherence of continuous sentences
are sequentially modeled. We evaluate our sys-
tem on a news-style dataset and a webtext-style
dataset, whose fake instances are generated by
GROVER and GPT-2 respectively. Experiments
show that components of our approach bring im-
provements and our full model significantly outper-
forms transformer-based baselines on both datasets.
Model analysis further suggests that our model can
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distinguish the difference in the factual structure of
machine-generated and human-written text.
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A Training Details of NSP Model

In this part, we describe the training details of our
next sentence prediction model. The training data
of the NSP model comes from the human-written
component of the webtext-style dataset or the news-
style dataset depending on which dataset we are
running experiments on. We construct the dataset
with balanced numbers of positive instances and
negative instances. Supposing a positive instance
is a continuous sentence pair “A; B” from the
human-written text, we construct a negative in-
stance “A;C”, where C' is the most similar sen-
tence in the document of B.

We tackle this problem as a binary classification
task. We fine-tune the RoBERTa-Large model with
standard cross-entropy loss on the binary classifi-
cation task. We apply AdamW as the optimizer for
model training. We set the learning rate as le-5,
batch size as 8, and set max sequence length as
128.

B Training Details of FAST Model

In this part, we describe the training details for our
experiments. We employ cross-entropy loss as the
loss function. We apply AdamW as the optimizer
for model training. We employ RoBERTa-Base as
the backbone of our approach. The RoOBERTa net-
work and graph-based reasoning model are trained
jointly. We set the learning rate as le-5, warmup
step as 0, batch size as 4 per gpu, and set max se-
quence length as 512. The training time for one
epoch takes 2 hours on 4 P40 GPUs for the webtext-
style dataset, and 20 minutes for the news-style
dataset. We set the dimension of the contextual
node representation as 100. The dimension of the
wikipedia2vec entity representation is 100.
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